Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpa.br/jspui/handle/2011/17275
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.creator | SANTOS, Alex Barros dos | - |
dc.date.accessioned | 2025-04-23T18:48:36Z | - |
dc.date.available | 2025-04-23T18:48:36Z | - |
dc.date.issued | 2020-02-28 | - |
dc.identifier.citation | SANTOS, Alex Barros dos Santos. A machine learning framework for ECG biometric system. Orientador: Eduardo Coelho Cerqueira. 2020. 79 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17275. Acesso em:. | pt_BR |
dc.identifier.uri | https://repositorio.ufpa.br/jspui/handle/2011/17275 | - |
dc.description.abstract | The new environment of IoT and the deployment of 5G networks have been generating a huge amount of data. Developers are creating new applications and redesigning other ones completely. Also, a society greater concern with health increases the demand for health services provided with the usage of wearable devices that are getting cheaper. Moreover, the applications require more data protection and privacy. Thus, biometrics has become one of the primary mechanisms for protecting information used by users in all kind of systems and applications. This work investigates the use of an ECG signal in biometrics systems approaching machine learning techniques. This signal is a new alternative not only to increase current safety standards by providing the individual’s continuous authentication but also to assess health with cardiac monitoring already well established in medicine by evaluations. In this context, this master’s thesis proposes some processing steps to data sets, improving its quality that allows it to be used as a reliable source of biometric data. We define techniques for extracting signal considering mobile application constraints and design a structure that allows the use of ECG as a biometric signal in a scalable and heterogeneous environment considering different machine learning techniques such as Support Vector Machine, Random Forest and Neural Networks. The set of our proposed feature extraction, processing steps of data set and a machine learning model are the main contributions of this work. | pt_BR |
dc.description.provenance | Submitted by Ivone Costa (mivone@ufpa.br) on 2025-04-23T18:48:10Z No. of bitstreams: 2 Dissertacao_ MachineLearningFramework.pdf: 5703774 bytes, checksum: 14cd8de9c7f61838e2a8ba9649574ad4 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) | en |
dc.description.provenance | Approved for entry into archive by Ivone Costa (mivone@ufpa.br) on 2025-04-23T18:48:36Z (GMT) No. of bitstreams: 2 Dissertacao_ MachineLearningFramework.pdf: 5703774 bytes, checksum: 14cd8de9c7f61838e2a8ba9649574ad4 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2025-04-23T18:48:36Z (GMT). No. of bitstreams: 2 Dissertacao_ MachineLearningFramework.pdf: 5703774 bytes, checksum: 14cd8de9c7f61838e2a8ba9649574ad4 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Previous issue date: 2020-02-28 | en |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal do Pará | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
dc.source.uri | Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br | pt_BR |
dc.subject | Biometric | pt_BR |
dc.subject | Machine Learning | pt_BR |
dc.subject | Electrocardiogram | pt_BR |
dc.subject | Computer Networks | pt_BR |
dc.subject | Wearables | pt_BR |
dc.title | A machine learning framework for ECG biometric system | pt_BR |
dc.type | Dissertação | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Tecnologia | pt_BR |
dc.publisher.initials | UFPA | pt_BR |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA | pt_BR |
dc.contributor.advisor1 | CERQUEIRA, Eduardo Coelho | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1028151705135221 | pt_BR |
dc.contributor.advisor-co1 | ROSÁRIO, Denis Lima do | - |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/8273198217435163 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/9621826007236811 | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Elétrica | pt_BR |
dc.subject.linhadepesquisa | REDES E SISTEMAS DISTRIBUÍDOS | pt_BR |
dc.subject.areadeconcentracao | COMPUTAÇÃO APLICADA | pt_BR |
dc.description.affiliation | TRT - Tribunal Regional do Trabalho da 8ª Região (PA e AP) | pt_BR |
dc.contributor.advisor1ORCID | https://orcid.org/0000-0003-2162-6523 | pt_BR |
Aparece en las colecciones: | Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Dissertacao_ MachineLearningFramework.pdf | 5,57 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons