Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpa.br/jspui/handle/2011/17275
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorSANTOS, Alex Barros dos-
dc.date.accessioned2025-04-23T18:48:36Z-
dc.date.available2025-04-23T18:48:36Z-
dc.date.issued2020-02-28-
dc.identifier.citationSANTOS, Alex Barros dos Santos. A machine learning framework for ECG biometric system. Orientador: Eduardo Coelho Cerqueira. 2020. 79 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17275. Acesso em:.pt_BR
dc.identifier.urihttps://repositorio.ufpa.br/jspui/handle/2011/17275-
dc.description.abstractThe new environment of IoT and the deployment of 5G networks have been generating a huge amount of data. Developers are creating new applications and redesigning other ones completely. Also, a society greater concern with health increases the demand for health services provided with the usage of wearable devices that are getting cheaper. Moreover, the applications require more data protection and privacy. Thus, biometrics has become one of the primary mechanisms for protecting information used by users in all kind of systems and applications. This work investigates the use of an ECG signal in biometrics systems approaching machine learning techniques. This signal is a new alternative not only to increase current safety standards by providing the individual’s continuous authentication but also to assess health with cardiac monitoring already well established in medicine by evaluations. In this context, this master’s thesis proposes some processing steps to data sets, improving its quality that allows it to be used as a reliable source of biometric data. We define techniques for extracting signal considering mobile application constraints and design a structure that allows the use of ECG as a biometric signal in a scalable and heterogeneous environment considering different machine learning techniques such as Support Vector Machine, Random Forest and Neural Networks. The set of our proposed feature extraction, processing steps of data set and a machine learning model are the main contributions of this work.pt_BR
dc.description.provenanceSubmitted by Ivone Costa (mivone@ufpa.br) on 2025-04-23T18:48:10Z No. of bitstreams: 2 Dissertacao_ MachineLearningFramework.pdf: 5703774 bytes, checksum: 14cd8de9c7f61838e2a8ba9649574ad4 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)en
dc.description.provenanceApproved for entry into archive by Ivone Costa (mivone@ufpa.br) on 2025-04-23T18:48:36Z (GMT) No. of bitstreams: 2 Dissertacao_ MachineLearningFramework.pdf: 5703774 bytes, checksum: 14cd8de9c7f61838e2a8ba9649574ad4 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-04-23T18:48:36Z (GMT). No. of bitstreams: 2 Dissertacao_ MachineLearningFramework.pdf: 5703774 bytes, checksum: 14cd8de9c7f61838e2a8ba9649574ad4 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Previous issue date: 2020-02-28en
dc.languageporpt_BR
dc.publisherUniversidade Federal do Parápt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.source.uriDisponível na internet via correio eletrônico: bibliotecaitec@ufpa.brpt_BR
dc.subjectBiometricpt_BR
dc.subjectMachine Learningpt_BR
dc.subjectElectrocardiogrampt_BR
dc.subjectComputer Networkspt_BR
dc.subjectWearablespt_BR
dc.titleA machine learning framework for ECG biometric systempt_BR
dc.typeDissertaçãopt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFPApt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApt_BR
dc.contributor.advisor1CERQUEIRA, Eduardo Coelho-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1028151705135221pt_BR
dc.contributor.advisor-co1ROSÁRIO, Denis Lima do-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8273198217435163pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9621826007236811pt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétricapt_BR
dc.subject.linhadepesquisaREDES E SISTEMAS DISTRIBUÍDOSpt_BR
dc.subject.areadeconcentracaoCOMPUTAÇÃO APLICADApt_BR
dc.description.affiliationTRT - Tribunal Regional do Trabalho da 8ª Região (PA e AP)pt_BR
dc.contributor.advisor1ORCIDhttps://orcid.org/0000-0003-2162-6523pt_BR
Aparece en las colecciones: Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Dissertacao_ MachineLearningFramework.pdf5,57 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons