
UNIVERSIDADE FEDERAL DO PARÁ
INSTITUTO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

DEEP LEARNING SOFTWARE-BASED HOLDOVER FOR IEEE 1588 PTP
SYNCHRONIZATION IN 5G NETWORKS

Rodrigo Gomes Dutra

DM: 11/23

UFPA / ITEC / PPGEE

Campus Universitário do Guamá

Belém-Pará-Brasil

2023

ii

UNIVERSIDADE FEDERAL DO PARÁ
INSTITUTO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Rodrigo Gomes Dutra

DEEP LEARNING SOFTWARE-BASED HOLDOVER FOR IEEE 1588 PTP
SYNCHRONIZATION IN 5G NETWORKS

DM: 11/23

UFPA / ITEC / PPGEE

Campus Universitário do Guamá

Belém-Pará-Brasil

2023

iii

UNIVERSIDADE FEDERAL DO PARÁ
INSTITUTO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Rodrigo Gomes Dutra

DEEP LEARNING SOFTWARE-BASED HOLDOVER FOR IEEE 1588 PTP
SYNCHRONIZATION IN 5G NETWORKS

Submitted to the examination committee in the
graduate department of Electrical Engineering at
the Federal University of Pará in partial fulfillment
of the requirements for the degree of Master of
Science in Electrical Engineering with emphasis
in Telecommunications.

UFPA / ITEC / PPGEE

Campus Universitário do Guamá

Belém-Pará-Brasil

2023

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD
Sistema de Bibliotecas da Universidade Federal do Pará

Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo(a) autor(a)

G633d Gomes Dutra, Rodrigo.
 DEEP LEARNING SOFTWARE-BASED HOLDOVER FOR
IEEE 1588 PTP SYNCHRONIZATION IN 5G NETWORKS /
Rodrigo Gomes Dutra. — 2023.
 130 f. : il. color.

 Orientador(a): Prof. Dr. Aldebaro Barreto da Rocha Klautau
Junior
 Dissertação (Mestrado) - Universidade Federal do Pará, , 1,
Belém, 2023.

 1. Holdover. 2. Deep learning. 3. Transformer networks. 4.
Precision Time Protocol. 5. Sincronização. I. Título.

CDD 621.3822

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

UNIVERSIDADE FEDERAL DO PARÁ
INSTITUTO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

“DEEP LEARNING SOFTWARE-BASED HOLDOVER FOR PTP IEEE 1588
SYNCHRONIZATION IN 5G NETWORKS”

AUTOR: RODRIGO GOMES DUTRA

DISSERTAÇÃO DE MESTRADO SUBMETIDA À BANCA EXAMINADORA APROVADA

PELO COLEGIADO DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA

ELÉTRICA, SENDO JULGADA ADEQUADA PARA A OBTENÇÃO DO GRAU DE MESTRE

EM ENGENHARIA ELÉTRICA NA ÁREA DE TELECOMUNICAÇÕES.

APROVADA EM: 28/03/2023

BANCA EXAMINADORA:

Prof. Dr. Aldebaro Barreto da Rocha Klautau Júnior
(Orientador – PPGEE/UFPA)

Prof. Dr. Claudomiro de Souza de Sales Júnior
(Avaliador Interno – PPGEE/UFPA)

Prof. Dr. Leonardo Lira Ramalho
(Avaliador Interno – PPGEE/UFPA)

Dr. Igor Antônio Auad Freire
(Avaliador Externo – IFCOMM TELECOMUNICAÇO?ES)

VISTO:

Prof. Dr. Diego Lisboa Cardoso

(Coordenador do PPGEE/ITEC/UFPA)

Acknowledgments

I humbly take this opportunity to express my profound gratitude to the distinguished in-

dividuals whose contributions facilitated the successful completion of my Master’s thesis.

Primarily, I extend my gratitude to the members of the Synchronization team in LASSE,

formerly led by Igor Freire, for their guidance and support throughout my research. My es-

teemed colleagues Pedro Bemerguy, Camila Novaes, Juan Lopes, Douglas Santos, and José

Neto, offered invaluable insights that enriched my ideas and elevated the quality of my research.

Furthermore, I am deeply indebted to my Professor Aldebaro Klautau, who has been

a beacon of inspiration, guidance, and mentorship. His exceptional knowledge and expertise

motivated me to achieve academic excellence. His constructive criticism and encouragement

played an instrumental role in shaping my research work and realizing my academic goals.

I am also grateful to my former colleagues from LASSE, who work with me at SiDi Luan

Gonçalves and Thiago Sarmento. Their friendship, support, and encouragement were invaluable

sources of strength and motivation that contributed to professional development.

I thank the Innovation Center, Ericsson Telecomunicações S.A., Brazil for sponsoring this

work.

Lastly, I would like to express my heartfelt appreciation to my family, particularly my

wife Carolinne Fanjas, for their unwavering love, support, and understanding. Their encourage-

ment, patience, and understanding have been pivotal to my success, and I cannot overstate the

significance of their support.

In conclusion, I am deeply thankful to all who have played a part in my academic journey,

and I attribute my professional achievements to the exceptional training and guidance provided

by the LASSE team. With profound humility, I aspire to continue my academic growth and

make meaningful contributions to the research field in the future.

Rodrigo Dutra

03/2023

Glossary

AIC Akaike Information Criterion. 50, 51, 82

ANFIS Adaptive Neuro-fuzzy Inference System. 34

ANN Artificial Neural Network. 51, 52, 55

APTS Assisted Partial-timing Support. 15, 26, 28, 30, 67, 92,

99

AR Autoregressive. 45, 48, 50

ARIMA Autoregressive Integrated Moving Average. 5–7, 34, 45,

46, 48–51, 65, 68, 72, 76, 81, 83, 85, 88, 97, 98

ARIMAX Autoregressive Integrated Moving Average With Exoge-

nous Variables. 35, 46

ARMA Autoregressive Moving Average. 45, 49

ARMAX Autoregressive Moving Average. 33

BBU Baseband Unit. 1–3, 68

c-RAN Centralized Radio Access Networks. 1, 2

CPRI Common Public Radio Interface. 2

DOCXO Double Oven-controlled Crystal Oscillator. 31

eCPRI Enhanced Common Public Radio Interface. 2

EMAC Ethernet Media Access Control. 68

FDD Frequency-division Duplex. 24

FH Fronthaul. 1, 68

viii

FPGA Field-programmable Gate Array. 68, 69

FTS Full-timing Support. 15, 26, 28, 29, 36, 86

GNSS Global Navigation Satellite Systems. 3, 4, 6, 15, 26, 28,

30, 33, 36, 67, 92, 99

I Differencing Process. 48–50

IoT Internet Of Things. 1

LSTM Long Short-term Memory. 5, 6, 34, 35, 48, 57–60, 65,

68, 73, 75, 77, 85, 88, 89, 96–98

LTE Long Term Evolution. 22, 23

MA Moving Average. 45, 48–50

MIC Maximal Information Coefficient. 47

ML Machine Learning. 6, 34, 35, 73, 76, 77, 81, 88, 97, 99

MLP Multiple Layer Perceptron. xx, 52, 55

MO Multiple Output. 72, 77, 85, 88, 90

MTIE Maximum Time Interval Error. xx, 19, 21, 22, 31, 32, 36,

37, 80, 82, 86–89, 97

NLP Natural Language Processing. 58, 62, 64, 65

OCXO Oven-controlled Crystal Oscillator. xvi, 6, 9, 31–33, 35,

69, 80, 81, 87, 88, 90–92, 95, 97

PDV Packet Delay Variation. 35

PI Proportional-integral. 89, 98

PLL Phase Locked Loop. 28, 29, 33

PRTC Primary Reference Time Clock. 3, 4, 10, 23, 28, 36

PTP Precision Time Protocol. xx, xxi, 2–4, 6–8, 14–17, 19,

23, 26, 28–32, 35, 36, 67–70, 86, 87, 89, 91, 95–99

ix

PTP-DAL PTP Dataset Analysis Library. 70

PTS Partial-timing Support. 4–6, 15, 16, 26, 28–30, 36, 37,

67, 71, 77, 86, 98

QoE Quality Of Experience. 2

QoS Quality Of Service. 2

RAN Radio Access Networks. 1

RBIS Reference Broadcast Infrastructure Synchronization. 6

RBS Reference Broadcast Synchronization. 6, 35

RF Radio Frequency. 1, 2

RNN Recurrent Neural Network. 55–58

RRU Remote Radio Unit. 1–3, 68

RTC Real-time Clock. 13

SARIMA Seasonal Autoregressive Integrated Moving Average. 50,

83

SARIMAX Seasonal Autoregressive Integrated Moving Average

With Exogenous Variables. 50

SI System Of Units. 13

SVM-FIS Support Vector Machine Inference System. 34

SyncE Synchronous Ethernet. 3–5, 15, 16, 26, 28, 29, 31, 36, 86

T-SC Time Slave Clock. 3, 15, 31, 33, 36

TCXO Temperature Compensated Crystal Oscillator. 9, 31–34,

88, 91, 97

TDD Time-division Duplex. 3, 22–24, 91, 92, 97

TE Time Error. 19, 22, 23, 32, 33, 36, 37, 80, 86, 91, 92, 97

TIE Time Interval Error. 22

TLL Time-locked Loop. 68, 70, 71, 74, 98

ToD Time Of Day. 13, 17

x

VLAN Virtual Local Area Network. 69, 80

WSS Wide-sense Stationary. 41–43, 45–49, 73, 74

XO Crystal Oscillator. xvi, xvii, 6, 9, 31, 34, 35, 68, 69, 80,

81, 88–92, 95–97, 99

Symbols

Attn Scaled dot product attention. 61, 64

Attnmask Transformer attention mask. 63

AttnScores Scaled dot product attention scores. 61, 63

AttnMasked
Scores Scaled dot product attention masked scores. 63

Attnweights Transformer attention weights. 61, 63

ρ Autocorrelation function. 43

ρ̂ Sample autocorrelation function. 44

γ̂ Sample autocovariance function. 44

Bsz Batch size. 60, 61

θ Bias factor. 52

Cov Covariation function. 42, 43

d ARIMA diferencing order. 49–51, 85

dk Transformer’s key dimension size. 61, 63

dmodel Transformer main dimension size. 60, 61, 85

D SARIMA diferencing order. 50, 51, 85

Deccros Decoder cross attention. 64

Decself Decoder self attention. 63, 64

∆T Time period between two consecutive measurements. 13

σ Stardard deviation. 43

dH Transformer dimension per attention head. 61

∆ Differenciation operator. 42, 47, 73, 74

∆̂x
w Time offset estimation first differentiation. 73, 74, 76

xd Discrete time offset. 13, 17, 18, 20

ydf Discrete fractional frequency offset. 13, 20

E Moment function. 42, 43

xii

f(t) True instantaneous frequency. 12, 57, 58

fnom Nominal oscillators frequency. 12, 13

fref (t) Reference oscillators frequency. 12, 13

Ft Feature size. 60

Fw Feature window. 76, 77

K Feature window size. 72, 75–77, 83, 84

M Forecast horizon. 72, 74, 76, 77

x̂[n] Time offset estimation. 70, 71

Kw Key weight matrix. 61

K Transformer’s Key projection. 61, 63

κi PI loop integral constant. 70

κp PI loop proportional constant. 70

Lw Label window. 77

Y Neural network’s label. 54

L Label window size. 72, 75, 77, 84

Ê Sample mean function. 44, 46

MSE Mean square error function. 54, 81, 82

xh Neuron’s input. 52, 54

H Number of transformer attention heads. 61, 85

Cstate LSTM’s cell state. 58

c LSTM’s cell state candidates. 57, 58

Y LSTM autoregressive entries. 77

X LSTM exogenous entries. 77

h RNN’s hidden state. 56–58

hl Number of hidden layers. 85

η Learning rate. 54

Ŷ Neural network’s output. 53, 54, 56, 77

pj Activation potential. 52–54

un Weights that connect the input layer to the hidden layer.

55, 57, 58

vn Weights that connect the hidden layer to the output layer.

55, 56

xiii

wn Weight from past to current hidden state. 55, 57, 58

xn Set of entries of a neural network. 55, 57

p ARIMA proportinonal order. 48–51, 85

p Probability density function. 42

P SARIMA proportinonal order. 50, 51, 85

Pw Prediction window. 77

φ(t) Random phase noise. 13

T PTP timestamp. 17, 18, 70

T21[n] PTP master to slave timestamp difference. 17, 18

T43[n] PTP slave to master timestamp difference. 18

Q Transformer’s Query projection. 61, 63

q ARIMA moving average order. 49–51, 85

Q SARIMA moving average order. 50, 51, 85

Qw Query weight matrix. 61

Ynoise[n] Random component of a time series. 43

s SARIMA season size. 50, 82, 85

s[n] Seasonal component of a time series. 43, 45

Σ Sigmoid function. 57, 58

Src Transformer encoder input. 61, 63, 64

T (t) Local clock’s ToD. 13

Tref (t) Reference clock’s ToD. 13

Ts Time step. 60–64

tanh Hiperbolic tangent function. 57, 58

τ Observation period. 22

τp Temperature processed samples. 74, 76

Tgtin Transformer decoder input. 63–65

Tgtout Transformer decoder output. 64, 65

x̃[n] PTP time offset measurement. 18, 70, 71

Tm Total length of the measurement period. 22

m[n] Trend component of a time series. 43, 45

Vw Value weight matrix. 61

V Transformer’s Value projection. 61, 63

xiv

W Set of weights. 52, 54

w First difference window size. 73, 74, 83, 84, 88, 90

p Second difference window size. 74

x(t) Time offset. 13, 19, 57, 58

y(t) Frequency offset. 12, 13

yf Fractional frequency offset. 12, 13

z Time series realization. 44, 46, 47

Z Time series stochastic process. 41–44

List of Figures

2.1 Comparison of accuracy versus power consumption of quartz and atomic oscil-

lators [1]. 10

2.2 Frequency synchronization. 11

2.3 Time/phase synchronization. 11

2.4 Synchronization distribution topologies. 16

2.5 PTP delay request-response exchange. 18

2.6 Allan deviation example plot. 21

2.7 TE budget. 24

3.1 Free running slave clock . 27

3.2 FTS synchronization paths . 29

3.3 PTS synchronization paths . 30

3.4 APTS synchronization paths . 30

3.5 ITU-T G.8273.2 MTIE masks. 37

3.6 ITU-T G.8273.4 Permissible phase error under holdover operation at constant

temperature . 38

4.1 Airline passengers time series data. 39

4.2 Random walk time series. 41

4.3 White noise time series. 41

4.4 Sample autocorrelation coefficient of a white noise process realization. 44

4.5 Sample autocorrelation coefficient of a random walk process realization. 45

4.6 Autocorrelation of the airline passengers time series data. 46

5.1 MLP network. 52

5.2 Artificial neuron model of an MLP network. 53

xvi

5.3 Sigmoid activation function. 53

5.4 Simple RNN. 55

5.5 Unfolding of a simple RNN in time. 56

5.6 LSTM unit. 57

5.7 Transformer model architecture. 59

5.8 Multi head attention flux . 62

5.9 Transformer encoder information flux . 63

5.10 Decode causal attention . 64

5.11 Decode causal attention in a multi-step scheme 66

6.1 Algorithm assisted holdover in a PTP scenario 68

6.2 Testbed setup . 69

6.3 TLL structure . 71

6.4 MO strategy . 72

6.5 MO iterative strategy . 73

6.6 Model Data pipeline. 75

6.7 Rolling window processing. 76

6.8 LSTM model architecture. 78

6.9 Transformer decoder architecture . 79

6.10 Walk forward validation. 79

7.1 Testbed experiment setup. 81

7.2 Temperature behavior depending on the air conditioner state. 82

7.3 XO time offset drift behavior depending on the air conditioner state. 83

7.4 Experiment 2 walk forward validation MSE. 84

7.5 oven-controlled crystal oscillator (OCXO) MTIE results. 87

7.6 crystal oscillator (XO) MTIE results. 89

7.7 Free running MTIE of all experiments . 90

7.8 XO |TE| results . 91

7.9 OCXO |TE| results. 92

7.10 XO |TE| results results without bias. 93

7.11 OCXO |TE| results without bias. 94

7.12 OCXO Allan deviation results . 95

xvii

7.13 XO Allan deviation results . 96

List of Tables

2.1 Time error (TE) requirements. 23

2.2 Frequency accuracy requirements. 25

3.1 Results obtained by [21] . 32

3.2 Holdover results obtained by [22]-[23] considering a holdover duration of 1000

s . 33

3.3 Holdover mode TE baselines. 36

7.1 Experiments description. 81

7.2 Experiments pipeline parameters. 84

7.3 Model parameters for each Experiment . 85

Contents

Acknowledgment vi

Glossary vii

Symbols xi

List of Figures xv

List of Tables xviii

Contents xix

Abstract xxii

Resumo xxiii

1 Introduction 1

1.1 Motivation . 3

1.1.1 Synchronization overview . 3

1.1.2 Holdover overview . 4

1.2 Dissertation outline . 5

1.3 Contributions . 6

2 Fundamentals of Time Synchronization in Packet-based Networks 8

2.1 Clocks and Oscillators . 8

2.1.1 Types of oscillators . 9

2.2 Frequency and phase synchronization . 10

2.2.1 Time and frequency offset . 12

2.3 Synchronization distribution scenarios . 14

xx

2.3.1 Synchronization protocols . 14

2.3.2 Packet-based network synchronization topologies 15

2.4 precision time protocol (PTP) synchronization 17

2.5 Synchronization and clock stability metrics 19

2.5.1 Allan deviation . 19

2.5.2 maximum time interval error (MTIE) 21

2.6 Synchronization requirements in telecommunications 22

2.6.1 Timing requirements . 22

2.6.2 Frequency requirements . 24

3 Holdover operation 26

3.1 Free running and holdover modes . 27

3.2 Holdover scenarios . 28

3.2.1 FTS holdover . 29

3.2.2 PTS holdover . 29

3.2.3 APTS holdover . 30

3.3 Related works . 31

3.3.1 Clock robustness tests in holdover mode 31

3.3.2 Statistical-based holdover applications 33

3.3.3 Machine learning based holdover applications 34

3.4 Holdover requirements . 35

4 Time series 39

4.1 Stationary models and time series . 41

4.2 Time series components . 43

4.3 Multivariate time series analysis . 46

5 Time series prediction algorithms 48

5.1 ARIMA . 48

5.2 Neural Networks . 51

5.2.1 Multiple layer perceptron (MLP) networks 52

5.2.2 Training process of a neural network 53

5.2.3 Recurrent networks . 55

5.3 LSTM . 56

xxi

5.4 Transformer networks . 58

5.4.1 Transformer Components . 60

5.4.2 State of the art transformer in time series 65

6 Proposed method 67

6.1 Testbed and dataset obtention setup . 68

6.1.1 Testbed . 68

6.1.2 Datasets obtention setup . 70

6.2 PTP time locked loop (TLL) . 70

6.3 Proposed architecture . 71

6.3.1 Time series forecasting method . 72

7 Results 80

7.1 Experiments . 80

7.2 Baselines . 86

7.3 MTIE results discussion . 87

7.4 TE results discussion . 91

7.4.1 Allan deviation results discussion . 95

8 Conclusion 97

8.1 Future works . 98

Bibliography 100

Abstract

This work proposes evaluates software-based algorithm mechanisms for maintaining the

synchronization of a real-time clock in holdover operation when the timing reference input

is unavailable. Three algorithms, Autoregressive Integrated Moving Average (ARIMA), long

short term memory (LSTM), and Transformer networks, are implemented and trained using

timestamps and temperature data acquired while the slave clock is locked to a master clock.

When the slave clock loses its reference, the algorithm-based models take over and control the

clock. The proposed method is evaluated on a testbed of IEEE 1588 Precision Time Protocol

(PTP) clocks based on field-programmable gate arrays, where nanosecond-accurate timestamps

are collected for offline analysis. The models are evaluated using two clocks, one cost-effective,

cristal oscillator (XO), and one robust, oven controlled cristal oscillator (OCXO), in both con-

stant and variable temperature scenarios. The results show that all algorithms can sustain clock

synchronization accuracy within reasonable Time division duplex (TDD) synchronization lim-

its over intervals of 1000 seconds in all temperature and clock scenarios, with the transformer-

based holdover mechanism outperforming the statistical approach and LSTM network. This

cost-effective software-based approach proves to be feasible for increasing clock accuracy dur-

ing holdover operation and can be generalized to other holdover contexts, such as in a Global

Navigation Satellite System (GNSS) scenario.

Resumo

Este trabalho propõe a avaliação de mecanismos baseados em algoritmos de software para

manter a sincronização de um relógio em tempo real em operação de holdover, quando a en-

trada de referência de sincronização não está disponível. Três algoritmos, ARIMA, LSTM e

redes de Transformer, foram implementados e treinados usando dados de carimbo de tempo e

temperatura adquiridos enquanto o relógio escravo está sincronizado com um relógio mestre.

Quando o relógio escravo perde sua referência, os modelos baseados em algoritmos assumem

o controle e o mantém sincronizado. O método proposto foi avaliado em um teste de relógios

de protocolo de tempo de precisão IEEE 1588 PTP baseados em uma bancada de testes ba-

seada em FPGAs, onde timestamps precisos em nanossegundos foram coletados para análise

offline. Os modelos foram avaliados usando dois tipos de relógios, um econômico, XO, e um

robusto, OCXO, em cenários de temperatura constante e variável. Os resultados mostram que

todos os algoritmos podem manter a precisão de sincronização do relógio dentro de limites dos

requisitos de sincronização para comunicação TDD por intervalos de 1000 segundos em todos

os cenários de temperatura e oscilador, sendo que o mecanismo de holdover baseado em redes

Transformer superou a abordagem estatística e a rede LSTM. Esta abordagem de software de

baixo custo é viável para aumentar a precisão do relógio durante a operação de holdover e pode

ser generalizada para outros contextos de holdover, como em um cenário GNSS.

Chapter 1

Introduction

The need for synchronization among network elements and devices is essential in a grow-

ing range of modern applications, such as telecommunications [1], smart grids, data centers,

industrial automation [2], the internet of things (IoT), financial applications, time-sensitive net-

works, distributed computing, and more. In fifth-generation (5G) mobile communications, syn-

chronization capabilities are necessary not only on the radio interface but also on the backhaul

and fronthaul (FH) networks, which transport data to, from, and within the radio base stations.

In this context, fronthaul refers to the transport network that connects the baseband unit

(BBU) and the remote radio unit (RRU) in a cellular network. The BBU is responsible for

processing the digital signals, while the RRU handles the analog radio frequency (RF) signals.

In a traditional telecom network, the BBU and RRU are typically located close to each other,

within the same equipment room or building, and are traditionally connected by a short coaxial

or fiber-optic cable.

However, as network demands have grown, this traditional architecture has become in-

creasingly challenging to manage and scale. Over the past few years, there has been a significant

shift in the telecommunications industry towards deploying radio access networks (RAN) and

centralized radio access networks (c-RAN) . This shift has been driven by a desire to increase

network capacity and performance while reducing costs and improving efficiency.

RRUs and BBUs are essential components of modern telecommunications networks, es-

pecially in the context of c-RAN architectures. The centralization of BBU processing functions

in a c-RAN architecture enables network operators to significantly reduce the number of BBUs

required to support their networks while improving scalability and performance. However, this

architecture increases the bandwidth utilization in the FH network. Since a significant amount

2

of processing is offloaded from the base stations, the c-RAN architecture poses stringent delay

and jitter requirements for transporting FH data.

The common public radio interface (CPRI) [3] has been the most popular RRU-BBU

interface to date. Nevertheless, it necessitates extremely high-capacity and ultra-low latency

links for the digitized RF signal. Therefore, more efficient schemes based on other functional

splits of the radio processing chain are required to support 5G. Additionally, the demand for a

packet-switching-based FH network has resulted in an improved version of CPRI the enhanced

common public radio interface (eCPRI) [4], which is designed for packet networks such as

Ethernet and IP.

Packet-based networks, such as Ethernet, do not natively provide a way to distribute syn-

chronization throughout the network. However, technologies are available for packet-based

time distribution, including the IEE 1588 PTP, which is utilized in this study.

However, as the fronthaul system transitions to a packet-based architecture, new chal-

lenges must be addressed to ensure the quality of service (QoS) and quality of experience (QoE)

for end users. One such challenge is the need for holdover mechanisms to maintain synchro-

nization between the RRUs and the BBUs in the event of a loss of synchronization signal.

Holdover is a mechanism that enables the RRU to maintain synchronization with the BBU

during periods of temporary loss of synchronization signal, such as during a network outage or

when a signal is degraded. This mechanism ensures that the RRU continues to transmit data

with accurate timing, which is critical for maintaining QoS and QoE.

Although holdover operation has been defined in several ITU-T recommendations and re-

quirements, the potential benefits of software-based holdover mechanisms have not been thor-

oughly explored. Such mechanisms can offer a cost-effective solution without requiring further

expenses in hardware, such as robust slave oscillators. This work aims to investigate this sce-

nario, which will be further detailed in the subsequent chapters and sections.

As a reminder, Section 1.1 provides an overview of the main motivation for this work.

It first introduces the concept of synchronization and then addresses the holdover operation

problem under subsections 1.1.1 and 1.1.2. Section 1.2 outlines the chapters of this work,

and Section 1.3 discusses the contributions of this work and publications resulting from this

dissertation.

3

1.1 Motivation

1.1.1 Synchronization overview

Accurate clock synchronization is a critical aspect of time-sensitive applications em-

ployed in various sectors, as discussed in the preceding section. In many cases, particularly

indoor ones, the Primary reference time clock (PRTC) obtains its time reference from the global

navigation satellite systems (GNSS) and subsequently distributes this timing information to

Time slave clock (T-SC) equipment through a packet-based network. Typically, timing distri-

bution is accomplished using IEEE 1588 PTP and Synchronous Ethernet (SyncE), which have

different use cases. PTP can deliver both time and frequency by exchanging timestamps over

a packet-based network, while SyncE distributes frequency directly over the Ethernet physical

layer. GNSS-disciplined clocks synchronize with the time scale disseminated collectively by

multiple satellites.

The synchronization paradigm typically entails disseminating time and frequency from a

robust PRTC to several T-SC equipment, which often possess less accurate clock oscillators.

This is frequently due to the expense of high-accuracy oscillators, making it impractical to

distribute them to all equipment, including user equipment. As a result, synchronization is

required, necessitating the presence of at least one robust and highly accurate clock oscillator

in the PRTC, which distributes its timing and frequency information across the entire network.

In telecommunications networks, particularly in the fronthaul, the need for synchroniza-

tion is directly related to the network’s utilization requirements. For instance, the fronthaul must

maintain a maximum time error of 1.5 ms between the BBU and RRU to maintain functional

the time-division duplex (TDD) operation in a 5G new radio network.

The synchronization distribution can be achieved in various ways, depending on the net-

work’s location and budget. For instance, in an outdoor scenario where the network owner is not

concerned with costs, all clocks in the network may have an expensive GNSS source. However,

in more realistic scenarios, only one or a few PRTC will have a GNSS source, and its timing

and frequency information will be distributed to T-SCs using a combination of PTP and SyncE.

To achieve a cost-effective solution, the network owner may use legacy Ethernet switches to

distribute the PRTC’s timing information to T-SCs equipment. Although this particular choice

can save significant expenses by utilizing existing legacy Ethernet switches infrastructure, there

is a trade-off, as legacy switches do not provide direct support to PTP, leading to problems such

4

as packet delay variation and bias.

Our work focuses on this cost-effective scenario, defined as partial-timing support (PTS),

where the PRTC has access to a GNSS and distributes its timing notion through the use of

PTP and may use or not SyncE. Our synchronization testbed features a legacy Ethernet switch

capable of emulating up to four hops using VLANs. This work does not aim to mitigate the

issues introduced using a non-PTP-aware infrastructure. Instead, we focus on the holdover

problem, which will be discussed in the following subsection.

1.1.2 Holdover overview

The holdover operation can be broadly defined as the condition where a device cannot re-

ceive valid timing and frequency information from the synchronization source but instead relies

on its internal oscillator to maintain its timing, and frequency accuracy [5]. The holdover state

occurs when the synchronization source, such as a GNSS receiver, is unavailable or temporarily

disrupted, and the receiving device has no other reliable synchronization sources.

In GNSS-based synchronization, holdover can occur due to various reasons such as loss

of signal from satellites, local interference, or obstruction of the satellite signal due to environ-

mental factors like tall buildings or natural obstacles. When a GNSS receiver loses its signal or

experiences an interruption in its signal, it enters the holdover state and continues to generate

timing and frequency signals based on the last known good measurement.

During the holdover state, the GNSS receiver’s internal oscillator is used to maintain the

timing, and frequency accuracy, which can result in a gradual drift in timing and frequency accu-

racy as the oscillator’s stability is usually lower than the GNSS source’s stability. The holdover

state can last for a short period of time, typically ranging from a few seconds to several hours,

depending on the device’s holdover capabilities and the availability of other synchronization

sources.

GNSS-based synchronization is perhaps the most common use case of holdover operation.

Nevertheless, there are other cases of holdover use. In PTP networks, the holdover operation

can occur by the degradation of the packets coming from the master clock, which can occur

by high background traffic and even direct attacks in the network by hackers. Besides that, a

PTP slave clock equipment may also enter in holdover by problems in the infrastructure itself,

which includes the network and the master clock-related equipment. Alongside those cases,

the holdover operation may start for maintenance reasons. At the same time, the slave clock

5

will try to maintain its synchronization notion at acceptable levels while qualified personnel is

providing maintenance to the network.

Monitoring the holdover state’s duration and performance is essential to ensure that the

device’s timing and frequency accuracy remain within acceptable limits. However, providing

accurate timing and frequency correction signals during the holdover mode is not a trivial task

due to the oscillator stability, which is highly influenced by its quality and environmental noise

sources, such as temperature [6]. The duration and accuracy of the holdover state can be im-

proved by using a more stable oscillator, increasing the oscillator’s stability by temperature

control. Although, as previously commented, robust and stable oscillators are costly. Thus,

this standard way to improve holdover performance is unfeasible in cost-effective scenarios. A

cost-effective way to improve holdover performance is to rely on a software-based mechanism

to aid the slave clock during a holdover operation.

In the context of PTS deployments, ITU-T recommendation (G.8273.2) [7] defines two

scenarios of holdover. The first is when the time reference (i.e., PTP) is lost, but SyncE still pro-

vides the frequency reference over the physical layer. The second is when both time (PTP) and

frequency (SyncE) references are lost. This work focuses on the latter, which is not specified in

[7] and is still subject to further investigations.

1.2 Dissertation outline

This work is organized as follows:

• Chapter 2, the fundamental concepts of synchronization are detailed, providing the basis

for this work. This includes a description of the function of oscillators, synchronization

protocols, the requirements considered for this work, and the metrics used.

• Chapter 3 thoroughly describes the holdover operation, outlining the related works, ap-

plication scenarios, and the considered baselines for holdover operation.

• Chapter 4, the base time series theory used in the time series pipeline of this work is

defined.

• Chapter 5 then defines the models used in this work, namely the autoregressive integrated

moving average (ARIMA), long short-term memory (LSTM), and Transformer network

models, as a way to provide a software-based holdover mechanism.With these concepts

6

established, Chapter 6 describes the testbed, the time processing pipeline, and the forecast

strategies used in this work.

• Chapter 7 describes the experiments used to produce results with the proposed software-

based holdover application with each model, and Chapter 8 concludes this work by out-

lining the main conclusions extracted from the results and future works.

1.3 Contributions

Our work contributes to the field of network synchronization by providing a holdover

solution based on software that employs three distinct algorithms: ARIMA, LSTM, and Trans-

former networks. The ARIMA model is a classical model in the literature of time series focast-

ing. As such, the ARIMA model serves as a baseline benchmark for testing the models based

on machine learning (ML). The LSTM model is a deep learning model that been known to per-

form well for time series applications, while the Transformer networks are currently achieving

even greater performance in the same applications. Thus, our work provides an evaluation of

state-of-the-art models in the time series field, as well as classical statistical methods, in order

to benchmark the deep learning models. This cost-effective approach offers an efficient means

of maintaining acceptable levels of synchronization when external references are lost, even with

the use of a low-cost oscillator (XO).

To evaluate the effectiveness of our holdover solution, we conducted experiments using

actual data obtained from a PTP 1588 testbed, which featured PTS infrastructure and two dif-

ferent types of clocks: a cost-effective XO and a robust OCXO. Our results indicate that our

approach can maintain acceptable levels of synchronization for a holdover period of 1000 sec-

onds under varying clock and temperature conditions.

Furthermore, we validated our software-based holdover solution, which is based on a

time-series approach and can be easily adapted to other use cases beyond PTP holdover. Since

our solution is reliant only on data present in the slave clock, it has potential applications in other

cases, such as GNSS holdover or broader over-the-air synchronization methods like reference

broadcast infrastructure synchronization (RBIS), reference broadcast synchronization (RBS)

and pilot based synchronization.

Our recent findings, which focused exclusively on the LSTM model, were published in a

peer-reviewed article in Globecom titled "An LSTM-based Approach for Holdover Clock Dis-

7

ciplining in IEEE 1588 PTP Applications" [8]. This paper contributed to the holdover literature

by conducting experiments in a 1588 PTP scenario using a deep learning model that utilized

synchronization and temperature data. Additionally, we investigated current standards, such as

ITU-T 8273.2 [9], which have cited the current evaluation scenario of this work as a topic re-

quiring further investigation. Thus, our paper contributes to the development of innovative and

efficient solutions for network synchronization, with potential applications in various fields.

This dissertation builds upon the evaluations presented in our previous paper, providing com-

parisons with both a classical model in the literature (ARIMA) and the current state-of-the-art

model (Transformer).

Chapter 2

Fundamentals of Time Synchronization in

Packet-based Networks

This chapter provides an overview of the fundamental concepts necessary to understand

this work comprehensively. To begin, Section 2.1 provides a detailed explanation of clocks

and oscillators and their significance in synchronization. Subsequently, Section 2.2 examines

the various types of synchronization, while Section 2.3 outlines the means by which synchro-

nization is disseminated via synchronization protocols and the different types of timing and

frequency distribution topologies employed. Section 2.4 elaborates on the use of PTP for time

synchronization and the intricacies of this synchronization process. Following the synchroniza-

tion sections, Section 2.5 delves into the use of metrics for measuring the quality of synchro-

nization and clock stability. Finally, Section 2.6 comprehensively describes the synchronization

requirements necessary for a fronthaul application in normal operating mode.

2.1 Clocks and Oscillators

Clocks are made up of two main components: a pulse counter and an oscillator. The

oscillator, which can be a quartz crystal or an atomic resonator, generates regular pulses that are

counted by the pulse counter. The frequency of the oscillator, or the number of times it pulsates

in a given time period, is inversely related to the time interval between pulses, with a higher

frequency corresponding to a shorter time interval.

Clock oscillators are essential for maintaining synchronization in many types of systems.

They provide a consistent, stable reference frequency that can be used to coordinate the oper-

9

ation of different components. For example, in telecommunications and computer networks,

clock oscillators are used to generate timing signals that synchronize the transmission and re-

ception of data. This ensures that data is sent and received at the appropriate times, allowing

the system to operate efficiently and effectively.

2.1.1 Types of oscillators

Many different types of oscillators can be used for synchronization, and the cost-effectiveness

of each type can vary depending on the specific application and the system’s requirements.

Some common types of oscillators that are used for synchronization include:

• Quartz crystal oscillators (XO): These oscillators are popular due to their low cost, small

size, and low power consumption. However, they can be impacted by various factors

such as the cut and quality of the crystal, temperature, humidity, and even radiation. In

addition, shocks can permanently change their frequency, and they may drift over time

due to aging.

• Temperature compensated crystal oscillator (TCXO): To mitigate the impact caused by

environmental factors such as temperature variation on the XO, the TCXO has tempera-

ture compensation circuits that can be used to limit the impact of temperature variations

on the output frequency.

• Oven-controlled Oscillator (OCXO): This type of oscillator generates heat to maintain a

constant, stable temperature at which it exhibits the greatest frequency stability. While

these oscillators are more stable, they also use more energy, have longer startup times,

and are more expensive.

• Atomic oscillators are based on the atomic properties of elements such as cesium or ru-

bidium. These oscillators use a Voltage-Controlled Crystal Oscillator (VCXO) that is

locked to a highly stable frequency reference generated by a microwave transition in the

chosen atomic element. This reference frequency is very stable and resistant to environ-

mental influences, and its stability is transferred to the VCXO. Atoms can absorb and emit

electromagnetic energy at many different frequencies. However, hyperfine transitions are

often used in atomic oscillators because they are highly stable, relatively insensitive to

environmental effects, and occur in a convenient part of the spectrum.

10

The overall comparison between these types of oscillators, according to [10], can be vi-

sualized in Fig. 2.1. Rb and Cs stand for rubidium and cesium, respectively.

Power (W)

A
cc

ur
ac

y

10-4

10-6

10-8

10-10

10-12

10-2 10-1 100 101 10210-3

XO

TCXO

OCXO

Rb

Cs

Figure 2.1: Comparison of accuracy versus power consumption of quartz and atomic oscillators [1].

Besides the apparent relation between accuracy and power consumption, [10] also points

out that accuracy versus oscillator price and accuracy versus oscillator size has a similar rela-

tionship. Thus, to choose a clock, one should always consider a balance between those factors

and the final application, e.g., for PRTC generally, a clock with great accuracy and precision

is a better choice to assure the timing distribution in a synchronization network. Therefore the

price should not be a primary concern in this case, but accuracy should.

2.2 Frequency and phase synchronization

Synchronization broadly refers to coordinating events within a system comprising two or

more elements. This concept is commonly applied in scenarios where a single clock coordinates

multiple clocks within a system. Thereby, distributing both frequency and phase synchroniza-

tion throughout all elements.

In this context, syntonization, or frequency synchronization, refers to coordinating events

within a system that occur at the same rate. Fig 2.2 depicts this concept. This illustration shows

the union of an oscillator and a counter, with the counter converting the analog signal output by

11

the oscillator into a digital signal. With each rising edge, the clock increments its time register.

As such, the rate of repetition of these rising edges corresponds to the frequency of the clock.

The system is considered to be syntonized when the slave clocks’ oscillators are disciplined to

compensate for any differences in counter frequencies.

Time

Clock A

Frequency synchronization

Time

Clock B

fA = fB1
fA

1
fA

1
fB

1
fB

Figure 2.2: Frequency synchronization.

In addition to frequency synchronization, phase synchronization is also an essential con-

cept in coordinating events within a system. Phase synchronization refers to aligning the rising

edges between the two clocks’ square waves, as illustrated in Fig 2.3. This type of synchroniza-

tion is essential for scenarios in which various elements within a system must perform events at

the same instant.

Time

Phase/Time synchronization

Time

Clock A

Clock B

4:00:00 4:00:10

fA = fB
1
fA

1
fA

1
fB

1
fB

Figure 2.3: Time/phase synchronization.

Another essential concept within the coordination of events within a system is time syn-

12

chronization. Time synchronization refers to coordinating the clocks’ time-of-day (ToD) in a

system. Each device contains a real-time clock (RTC) module that keeps track of the ToD based

on the device’s oscillator frequency. It is worth noting that even if the oscillator frequencies are

not the same between two devices, it is still possible to achieve time synchronization if the

devices have the same ToD value in their respective RTCs. In specific cases, such as telecom

networks, the ToD time series is also used to synthesize a phase-aligned local clock signal, so

that time synchronization can be used to achieve phase synchronization [11].

2.2.1 Time and frequency offset

In this section, we present a formal definition of the frequency offset. The local oscillator

frequency of a device’s real-time clock (RTC) significantly impacts the device’s time-of-day

(ToD) notion. However, due to intrinsic limitations and external environmental factors, the

oscillator frequency may deviate from the nominal frequency, compromising synchronism. The

frequency offset, represented by y(t), is defined as the discrepancy between the actual and

nominal frequency values, as represented mathematically by the following equation:

y(t) = f(t)− fnom, (2.1)

where f(t) and fnom represent the actual frequency at instant t and the nominal oscillator fre-

quency, respectively, in terms of hertz (Hz). This difference is commonly measured as a nor-

malized value, resulting in the fractional frequency offset or fractional frequency deviation, as

described in [5], as represented mathematically by as follows:

yf (t) =
f(t)− fnom

fnom
. (2.2)

The yf is a normalized metric and therefore does not have a base unit. It is commonly given in

parts per million (ppm) or parts per billion (ppb). To establish a more direct frequency difference

metric with respect to a reference, the fnom may be replaced with the reference frequency value,

fref (t). This calculation will consider the relation of the clock to its reference rather than its

nominal value fnom, as represented mathematically by the following equation:

yf (t) =
f(t)− fref (t)

fref (t)
. (2.3)

13

This equation represents more general scenarios where the reference does not have a

static value, but rather its frequency behavior approximates a time-varying function represented

by fref (t).

Another metric that measures the difference between the local clock and a reference is

the time offset. This metric is obtained by the difference between the time of day (ToD) values

obtained from the local and reference real-time clock (RTC)s, as represented mathematically by

the following equation:

x(t) = T (t)− Tref (t), (2.4)

where the difference x(t) is given in terms of a time System of Units (SI) unit and the terms

T (t) and Tref (t) represent the local clock and reference ToD values, respectively. This time

difference is the main variable of interest in this work, and more generally, it fits into a time

series problem.

There exists a relationship between the frequency and time offset, as explained in Sections

2.4.2 to 2.4.4 in [12]. The final equation obtained in this relation is:

yf (t) =
dx

dt
, (2.5)

where x(t) and yf (t) represent the instantaneous time and fractional frequency offset, respec-

tively. Thus, y(t) can be seen as the amount of time offset accumulated in a given time period.

For example, a 10 ppb fractional frequency offset value represents an accumulation of 10 ns of

time offset error in one second.

The variable y(t) can be calculated through the use of periodic measurements of time

offset, represented as a set of discrete samples xd. This results in ydf [n], a discrete representation

of y(t), as outlined in 2.6:

ydf [n] =
xd[n]− xd[n− 1]

∆T
, (2.6)

where ∆T is the time period between two consecutive measurements. This time period is

assumed to be short enough to consider ydf [n] as a linear variable within its limits.

In addition to the definition of time offset outlined in 2.4, time offset can be modeled as

specified in ITU-T Recommendation G.810 [5]. This is represented in 2.7:

x(t) = x0 + y0t+
D

2
t2 +

φ(t)

2πfnom
, (2.7)

14

where the parameter x0 represents the initial time offset, y0 represents the initial frequency

offset, with fnom[n] as the reference value, D is the linear fractional frequency offset drift rate,

and φ represents the random phase deviations of the clock signal driving the real-time clock

(RTC).

Equation 2.7 highlights the influence of frequency offset and external factors on the time

offset. It is important to note that the φ parameter represents the random deviations in phase,

which can be influenced by factors such as temperature, humidity, supply voltage, and pressure

changes that affect the slave clock’s oscillator. On the other hand, the D parameter represents a

linear frequency deviation, which is affected by the aging of the clock’s oscillator. This means

that the φ parameter affects the time offset in the short term, while the D parameter affects the

time offset in the long term.

2.3 Synchronization distribution scenarios

2.3.1 Synchronization protocols

Having established the fundamental concepts of time synchronization and frequency syn-

chronization in section 2.2, the question of how to distribute these notions across a network

remains. One approach is to utilize a timing or frequency protocol in conjunction with deploy-

ing the necessary technologies to connect the network’s devices using the protocol.

The ITU-T categorizes these protocols according to their timing flows, or the method by

which the actual timing information is transmitted:

• MESSAGE timing flow: Synchronization is obtained through exchanging messages be-

tween nodes. These messages belong to the application layer. This means that a specific

application must run between two or more nodes to obtain synchronization. The PTP is

an example of a protocol that uses message timing flows. The system is modified at the

physical layer from the information contained in these messages.

• SERVICE timing flow: Synchronization is related to a specific service, such as PDH.

When a connection is established between two endpoints, a synchronization service is

created independently from other connections. Intermediate nodes are transparent to the

synchronization service.

15

• PHYSICAL timing flow: Synchronization is obtained from the actual signal used to trans-

mit data, which is then directly used to synchronize the local clock. This timing flow is

node-to-node, without intermediate nodes. SyncE is an example of a physical timing flow.

The actual deployment of these protocols and, therefore, the needed infrastructure may de-

pend on several factors, such as price and synchronization requirements, to comply. This trade-

off impact directly on the synchronization upper bound in a network and also in the holdover

performance as well.

2.3.2 Packet-based network synchronization topologies

In this work scenario, i.e., packet-based networks, the ITU-T (International Telecommu-

nication Union - Telecommunication Standardization Sector) G-8264 defines three topologies

for achieving this distribution: full-timing support (FTS), PTS, and assisted partial-timing sup-

port (APTS), which are illustrated in Fig. 2.4.

In an FTS network, all nodes are equipped with PTP aware infrastructure, providing

mechanisms such as time boundary clocks and transparent clocks to mitigate PTP inherent

problems, such as packet delay variation [13]. Also, these nodes count with support for physi-

cal layer synchronization mechanisms such as SyncE.

Integrating PTP and SyncE provides an effective solution for achieving accurate and

stable phase synchronization. PTP serves as the primary source for frequency, phase, and

time synchronization, while SyncE offers additional frequency stabilization, particularly dur-

ing holdover periods when PTP is temporarily unavailable.

On the other hand, in PTS networks, synchronization is distributed across nodes that do

not have the PTP aware infrastructure PTP packets and may have the equipment to support

SyncE. These networks tend to have shorter transmission paths with fewer nodes but can still

offer satisfactory performance. Note that in the PTS scenario, generally the use or not of the

SyncE is optional, while PTP is either not supported in any node or only partially supported in

the network over some (but not all) nodes.

The APTS is a particular case of PTS networks that have APTS clocks at the network

edge, as shown in Fig. 2.4. In this case, the primary reference to the T-SC is the GNSS, while

PTP or SyncE may be used as a reference in a holdover scenario, i.e., loss of connection or

degradation of the primary source.

16

PRTC
Packet

network

Packet

master

clock

End application

GPS PTP

Figure 2.4: Synchronization distribution topologies.

Ultimately, having defined these concepts, it is essential to note that this work situates

itself in a particular case of PTS scenario, where we use infrastructure that is PTP unaware

and does not have access to SyncE, i.e, we use the PTP as the primary timing distribution

mechanism. Thus, when the PTP networks suffer from disruption, the slave clock will not have

access to any timing reference during the holdover operation.

The selection of these network topologies is crucial for the network operator, as it deter-

mines the protocol or combination of protocols to be used and ultimately affects the equipment

used to compose the packet-based network, which in turn has a significant impact on the cost

of deploying the network.

17

2.4 PTP synchronization

The IEEE 1588 protocol [14], commonly referred to as PTP, is a widely used method for

providing phase and time synchronization. PTP was developed to synchronize time and phase

over Ethernet by exchanging PTP messages. There are currently three different versions of

the protocol, with the first version released in 2002, the second version in 2008, and the latest

revision in 2019. The latest revision PTP version 2 (PTPv2) provides several enhancements over

the previous versions, including support for multicast and unicast communication, improved

security features, and the ability to handle more extensive networks with more devices while

maintaining backward compatibility with the previous versions.

The PTP protocol utilizes a master and slave hierarchy for clock distribution. The slave

clock synchronizes its time and frequency notion through PTP messages containing timestamps

sent by the master clock. Within the protocol, there are two types of PTP messages: ordinary

messages and event messages. The key difference between these two types of messages is that

event messages require timestamps at the ingress and egress points, while ordinary messages

do not require timestamps.

Timestamps for event messages are taken when the message passes through a reference

point at the node’s ingress and egress paths. This reference point can be determined through

software or through the use of hardware, such as PTP infrastructure implemented in hardware.

Even when using hardware support for timestamps, utilizing software to handle the synchro-

nization process may still be necessary.

The PTP messaging scheme can be executed through either a one-step or two-step process.

In a one-step scheme, the egress time is embedded in the message that caused the timestamp.

In a two-step scheme, the egress time is sent in a follow-up message instead of being embedded

in the event message.

As depicted in Fig. 2.5, an example of synchronization using the PTP message exchange

is provided considering a two-step communication scheme, which is the scheme utilized in the

current study’s implementation. As the timestamps T1 and T2 are known by the slave clock, it

is possible to estimate the time offset as follows:

T21[n] = T 2[n]− T 1[n] = xd + dms. (2.8)

where in (2.8), the values T 1[n] and T 2[n] stand for the ToD timestamps taken respectively from

the master and slave, and dsm stands for the slave to master delay.

18

Master clock Slave clock

Sync

message

Sync Follow

up

message

T1

T2

Delay request

message

T3

T4

Delay response

message

T1

T4

Timestamps known

by the

slaveTimeTime

T2

T2, T1

T2, T1, T3

T2, T1, T3, T4

Figure 2.5: PTP delay request-response exchange.

Similarly, when the slave clock gains the knowledge of the timestamps T3 and T4, it is

possible to calculate the time offset in the opposite direction as in (2.8):

−T43[n] = T 4[n]− T 3[n] = xd − dsm. (2.9)

However, both equations mentioned above rely on the knowledge of the slave-to-master

and the master-to-slave delays, which the slave clock does not have. As a simplification, the

slave can assume that the dsm and dms are equal, and thus, the slave clock can estimate the time

offset through the following the (2.10):

x̃[n] =
(T21[n]) + (−T43[n])

2

=
(T 2[n]− T 1[n])− (T 4[n]− T 3[n])

2
+
dms − dsm

2

=
(T 2[n]− T 1[n])− (T 4[n]− T 3[n])

2
. (2.10)

19

2.5 Synchronization and clock stability metrics

Clock stability and synchronization are closely related concepts. Clock stability refers to

the ability of a clock to maintain accurate timekeeping over a period of time. Synchronization,

on the other hand, refers to the process of coordinating the timekeeping of multiple clocks so

that they all show the same time.

Clocks must maintain a stable and accurate time reference to achieve synchronization.

For example, if an unstable clock loses or gains time significantly, it will quickly become out

of sync with other clocks. On the other hand, a stable clock can maintain its time reference

accurately, allowing it to remain in sync with other clocks.

In summary, clock stability is essential in achieving synchronization among multiple

clocks. A stable clock can better maintain its time reference, keeping it in sync with other

clocks.

A common way to measure the synchronization and clock stability is using time error

(TE). In the literature, many authors may refer to TE and time offset in Eq (2.4) as the same

metric. This work separates these metrics, in order to avoid confusion, and defines the TE as

follows:

TE = x(t)slave − x(t)true, (2.11)

where x(t)slave is the slave clock time offset notion, which came from a noisy measurement,

such as the PTP raw measure in Eq (2.10), and x(t)true is the ground truth time offset.

On the other hand, one can achieve a better notion of clock stability using Allan deviation

and MTIE metrics, as those take into account the system behavior over time, differently than

TE that is a simple sample of difference between the slave and master clocks notions. As an

example of that, a constant high TE value would not negatively impact Allan deviation and

MTIE.

2.5.1 Allan deviation

The stability of crystal oscillators and atomic clocks has been observed to exhibit not

only white noise but also flicker frequency noise. This challenges traditional statistical tools,

such as the standard deviation, which cannot converge due to the divergent nature of the noise.

Consequently, the standard deviation is not an adequate measure for evaluating the stability of

20

clock oscillators. To address this issue, David Allan introduced the Allan variance [15], which

has now become a widely adopted method for assessing the performance of these devices.

To compute the Allan variance, the time series of the oscillator or clock readings are

divided into overlapping intervals, and the standard deviation of the difference between the

average of each interval and the average of the entire time series is determined. This variance,

also referred to as the two-sample variance, is computed using the following equation:

σ2
y(τ) =

〈
σ2
y(2, τ, τ)

〉
(2.12)

Where 〈· · · 〉 denotes the expectation operator, and τ is the observation period. Which is

expressed as follows:

σ2
y(τ) =

1

2

〈(
ydf [n+ 1]− ydf [n]

)2〉
(2.13)

=
1

2τ 2

〈(
xd[n+ 2]− 2xd[n+ 1] + xd[n]

)2〉
(2.14)

The definition of Allan deviation, which is similar to the standard deviation and is just the

square root of the Allan variance, is as follows:

σy(τ) =
√
σ2
y(τ) (2.15)

The preferred method for visualizing the stability of clock oscillators is the Allan devi-

ation over the Allan variance due to several reasons. Firstly, the Allan deviation has the same

units as the oscillator or clock being measured, which makes it more intuitive and easier to

interpret than the Allan variance, which has units of time squared. Secondly, the Allan devi-

ation is more resistant to non-stationary behavior or frequency changes of the clock, as it is a

normalized version of the Allan variance and is less influenced by systematic errors and statis-

tical outliers. Lastly, the Allan deviation provides a better signal-to-noise ratio than the Allan

variance, allowing for easier identification of different types of clock noise and a more accurate

estimation of the oscillator’s stability. Hence, the Allan deviation is the preferred approach for

plotting the stability of clock oscillators.

Furthermore, the Allan deviation is particularly useful for estimating stability due to noise

processes such as White PM (Phase Modulator) or Flicker PM (related to the quantization

noise), the White FM (Frequency Modulator) also known as Angle random walk, the Flicker

FM also named BIAS instability and the Random Walk FM (Frequency Modulator). However,

21

it is not suitable for characterizing systematic errors like temperature effects, although temper-

ature inherently affects the frequency stability and will have a noticeable effect on the Allan

variance. The Fig 2.6 provides an example of this noise processes with the Allan deviation,

adapted adapted from [16] and [17] as follows:

10−3
10−6

10−5

10−4

10−3

10−2

τ [s]

σ
y
(τ

)

10−2

White FM

Flicker FM

Random walk FM

White PM or Flicker PM

10−1 100 101 102 103 104 105

Figure 2.6: Allan deviation example plot.

One of the key advantages of the Allan deviation is that it considers both short-term and

long-term stability. Other metrics, such as the standard deviation or the root mean square devi-

ation, only measure short-term stability. By contrast, the Allan deviation provides a complete

picture of the stability of a clock or oscillator over a wide range of time scales.

Overall, the Allan deviation is a valuable tool for characterizing the stability of clocks,

oscillators, and other systems that exhibit random variations over time. It provides a more

comprehensive view of stability than other metrics and has been widely adopted in various

fields.

2.5.2 MTIE

The MTIE is an essential measure of clock performance, as it indicates the maximum

amount of error that can be expected in the clock’s timekeeping over a given period of time. A

clock with a low MTIE is considered to be more accurate than a clock with a high MTIE. It is

defined as the maximum difference between the clock’s indicated time and the true time over a

22

given time interval. In other words, it is the maximum deviation of a clock’s timekeeping from

the true time its estimation is stated in the equation as follows:

MTIE(τ) = max
n0<n<Tm−τ

(
max

n<i<n+τ
[x[i]]− min

n<i<n+τ
[x[i]]

)
, (2.16)

where τ value represents the observation period, Tm is the total length of the measurement, and

n0 is the timestamp of the initial value.

One can interpret (2.16) as a sliding window of size τ that slides starting in the value n0

and ends in the value n0 + Tm. When the sliding window reaches the final value, the maximum

and minimum values of time interval error (TIE) are computed. With this, the MTIE(τ) uses

these values to produce its value. This process is repeated multiple times, and at each iteration,

the τ window is incremented. In the final iteration, the τ window has the same length as the Tm

window.

Unlike the TE metric, the MTIE has a monotonic behavior. This metric is related strongly

to the concept of stability. As an example of that, the TE value in a determined time can be a

high value, but if the TE have a low variation, the MTIE will contain low values.

2.6 Synchronization requirements in telecommunications

2.6.1 Timing requirements

The field of wireless telecommunications is constantly evolving, driven by the increasing

demand for higher data rates, lower latency, and more reliable and stable connections. Emerging

technologies are further pushing this trend, such as the advent of automated vehicles, remote

surgery, and even higher-resolution video streaming. All of these applications require stable

and fast communication to function effectively. As a result, the requirements for telecommuni-

cations networks must also evolve.

Ethernet is well-suited for radio access networks due to its wide availability and cost-

efficiency. However, it does not inherently provide synchronization, as it is based on asyn-

chronous packet transmissions.

In contrast, synchronous transmission schemes allow the receiving end to recover the

sender’s frequency. For example, Long term evolution (LTE) base stations that use the TDD

scheme require accurate time synchronization to align TDD frames among adjacent TDD cells.

23

The Precision Time Protocol PTP is well-suited for this scenario, providing sub-microsecond

time synchronization to the network. The ITU-T G.8271.1 [18] standard, as outlined in Table

2.1, has developed a series of phase and time error limits that different applications must adhere

to in order to function correctly.

Table 2.1: Time error (TE) requirements.

Level of accuracy

TE requirement

(error with respect to a

common reference)

Type of application

1 500 ms Billing, alarms

2 100 µs
IP delay monitoring, Asynchronous Dual

Connectivity

3 5 µs

LTE TDD (large cell), Synchronous Dual

Connectivity (for up to 7 km propagation

difference between eNodeBs)

4 1.5 µs

UTRA-TDD, LTE-TDD (small cell),

WiMAX-TDD (some configurations),

Synchronous Dual Connectivity

(for up to 9 km propagation difference

between eNodeBs)

5 1 µs WiMAX-TDD (some configurations)

This table exemplifies various use cases and the requirements associated with them. A

newer version of the recommendation, G.8271.1 [19], focuses on the 1.5 µs TE budget, pro-

viding different scenarios and specific TE baselines. Fig. 2.7 describes a general end-to-end

application of this TE budget, that is, the error between the end application time clock to the

PRTC. This total end-to-end budget covers various types of errors caused by intrinsic behaviors

of a packet-based network, like associated asymmetry errors and dynamic TE (jitter and wander

components of the timing signal).

24

PRTC
Packet

network

Packet

master

clock

Packet

slave

clock

|1.1µs| network budget

|1.5µs| end-to-end budget

End application

time clock

Network time

reference (e.g., GPS)

A,B C D E

Figure 2.7: TE budget.

2.6.2 Frequency requirements

Alongside time synchronization, frequency synchronization is a vital component in mo-

bile networks [11] [20], particularly when it comes to handovers of user equipment (UE) be-

tween cells. This process necessitates the UE to precisely lock onto the new timing reference

at the correct frequency. To ensure compliance, the timing recovery process of mobile equip-

ment and the pull-in range must adhere to specific requirements for the frequency error that can

be tolerated in the signal emitted by the base station (BS). Additionally, mobility can result in

Doppler effects. Thus, a margin must be added to account for this potentiality, particularly in

high-mobility environments. To set the limit on the total frequency error between a UE and the

connected network, there must be a maximum tolerance for the frequency difference generated

over the radio interface. Furthermore, compliance with frequency synchronization plays a sig-

nificant role in fulfilling regulatory requirements and certifying that radio signals are generated

with strict adherence to frequency accuracy standards.

Besides the macro necessity to provide frequency synchronization, requirements must be

met depending on the transmission scheme adopted. In this context, two central transmission

schemes separate uplink (UL) and downlink transmissions, the TDD, described in the previous

section, and frequency-division duplex (FDD). Differently from TDD, FDD allows uplink and

downlink transmission simultaneously and uses distinct frequency bands to do so. Both methods

25

must comply with frequency requirements described in Table 2.2.

Table 2.2: Frequency accuracy requirements.

Frequency accuracy Technology

50 ppb WCDMA

50 ppb TD-SCDMA

50 ppb LTE-FDD

50 ppb LTE-TDD

Chapter 3

Holdover operation

Holdover operation in synchronization refers to the mode of operation of a synchro-

nization system when it continues to maintain its synchronization without a primary reference

source. It is an essential component of network timing systems, ensuring that the network con-

tinues to function even in the event of a failure or disruption of the primary reference source.

The importance of this particular mode or operation in synchronization lies in its ability

to maintain the accuracy of time-sensitive processes and the continuity of operations without

a primary reference source. This is critical in scenarios where reliable and accurate timing is

essential, such as in financial transaction processing systems, telecommunications networks,

and power generation and distribution systems.

In the context of time-sensitive network infrastructure, holdover is crucial in maintaining

synchronization during primary source failure. This can occur for various reasons, includ-

ing equipment malfunction and maintenance, network infrastructure rearrangement, and bad or

corrupted synchronization signals from the primary reference. Holdover provides a temporary

solution, allowing technicians sufficient time to repair or reconfigure the network and restore

primary synchronization.

This chapter will provide a comprehensive definition of holdover and free-running modes,

which Section 3.1 thoroughly describes. Subsequently, Section 3.2 will provide an overview of

holdover scenarios in the context of FTS, PTS, and APTS scenarios. Following this, Section

3.3 will delve into the related works, their results in similar tests to this work, and how our

work is situated within the related literature. Finally, Section 3.4 will discuss the requirements

for successful holdover operation, including the role of technologies such as PTP, GNSS, and

SyncE in ensuring reliable and accurate holdover operation.

27

3.1 Free running and holdover modes

This section introduces two central concepts crucial to this work: free-running and holdover

modes. As detailed in the ITU-T Recommendation G.810 [5], the free-running mode com-

mences when a clock loses communication with its external reference and can no longer control

its phase or frequency. This mode persists until the clock reestablishes communication with the

reference.

As illustrated in Fig. 3.1, consider two clocks, the reference clock A and the local clock B.

At t ≤ 0, the two clocks are synchronized in both time/phase and frequency. However, at t > 0,

the local clock loses communication with the reference and experiences a change in its oscillator

frequency, resulting in a constant frequency offset between the two clocks. Consequently, the

time offset between the two clocks will increase steadily unless the local clock reestablishes

communication with the reference. It is important to note that in real-world scenarios, the

frequency offset between the two clocks is unlikely to remain constant. Thus the time offset

will not increase at regular rates.

Time

Clock A

Free running

Time

Clock B

4:00:00

4:00:00

4:00:10

4:00:12

4:00:20 4:00:30

4:00:24 4:00:36

fA 6= fB,∀t ≥ 0

fA = fB,∀t < 0

x x x

Figure 3.1: Free running slave clock

In contrast, the holdover mode involves the local clock accessing stored data from the

external reference, allowing it to control its phase and frequency. With the use of hardware

or software, the local clock can rely on this stored data to maintain an acceptable level of

synchronization by controlling its output phase and frequency.

The holdover mode is formally defined by the ITU-T Recommendation G.810 [5] as an

operating condition in which a clock has lost its controlling reference input and uses stored data

28

acquired during locked operation to control its output. The stored data is utilized to control

phase and frequency variations, enabling the locked condition to be replicated within specifi-

cations. Holdover commences when the clock’s output is no longer influenced by a connected

external reference or in transition from it, and terminates when the clock reverts to the locked

mode condition.

In the literature, some authors may define the state of the slave clock after losing its

reference as a holdover, even without a mechanism purely focused on holdover operation. Nev-

ertheless, it makes sense, as these authors use a disciplined scheme like a phase locked loop

(PLL). As a causal mechanism, it stores information and takes time to fully stabilize (consider-

ing a scenario with an ideally stable reference). When the reference is lost, it has stored within

the last known frequency. Thus, when the PLL operates in an open loop after it has a notion of

the frequency, it can be considered a holdover mechanism. On the other hand, if this mechanism

does not yet store data, the slave clock can be considered in a free-running state.

3.2 Holdover scenarios

Taking into account the synchronization scenarios expounded upon in the synchronization

chapter (FTS, PTS, and APTS), the holdover operation may arise due to a myriad of reasons.

One of the probable causes of holdover is the lack of signal from the GNSS in the PRTC.

This scenario may come about owing to various factors, such as obstructions, electromagnetic

interference, and malfunctioning of satellites.

In the event of a loss of GNSS signal in the PRTC, all synchronization scenarios enter

a state where, despite the loss of GNSS signal, the network remains intact, and the synchro-

nization between the slaves and the PRTC is still active. However, it is essential to note that

the PRTC will slowly drift, and the network must maintain a certain level of synchronization to

function correctly.

Although this particular holdover situation will not be addressed in our work, it is worth

mentioning that it is perhaps the most common one, as GNSS synchronization and other over-

the-air-based synchronization are more susceptible to disruption compared to protocols that rely

on physical infrastructure, such as PTP and SyncE. Nevertheless, as our approach is generalistic,

it could also be adapted to this situation.

29

3.2.1 FTS holdover

In FTS networks, there are several possibilities for providing a temporary source while

in holdover, which depends on where the synchronization path was disrupted. In the event of

a disruption in the PTP synchronization network, the SyncE must supply a temporary primary

source to the slave clock. This specific situation has explicit requirements outlined in ITU-

T G.8273.2 [7] and in ITU-T G.8172.1 [19]. These requirements are further elaborated in

Section 3.4 of this chapter.

If the physical frequency input is lost, the FTS network will have to rely solely on the PTP

network, similar to the PTS topology. Therefore, some degradation in the frequency control

is expected. However, as an FTS has access to PTP-aware infrastructure, the synchronization

quality will remain at high levels and may even be better than that of a PTP in normal operation.

Figure 3.2: FTS synchronization paths

3.2.2 PTS holdover

As discussed in the previous subsection 3.2.1, the use of SyncE as a frequency refer-

ence during the holdover period is highly effective. However, in the case of PTS networks

where SyncE may not be present, the slave clock must rely solely on its oscillator or another

mechanism for synchronization. Typically, a PLL circuit is utilized as the mechanism in such

networks, which is responsible for disciplining the local clock to the reference phase source.

During holdover, this PLL operates in free-running mode, attempting to maintain the last known

frequency.

This research is conducted in the scenario mentioned above, utilizing an IEEE 1588 PTP

testbed as the primary and only reference for the slave clock, along with PTP-unaware switches.

The main contribution of this work is the development of a software-based holdover mechanism

30

Figure 3.3: PTS synchronization paths

that can aid the slave clock during holdover operations without requiring the implementation of

additional hardware.

3.2.3 APTS holdover

The APTS represents a specific instance of a PTS network, wherein the slave clock pos-

sesses access to a GNSS reference in addition to the PTP communication reference. Fig 3.3

illustrates this scenario. In this setup, the PTP communication operates as a backup reference

in the absence of GNSS signals, rendering PTP as the primary holdover mechanism.

Figure 3.4: APTS synchronization paths

If both GNSS and PTP are disrupted, the slave clock depends solely on its oscillator

discipline mechanism to maintain the last-known frequency, much like the PTS scenario. Con-

sequently, our research could potentially support the slave clock as a final resort in all packet

network synchronization schemes delineated in this work, and it can be adapted for GNSS

holdover or other over-the-air-based synchronization schemes. The Chapter 6 elaborates on the

specifics of our software-based holdover solution.

31

3.3 Related works

The literature about holdover operations can be broadly classified into three categories.

The first category comprises studies examining the clock’s robustness and its oscillator during

holdover situations. The second category includes studies that utilize statistical software mech-

anisms to assist the local clock during holdover. The third category comprises studies that adopt

a machine-learning approach to assist the slave clock when the reference is lost. This current

work falls under the third category and also engages in comparison with statistical studies. Due

to the nature of our datasets and their acquisition from the testbed, it is not feasible to evaluate

the inherent robustness of the clock during simulated holdover situations. However, our results

can still be compared with existing studies in this field.

3.3.1 Clock robustness tests in holdover mode

In clock robustness analysis in holdover scenarios, the literature plays a crucial role in

providing insights into the performance of different types of clocks in controlled environments

that emulate conventional deployments. This is accomplished by evaluating the accuracy of the

clocks during holdover situations, with a specific focus on a fixed holdover horizon. In this

work case, the horizon focused is of 1000 seconds. The studies cited in this context contribute

to understanding the synchronization infrastructure industry by providing valuable information

regarding the performance of various clock types under holdover conditions.

In that sense, [21] evaluate the T-SC holdover performance with different types of oscil-

lators alongside the use or not of frequency physical layer input (SyncE). The authors conclude

that their system using a double oven-controlled crystal oscillator (DOCXO), OCXO, or even a

TCXO may comply with the MTIE masks from [7] if the system has access SyncE input during

the holdover. However, the authors did not consider a case where the T-SC uses a low-cost

oscillator such as XO, nor a case where the T-SC has access to some software-based holdover

mechanism or a case where the temperature variation was above 1 Kelvin.

The results of [21] can serve as a reference for this work, with the caveat that a direct

comparison of the results is not feasible due to architectural differences. These differences

include the absence of perfect PTP synchronization prior to the holdover operation in this work,

the availability of two clocks to provide a local slave clock (either an XO or OCXO), and note

that our OCXO may not necessarily be equal to the OCXO employed in [21]. Despite these

32

differences, the results obtained by [21] are presented in Table 3.1.

Table 3.1: Results obtained by [21]

Type of holdover
MTIE (ns) at 1000 seconds

DOCXO OCXO TCXO

Time holdover without SyncE assist 31 65 3922

Time holdover with SyncE assist 23.56 12.0 6.4

Other studies in this field include [22]-[23], which carried out experiments in a smart grid

scenario. These experiments required the establishment of standard metrics and testing meth-

ods for evaluating the performance of network systems and components in the next-generation

substations. Both studies implemented an IEEE 1588 PTP Testbed for the power industry and

focused on synchronization. To streamline the testing process, they employed a software-based

testing dashboard, which facilitated the evaluation of the numerous requirements for accuracy,

reliability, and interoperability.

The studies carried out various tests, including holdover operation robustness tests, using

a network architecture that comprised multiple PTP-aware hops, each equipped with a slave

clock. Each slave clock was tested in holdover operation for 1000 seconds, yielding TE metric

results.

For a proper comparison between these prior studies and the present work, one should

focus on the results of the clock in the first hop, or closer to the first hop as possible, of the

network topology and pay attention to the type of clock oscillator used in each study. However,

[23] does not clarify in which hop each clock was located in the holdover experiment. On the

other hand, [22] explicitly informs the hop of the slave clock but intensionally hides the slave

clock type to maintain the testbed’s neutrality. This way, each clock may use either a TCXO or

a OCXO. Nevertheless, considering that the slave clocks started the holdover operation from a

TE close to 0-100 ns, we can consider their results a baseline for our work. The results of both

studies are summarized in Table 3.2 using the Max |TE| metric, as the authors did not provide

MTIE results.

33

Table 3.2: Holdover results obtained by [22]-[23] considering a holdover duration of 1000 s

Author Oscillator type Hop Max |TE| in holdover (ns) Max |TE| before holdover (ns)

[23] OCXO - 2487 55

[23] TCXO - 4710 49

[22] - 1 5936 96

[22] - 3 10256 80

[22] - 4 9400 96

[22] - 4 3616 120

[22] - 4 1736 80

3.3.2 Statistical-based holdover applications

Holdover solutions address two primary issues: compensating for temperature and aging-

induced frequency deviations in the oscillator. These problems have different time frames,

with the aging problem being a concern only in long-term holdovers (24 hours or longer) and

temperature-induced deviations being a common problem in all holdover periods.

The authors in [24] tackle both issues using a Kalman filtering-based holdover synchro-

nization approach. Both models use a digital PLL that provides the correction signal during the

holdover mode. The authors tested these models using both simulated data and a real testbed.

The study in [6] evaluates the use of an autoregressive moving average (ARMAX) holdover-

based approach to provide correction signals to the T-SC. During the controlled state, when

locked to its reference, the algorithm running on the T-SC identifies the ARMAX parameters

through a recursive error prediction approach. Once in holdover mode, the proposed algorithm

provides correction signals to the local oscillator. However, unlike [24], the authors only tested

the performance through simulation.

Equipment failure and maintenance are the typical use cases for the holdover mode. How-

ever, there are also other applications where this mode can benefit the T-SC’s timing notion. For

instance, [25] proposes an FIR-based holdover model to provide an alternate synchronization

source in the presence of noisy signals. On the other hand, [26] proposes a Kalman-based

holdover model to save energy by deliberately shutting down GNSS-based synchronization and

relying on its holdover model as a temporary timing source.

Studies that focus on temperature compensation are not always directly applicable to the

34

holdover mode, but they have the potential to be useful within this area of research. One such

study is presented in [27], which proposes a software-defined temperature compensated crystal

oscillator TCXO.

This software-defined TCXO is an XO oscillator with a software-defined temperature

compensation mechanism based on the Hammerstein-Wiener dynamic, non-linear model [28].

The authors utilize a self-learning approach to fit the parameters of the Hammerstein-Wiener

model, they argue that this could compensate for frequency variations during holdover operation

or in the presence of steep temperature variations.

However, the authors did not test the software-defined TCXO in an actual synchronization

scenario. Instead, their experimental setup consisted of a computer that measured the oscillator

frequency and a device to control the temperature to fit the non-linear model. Although a proper

holdover test was not conducted, the authors’ work still highlights the importance of incorpo-

rating mechanisms to improve clock performance, regardless of the quality of the oscillator,

further advancing the field of study outlined in our work.

3.3.3 Machine learning based holdover applications

In this context of predicting the future value of the correction signal or the timing variable

directly, the holdover applications fit well in the context of time series forecasting, for which the

time series literature contains multiple approaches. After [29] introduced the transformer model

in natural language processing, multiple authors proposed to use it in the time series forecasting

scenario, representing the actual state of the art in this field. For example, [30] proposed an

extended sequence time series forecasting model that outperformed LSTM, ARIMA, LogTrans,

facebook’s prophet, and many others testing in multiple benchmark datasets.

There are also ML investigations in the algorithm-based holdover field. For example,

the works on [31], and [32] investigate a scenario where a ML-based model learns from a

control module that disciplines the local clock and provides control signals during the controlled

period. In holdover mode, the ML generates the control signal to the local oscillator. The main

difference between both works is the ML algorithm chosen by the authors, [31] uses a adaptive

neuro-fuzzy inference system (ANFIS) while [31] use support vector machine inference system

(SVM-FIS) model. However, both authors do not provide any comparison of statistical models

nor use the temperature as an input to the model, even though they consider the environmental

effects (e.g., vibration, temperature, pressure, and humidity) as a noise source.

35

There are two major synchronization schemes in algorithm-assisted holdover studies.

[6, 24, 31, 25], apply algorithms focusing on GPS disciplined oscillators. The other use case

uses a RBS testbed [32]. Hence, none of these references proposes holdover algorithms for a

PTP synchronization scheme, which suffers from unique problems, e.g., packet delay variation

(PDV), link asymmetry, and packet loss.

The previous holdover studies that consider the effects of aging and the temperature effect,

[6]-[24], adopt statistical methods, which can be surpassed by ML methods in many cases. The

other two studies in [31]-[32], use ML methods but do not consider an environmental input,

such as temperature.

This research proposes a holdover synchronization methodology utilizing a software ap-

proach. Specifically, we implemented three distinct models, namely autoregressive integrated

moving average with exogenous variables (ARIMAX), a LSTM, and a transformer network, and

assessed their efficacy using datasets acquired from an IEEE 1588 PTP testbed. The ARIMAX

and LSTM models are regarded as robust models in the literature concerning time series, while

the transformer network is a state-of-the-art model. For our investigation, we employed only

the decoder portion of the transformer, similar to the approach employed in [33], and conducted

long sequence prediction, much like [30]. Our proposed model aims to offer ML holdover

that directly forecasts future time offset while accounting for temperature effects to enhance

the performance of low-cost XO and even robust clocks, such as OCXO based ones. As such,

we intend to expand upon our previous work [8] by utilizing a novel model and comparing its

performance with that of our previous approach (LSTM) and ARIMAX. Also, we intend to add

to the related works, providing novel experiments using datasets containing real data acquired

from a PTP dataset.

3.4 Holdover requirements

Considering the holdover requirements, it is ideal for the slave clock to comply with the

same specifications as during normal operation, as stated in subsection 2.6. However, specific

requirements are necessary for the holdover operation, considering that this state is transient and

the slave clock will eventually recover its reference. These requirements are designed to meet

time horizons, with the two most commonly considered time horizons in holdover literature

being 24 hours and 1000 s. Our work focuses solely on the requirements pertaining to the latter,

36

given the limitations of our testbed capture scheme, which can only accommodate a dataset of

6 hours. Therefore, it is unfeasible to concentrate on the longer holdover time horizon.

Considering possible failure scenarios in a FTS network, the recommendation ITU-T

G.8271.1 [19] establishes holdover mode TE baselines for the FTS scheme, considering a short

time horizon holdover, e.g., 1 minute, as described in Table 3.3:

Table 3.3: Holdover mode TE baselines.

TE requirement Failure scenario

250 ns
a) Failures in the synchronization network that cause the end application

clock to enter holdover for a short period (TEREA).

400 ns
b) Failures in the synchronization network that do not cause the end

application clock to enter holdover (TEHO).

The failure scenario a) considered in Table 3.3 considers rearrangements that force the

slave clock to enter a holdover state. For example, this might be triggered by a loss of PRTC

traceability of one of the redundant master clocks in the network [19]. On the other hand,

failure scenario b) considers a situation where the master clock temporally loses the GNSS

signal, causing the master clock to enter a holdover state, but the slave clock operates normally.

For this work, even though we consider a PTS network, we can also use the failure scenario a)

as a baseline for our work.

The main application of this work focuses on a scenario where T-SC hypothetically loses

the communication to its reference, the PRTC, and enters holdover mode. Therefore, the appli-

cable baseline for this work is the TEREA, where the end application enters in holdover for a

short period, stated in [19] as 1 minute.

Now considering specifically the FTS network, ITU-T proposed two different require-

ments for holdover operation. The first is ITU-T 8273.2 [7], which proposes MTIE masks to

express the frequency stability requirements when the slave clock enters in holdover state while

maintaining access to a SyncE input, considering two temperature situations, variable and neg-

ligible (or constant), which is described in the Fig. 3.5.

The MTIE masks described in Fig. 3.5 denote two scenarios of holdover mode in a T-SC,

where the slave clock loses the PTP communication and relies only upon the frequency layer

physical input, using SyncE as the sole input. The first mask considers a constant temperature

37

101 102 103

Time (s)

80

100

120

140

160

M
T
IE

(n
s)

ITU-T SyncE assisted mask
(|∆Temp | ≤ 1 ºC)

ITU-T SyncE assisted mask
(|∆ Temp | > 1 ºC)

Figure 3.5: ITU-T G.8273.2 MTIE masks.

scenario, where the temperature should not exceed 1 Kelvin. The other mask considers a vari-

able temperature scenario, where the temperature varies more than 1 Kelvin. This work does

not use the SyncE protocol to deliver frequency synchronization. However, this work’s results

use these MTIE masks as baselines.

Also focusing on this particular holdover horizon, the ITU-T 8273.4 [7] states the require-

ments in terms of ∆TE, i.e, phase error, regarding PTS scenario, which Fig. 3.6 describes. The

phase error is the amount of TE variation in the observation period, in this case 1000 seconds.

Differently from the previous requirement, this case refers to the case where the slave clock

does not have access to any reference. Thus, this requirement is entirely compliant with this

work holdover operation tests. Thus, it will also be used in this work as a baseline.

In conclusion, the requirements directly applicable to this work results as baselines are

the TE requirements stated in situation a) in the Table. 3.3 (TEREA), the permissible TE stated

in the Fig. 3.6, and the MTIE masks described in the Fig. 3.5.

38

Figure 3.6: ITU-T G.8273.4 Permissible phase error under holdover operation at constant temperature

Chapter 4

Time series

This section will delve into the fundamental concepts of time series. As previously dis-

cussed in Section 2.2, the time offset is a problem that falls within the realm of time series. This

work aims to address this problem and predict future time offsets. As such, these foundational

concepts are crucial for understanding the proposed method outlined in this work.

According to [34], a time series is a set of observations recorded at specific times. On the

other hand, a discrete-time series refers to observations recorded at specific intervals, resulting

in a set of discrete observations of a particular variable.

One example of a time series is the classic dataset used by Box & Jenkins [35] in Fig. 4.1:

1949 1950 1951 1953 1954 1955 1957 1958 1959

Date

200

400

600

P
as
se
n
g
er
s

Figure 4.1: Airline passengers time series data.

In deterministic systems, two distinct categories of time series are present. The first cate-

gory comprises deterministic time series, i.e., the series under this category are defined through

40

an analytical expression and are devoid of any random variables in their formulation. The

second category comprises non-deterministic time series, which cannot be defined through an

analytical expression as then encompasses random elements that hinder its description through

analytical means.

There are several reasons why a time series may be non-deterministic. The first reason

is insufficient information to describe the series entirely. The second reason is the presence of

intrinsic random behaviors inherent in the nature of the time series. It is important to note that

non-deterministic time series are stochastic processes and, therefore, this series can be analyzed

based on probabilistic aspects instead of analytical ones.

In the time series literature, a non-deterministic time series can be defined as either a

realization of a stochastic random process or a stochastic random process, depending on the

author. This present work primarily focuses on non-deterministic time series and, for the sake

of simplicity, denotes a time series process as a stochastic random process and the time series

as a realization of this process.

In the field of time series analysis, two commonly referenced examples of stochastic pro-

cesses are the white noise process and the random walk process, as outlined in [34]. These

processes serve as fundamental models for understanding and analyzing non-deterministic time

series. The white noise process, for instance, is a process that is characterized by zero tem-

poral correlation between observations. In contrast, the random walk process is a sequence of

independent and identically distributed random variables. These processes have been widely

studied and used in time series analysis due to their simplicity and generality. Every realization

of those processes yields a time series, shown in Fig. 4.3 and Fig. 4.2, respectively.

The main objective of time series analysis is to elaborate a forecast model that can esti-

mate the future steps of this series. One way to achieve this is to model the time series process.

However, this process could be more practical, as the series’ nature may depend on multiple

random variables and complex relationships between them. A way to achieve this is to create a

model that uses past observations to estimate the series’ future steps.

41

0 20 40 60 80

Samples

� 50

0

50

100

V
al
u
es

Figure 4.2: Random walk time series.

0 20 40 60 80

Samples

� 2

� 1

0

1

2

V
al
u
es

Figure 4.3: White noise time series.

4.1 Stationary models and time series

In order to properly analyze a time series problem, it is vital first to understand the concept

of stationary processes. There are two main types of stationary processes: wide-sense stationary

(wide-sense stationary (WSS)) and strict-sense stationary.

In simple terms, ifZ[n] is a time series process, it is WSS if it exhibits statistical properties

that are similar to those of its time-shifted versionZ[n+h]. Formally, a WSS time series process

is characterized by its first and second-order moments and covariance function. Therefore, it is

essential to understand the definitions of these functions to formulate the WSS conditions.

42

A moment of j-th order is defined by [36] as follows:

E(Z[n]j) =
∞∑

a=−∞

ajpZ(a;n), (4.1)

where Z is a random variable representing the time series process, pZ(a;n) is the probability

density function of the random variable at time n, and a is a set of integers. The first-order

moment corresponds to the mean function of the random variable.

The covariance function, as defined by [36], is given by:

Cov(A,B) = E

(
E(A− E(A))E(B − E(B))

)
. (4.2)

The covariation in (4.2) can be interpreted as a measure of the degree of joint variability

between the random variables A and B. In the context of time series analysis, this equation

represents the autocovariance function of a time seriesZ[n] and its time-shifted versionZ[n+h].

Based on the concepts as mentioned earlier, the conditions that define a WSS time series

process Z[n] can be expressed as:

• E(Z[n]2) <∞,

• E(Z[n]) should be independent of n,

• Cov(Z[n], Z[n+ h]) should be independent of n for any h.

Understanding the statistical properties of a time-series process that possesses the WSS

conditions is crucial for effectively dealing with such a time series before fitting it into any

model. This is because a WSS process is more predictable and less variable compared to non-

WSS processes. Accordingly, by employing these conditions, one can efficiently classify a time

series process as either WSS or non-WSS. For instance, a white-noise process can be classified

as WSS, while a random walk process is non-stationary in terms of WSS conditions.

Furthermore, some operators can transform a non-stationary time series into a WSS one

by altering the series’ statistical properties. The differentiation operator is an example of such

an operator, and the following Eq (4.3) defines it as:

∆Z[n] = Z[n]− Z[n− 1]. (4.3)

this differentiation can also be applied using lags greater than 1, namely being a seasonal dif-

ferentiation :

∆dZ[n] = Z[n]− Z[n− d] (4.4)

43

where the parameter d represents the size of seasonal differentiation. Typically, d has the same

value as the period of the time series process Z[n].

Understanding the concept of time series components is essential for comprehending how

these operators can modify the time series’ inherent statistical properties to attain the WSS

conditions. The subsequent subsection introduces this concept.

4.2 Time series components

A time series can be expressed as the sum of different components, as shown by the

equation below:

Z[n] = m[n] + s[n] + Ynoise[n]. (4.5)

Here,m[n] is a slowly changing function known as the trend component, s[n] is a function

with a known period d referred to as the seasonal component, and Ynoise[n] is the random noise

component that satisfies the conditions of a WSS process. These components can be observed

in Fig 4.1. The trend component is noticeable as the Airline passengers time series has a clear

upward trend, and the presence of the seasonal component can be observed in the periodic peaks

in the data.

In addition to visual inspection, various functions can extract information about a time

series and its components. One such function is the autocorrelation coefficient function, which

was first defined by Pearson [37]. This function can also provide information about the statisti-

cal properties of a time series and is given by:

ρh(Z[n]) =
Cov(Z[n], Z[n+ h])√

(E(Z[n]2)− E(Z[n])2)
√

(E(Z[n+ h]2)− E(Z[n+ h])2)
, (4.6)

for simplicity the term
√

(E(Z[n]2)− E(Z[n])2 can be substituted with the term σZ[n], that

represents the standard deviation function, resulting in:

ρh(Z[n]) =
Cov(Z[n], Z[n+ h])

σZ[n]σZ[n+h]
. (4.7)

It should be noted that this section refers specifically to the autocorrelation function as

used in statistics and that different fields may use different definitions. For the purposes of this

work, all references to the autocorrelation function or coefficient will refer to the autocorrelation

coefficient function as defined by Pearson [37] in (4.7).

44

The autocorrelation, described in (4.7), applies to a time series process Z[n] defined by

its stochastic process equation but cannot be directly applied to a realization of this process,

denoted by z[n]. In such scenarios, there exist methods that can estimate (4.1), (4.2), and (4.7)

for realizations of time series processes. Specifically, the estimation of the mean function is

expressed as follows:

Ê(z[n]) =
1

N

N−1∑
n=0

z[n], (4.8)

where the time series z[n] starts with the index 0 and has the maximum value index of N − 1,

which is the maximum number of samples. Following the same line of thought, the estimation

of the autocovariance of a time series z [n] is as follows:

γ̂h(z[n]) =
1

N

N−|h|∑
n=0

(z[n+ |h|]− Ê(z[n]))(z[n]− Ê(z[n])), (4.9)

Finally, the estimation of the autocorrelation coefficient for a time series is given by [37]:

ρ̂h(z[n]) =
γ̂h(z[n])

γ̂0(z[n])
. (4.10)

Eq (4.10) represents the sample autocorrelation coefficient, commonly used in statistical

analysis [37]. The effectiveness of this coefficient is illustrated in Fig.4.4 and Fig.4.5, which

respectively display the results of applying (4.10) to a white noise time series and a random

walk time series.

0 20 40 60 80

Lags

0.00

0.25

0.50

0.75

1.00

A
u
to
co
rr
el
a
ti
o
n

Figure 4.4: Sample autocorrelation coefficient of a white noise process realization.

45

0 20 40 60 80

Lags

0.00

0.25

0.50

0.75

1.00

A
u
to
co
rr
el
a
ti
o
n

Figure 4.5: Sample autocorrelation coefficient of a random walk process realization.

In the case of the white noise time series, the autocorrelation coefficient drops rapidly

from a maximum value of 1 at lag 0 to the subsequent lag and then oscillates around the same

value. On the other hand, the random walk time series exhibits the opposite behavior: the

autocorrelation coefficient gradually decreases and does not remain at a steady value for long.

Fig.4.6 displays the application of (4.10) to the airline passengers time series (Fig.4.1).

The behavior of the autocorrelation coefficient is similar to that of the random walk time series,

gradually decreasing and failing to reach a low value (0.00) as the lags increase. This indicates

the non-stationarity of the series [38], which can be attributed to the presence of the trend

componentm[n]. Additionally, the periodic peaks that occur every 12 lags indicate the presence

of the seasonal component s[n].

Various techniques are available to transform a non-stationary time series into a series

that is either stationary or close to stationary in terms of WSS. One such method involves using

the differentiation operator, as expressed in (4.3). This operator can be applied to a time series

several times until the trend component vanishes. Similarly, seasonal differentiation, as shown

in Eq (4.3), can be used to remove the seasonal component by setting the d parameter equal to

the period of the seasonal component.

Once the transformation process is complete, the resulting time series can be utilized as

input to various prediction models. One classic example is the combination of the autoregressive

(AR) and moving average (MA) models to form the autoregressive moving average (ARMA)

model. This model is often used in conjunction with differentiation to yield the ARIMA model,

which can be used to forecast non-stationary time series [35].

46

0 10 20 30 40

Lags

0.00

0.25

0.50

0.75

1.00

A
u
to
co
rr
el
a
ti
o
n

Figure 4.6: Autocorrelation of the airline passengers time series data.

4.3 Multivariate time series analysis

The preceding subsections examined univariate time series and their preprocessing for use

in forecast models. In contrast, multivariate time series are strongly correlated with variables

other than their past lags. A forecast model for multivariate time series can take advantage of

other variables, improving accuracy.

Multivariate time series forecast models can concentrate on one series and use others

as potentially valuable inputs. The endogenous variable, which represents the autoregressive

series whose future value is correlated with its past values, is the primary focus of this model.

In contrast, the external series are the exogenous variables.

This subsection and this work concentrate on bivariate time series models to predict the

future state of a series using other series as external inputs. A classic example of this application

is the ARIMAX model, which, like the ARIMA model, relies on differentiation through the

integration term to render the target series WSS.

The initial step in bivariate time series analysis involves examining the correlation be-

tween the two series. Let z represent the target series and ex[n] the exogenous input series. The

Pearson correlation coefficient [37] can be used to measure the linear correlation between these

two as follows:

r(z[n], ex[n]) =

∑N−1
n=0 (z[n]− Ê(z[n]))(ex[n]− Ê(ex[n]))√∑N−1

n=0 (z[n]− Ê(z[n]))2
√∑N−1

n=0 (ex[n]− Ê(ex[n]))2
(4.11)

47

The output of (4.11) ranges from−1 to 1, with values near−1 indicating a strong negative

correlation, values near 1 indicating a strong positive correlation, and values near 0 indicating

a weak or no linear correlation between the two series. A scatter plot of the two series can also

provide evidence of their correlation.

In the context of time series analysis, it is vital to consider linear correlations between

variables and the possibility of complex non-linear relationships. While the Pearson correlation

coefficient helps measure linear correlations, it may not detect non-linear relationships. The

maximal information coefficient (MIC) is a measure that can detect such non-linear relation-

ships [39]. If the MIC suggests a significant mutual correlation coefficient while the Pearson

correlation coefficient is low, a robust forecast model should consider non-linear relationships

between the variables.

In addition to correlation analysis, it is necessary to understand the concepts of integration

and cointegration order in bivariate time series regression. In time series analysis, the integration

order refers to the number of differentiations required to transform a non-stationary time series

into a weakly stationary series (WSS), as shown below:

u[n] = ∆d
cz[n], (4.12)

where u[n] is WSS and c denotes the number of difference operators ∆ of window size d. For

simplicity, this section notates the c order as a superscript of the difference operator.

The cointegration order, on the other hand, denotes the necessary order c of the difference

operator applied to the linear combination of two series (endogenous and exogenous) to result

in a WSS variable.

u[n] = ∆d
cz[n] + β(∆d

cex[n]), (4.13)

where the term u[n] denotes the result variable of the sum, which has WSS conditions. The

concept of cointegration order conflicts with the concept of individual integration order, so two

series are cointegrated only if the cointegration order is less than each series’ integration order.

In scenarios where the variables are cointegrated, those may be differentiated using this

mutual cointegration order. If not, the variables should be differentiated using the individual

integration order before inserting them into a forecast model.

Chapter 5

Time series prediction algorithms

In accordance with the definitions presented in Chapter 4, this chapter provides a detailed

explanation of the models employed in this study to provide a software-based holdover. Firstly,

in Section 5.1, the statistical model ARIMA is defined. Following this, Section 5.2 elaborates

on the fundamentals of the neural network models utilized in this study. Lastly, Sections 5.3

and 5.4 respectively provide a detailed explanation of the LSTM and Transformer networks

employed in this study.

5.1 ARIMA

The ARIMA model [40], also known as the autoregressive integrated moving average

model, is a statistical method used to forecast time series data. It is a popular method in econo-

metrics and finance for modeling and predicting trends in financial data such as stock prices,

interest rates, and economic indicators.

This model combines three components: AR, differencing process (I), and MA. The au-

toregression component involves using past values of the time series to predict future values,

which the (5.1) describes below:

y[n] = φ0 + φ1y[n− 1] + φ2y[n− 2] + ...+ φpy[n− p] + e[n]. (5.1)

where the φ0 up to φp are the constant terms up to the order p, which is the same order as the

AR process, and the term e[n] represents the error term, which is assumed to have a constant

variance and a mean of zero, i.e, a WSS process.

A moving average model can be expressed similarly to an autoregressive model, except

that the terms included in the linear equation refer to present and past error terms rather than

49

present and past values of the process itself. (5.2) describes the MA model of order q is

expressed as follows:

y[n] = µ+ θ1e[n− 1] + θ2e[n− 2] + ...+ θqe[n− q] + e[n]. (5.2)

With these two components, one can potentially generalize a stationary time series, namely

with the ARMA model, as follows:

y[n]− φ0 − φ1y[n− 1]− φ2y[n− 2]− ...− φpy[n− p] = (5.3)

µ+ θ1e[n− 1] + θ2e[n− 2] + ...+ θqe[n− q] + e[n]. (5.4)

Prior to incorporating the differencing component of the ARIMA model, it is necessary

to introduce the back-shift operator B, which plays a key role in the organization of (5.4). The

back-shift operator facilitates the introduction of the differencing component into the ARMA

model, ultimately generating the ARIMA model. The back-shift operator, denoted as B, is

defined in (5.5) as follows:

Biy[n] = y[n− i], (5.5)

now making use of the back shift operator the (5.4), can be rewritten as:

(1−
p∑
i=0

φiB
i)y[n] = (1 +

q∑
i=0

θiB
i)e[n]. (5.6)

Ultimately, the back-shift operator can be introduced in the (5.4) to introduce the differ-

encing component of ARIMA, making the ARIMA model capable of processing non-stationary

time series, turning then into a WSS series, as described in (5.6), as follows:

(1−
p∑
i=0

φiB
i)(1−B)dy[n] = (1 +

q∑
i=0

θiB
i)e[n], (5.7)

where the d component represents the order of the differencing term.

Ideally, when fitting the components of the ARIMA model to a particular time series,

the I of order d must correspond to the integration order of the time series. This concept is

elaborated in Section 4.3, where the integration order is defined as the number of times the

time series must be differentiated in order to become a WSS series.

It should be noted that the differentiation and differentiation inversion processes are typ-

ically performed by the ARIMA model. However, in our study, these processes are carried out

by the data pipeline, which will be further elaborated on in Chapter 6.

50

In addition to the conventional ARIMA model, the concept of seasonal periods in the

ARIMA model, thereby forming the seasonal autoregressive integrated moving average (SARIMA)

model. Like the ARIMA model, the SARIMA model comprises three key components (P ,D,

Q). However, in the SARIMA model, these components are also applied to the seasonal dif-

ferences of the data, in addition to the regular differences. The equation presented in Eq. (5.8)

characterizes the SARIMA model.

(1−
p∑
i=0

φiB
i)(1−

P∑
i=0

ΦiB
s·i)(1−B)d(1−Bs)Dy[n] = (1 +

q∑
i=0

θiB
i)(1 +

Q∑
i=0

ΘiB
s·i)e[n].

(5.8)

Where in the (5.8), s represents the seasonal period, with s = 12 signifying an annual

period if monthly data are being utilized. The terms P , Q, and D correspond, respectively,

to the seasonal version of the Autoregressive (AR), Moving Average (MA), and Integrated (I)

components, while Φ and Θ indicate the constant terms for the seasonal AR and MA, respec-

tively.

In addition to the standard SARIMA model, it is possible to incorporate an exogenous

time series x[n] to fit the endogenous time series y[n] better by introducing exogenous terms

in the equation. This results in the seasonal autoregressive integrated moving average with

exogenous variables (SARIMAX) model, given by:

(1−
p∑
i=0

φiB
i)(1−

P∑
i=0

ΦiB
s·i)(1−B)d(1−Bs)Dy[n] = (5.9)

(1 +

q∑
i=0

θiB
i)(1 +

Q∑
i=0

ΘiB
s·i)e[n] + (1 +

r∑
i=0

ζiB
i)x[n], (5.10)

where x[n] represents the exogenous time series, ζ is the coefficient applied to each time step

of x[n], and r represents the number of time steps considered for the exogenous time series.

For the sake of simplicity, this study shall refer to all ARIMA variations discussed herein

as ARIMA. The parameters (P ,D,Q) order shall determine whether the model is, in fact, an

ARIMA model or a SARIMA model, e.g, if (P ,D,Q) = (0, 0, 0), the model is the standard

ARIMA, and SARIMA otherwise.

In order to determine the optimal combination of parameters for the ARIMA model, this

study will employ the use of the Akaike information criterion (AIC). The AIC is a statistical

measure used for model selection that aids analysts in comparing the goodness of fit of different

51

models and selecting the one that fits the data best.

In the context of ARIMA modeling, the AIC is utilized to assess the quality of various

models with different parameter values, namely (p, d, q, P ,D,Q). The principle of parsimony

forms the basis of AIC and states that simpler models that explain the data well are preferred

over more complex models that fit the data more closely but have more parameters.

The AIC is calculated as shown in Eq. (5.11), where k represents the number of parame-

ters in the model, and L represents the likelihood function of the model. The likelihood function

evaluates how well the model fits the data, while the AIC penalizes models with more param-

eters, favoring simpler models. Therefore, the optimal value of AIC should correspond to the

model that best fits the data without overfitting.

AIC = 2k − 2 ln(L). (5.11)

5.2 Neural Networks

As described briefly in Section 3.3, artificial neural network (ANN) are widely used in

various scenarios to achieve different objectives. This is possible due to their ability to learn

and adapt their parameters based on the situation and their capacity to incorporate non-linear be-

haviors. ANN models consist of a parallel distributed system composed of computational units

called neurons, which can be allocated in one or more layers and make various interconnections,

usually unidirectional.

In most ANN models, each connection possesses a weight that stores acquired knowledge,

serving as a weighting factor for each neuron’s input in the network. The concept of ANN was

first introduced in [41], where the authors presented details of how a computational system can

represent a neuron’s behavior and memory. However, this first work did not introduce the idea

of the learning process of a neural network. On the other hand, the authors of [42] introduced

this concept by adding weights to each neuron’s connections.

Another significant milestone in the history of neural networks was when Frank Rosen-

blatt [43] demonstrated that the network could be trained to classify patterns by adjusting the

weights’ values. This model is known as the perceptron and has three layers in its simplest

form, consisting of an input layer, a hidden layer, and an output layer.

52

5.2.1 MLP networks

The multilayer perceptron (MLP) is a type of neural network that bears resemblance to the

perceptron originally proposed by [43]. Unlike the perceptron, the MLP contains multiple hid-

den layers, each comprising numerous interconnected neurons as illustrated in Fig. 5.1. During

the training process, the weights linking these neurons are adjusted to optimize the network’s

accuracy with respect to a specific expected output in a supervised learning scenario.

In supervised learning, the anticipated output is often referred to as a label. Notably, this

terminology is consistent across a variety of tasks including regression and classification. In

this work, which addresses the task of time-series regression, the label represents the predicted

future time offset.

...

Input units

...
...

...

Hidden layers

Output layer

weightsweights

weights

Figure 5.1: MLP network.

The structure of a neuron in the MLP model and its information processing mechanism

are illustrated in Fig.5.2. The input information of a neuron is represented by a set xh, and it is

associated with a set of weights,W , as dictated by Eq.(5.12) for a given neuron j. This equation

combines the input vector xhi and the weights W i through a product. Subsequently, a weighted

sum of all the products is computed, and the bias term θ is subtracted.

pj =
n∑
i=1

xhiW i − θj. (5.12)

The pj value in (5.12) represents the activation potential, which is the input argument

to the activation function. One of the most utilized activation functions in the ANN’s theory

is the sigmoid activation function, shown in Fig. 5.3. This activation function is described in

53

xh1

xh2

xhn

W2

W1

Wn

−θ

p
v(.) Output signal

Sinaptic weights

Input signals

Linear combiner

Activation function

Bias

Activation potential

∑
. . .

Figure 5.2: Artificial neuron model of an MLP network.

(5.13), where parameter e represents Euler’s constant and Ŷ is the output of the neuron after the

activation uses the activation potential pj as an argument.

Ŷ =
1

1 + e−pj
. (5.13)

− 10 − 5 0 5 10

0.00

0.25

0.50

0.75

1.00

Figure 5.3: Sigmoid activation function.

5.2.2 Training process of a neural network

The present study employs a supervised learning approach, wherein each input data point

is associated with a target output, referred to as the label, while the input data is commonly

54

referred to as features. Given a set of training data, the trainable parameters of the neural net-

work, such as weights and biases, are adjusted to minimize the difference between the network’s

outputs and the expected output [44].

The backpropagation algorithm is the primary algorithm used to train the neural network,

and it involves three steps: feedforward, error calculation, and backpropagation. During the

feedforward step, the input data enters the first layer of the neural network and propagates

through the hidden layers until it reaches the output layer. The output of each neuron in the

network is calculated using (5.13). Following this, the training algorithm can evaluate the error

using a mean squared error (MSE) function, as shown below:

MSE =
1

N

N∑
i=1

−1(Y i − Ŷ i)
2. (5.14)

The preceding equation indicates the mean square error (MSE) function utilized to mea-

sure the neural network’s error, where Ŷ i represents the output of the neural network, Y i repre-

sents the actual label that the neural network is being trained to predict, and N denotes the total

length of the neural network’s output layer.

The final stage of the training algorithm is backpropagation, where the network updates

the weights, considering the discrepancy between the network output and the label. To achieve

this, the algorithm computes the gradient of the cost function, which corresponds to the partial

derivative of the cost function concerning the weights:

∂MSE(Y j, Ŷ i)

∂W ij

=
∂MSE(Y j, Ŷ i)

∂Ŷ i

∂Ŷ i

∂pj

∂pj
∂W ij

, (5.15)

where the value of this function indicates the direction in which a given weight W ij associated

with a neuron j must be altered by the algorithm to obtain the minimum value of the cost

function.

The solution of the partial derivative, considering the sigmoid as the activation function,

is as follows:

∂MSE(Y j, Ŷ i)

∂W ij

= 2(Y j − Ŷ i)[Ŷ (Y j)− (1− Ŷ (Y j))]xhj. (5.16)

Finally, in the last step, the backpropagation algorithm can backpropagate the error to

each weight W ij using (5.17), where the η value represents the learning rate, which helps the

network converge.

W ij = W ij − η
∂MSE(Y j, Ŷ i)

∂W ij

. (5.17)

55

5.2.3 Recurrent networks

The neural network architectures discussed thus far, including the perceptron and MLP,

treat inputs as independent entities, rendering them suboptimal for handling sequential data,

such as time series data, as discussed in Section 4 [45]. In contrast, the recurrent neural net-

work (RNN) model can effectively process sequential input data since it incorporates a memory

mechanism to store information from past computations.

Fig 5.4a demonstrates a basic perceptron network architecture consisting of one neuron

each in the input, hidden, and output layers. The un parameter denotes the weight linking the

input layer to the hidden layer, while vn represents the weight connecting the output layer to

the hidden layer. This architecture cannot consider previous outputs of the hidden layer states,

as it does not incorporate a memory mechanism. Rather, it merely considers the current input’s

hidden layer output. By contrast, the RNN model has hidden layer neurons with connections

pointing backward, as depicted in Fig 5.4b. The weight parameter wn corresponds to the weight

from the past to the current hidden state. Thus, past outputs can be incorporated into the current

computation.

Input layer neuron

Hidden layer neuron

Output layer neuron

xn

wn

un

vn

a) Simple Perceptron

ANN

b) Simple RNN
xn

Ỹ

un

vn

Ỹ

Figure 5.4: Simple RNN.

For a more thorough comprehension of the RNN’s operation when presented with a set of

inputs xn at specific time intervals t, the RNN can be unwrapped along the time axis, associating

each of its states to a temporal position. The diagram depicted in Fig. 5.5 illustrates the temporal

56

dynamics of the basic RNN [45].

xn

wn

un

vn

Ỹ

xn(t− 1)

wn

un

vn

Ỹ (t− 1)

xn(t)

wn

un

vn

Ỹ (t)

xn(t+ 1)

wn

un

vn

Ỹ (t+ 1)

h(t− 1) h(t) h(t+ 1)

Figure 5.5: Unfolding of a simple RNN in time.

The output of the RNN at any time step t is as follows:

Ŷ (t) = vn.h(t). (5.18)

In typical applications of the RNN model, multiple RNN units may exist in each layer,

and each unit has its memory from the previous state.

Unlike conventional perceptron networks, the training algorithm for RNNs utilizes back-

propagation through time [46], which involves unrolling the network along the time axis and

applying the backpropagation algorithm as explained in Section 5.2.2.

5.3 LSTM

The architecture of the RNN could successively introduce the sense of sequence into

neural networks. However, it has the drawback of storing all the previous information, even if it

is irrelevant to the current task. This issue arises because not all the past samples may strongly

correlate with the current step, as exemplified by the autocorrelation plot in Fig 4.6 discussed in

Section 4. Storing this unnecessary information may mislead the RNN and lead to the vanishing

or exploding gradient problem, as documented in [47].

57

The LSTM model was developed to address this challenge, generating a variation of the

RNN that can discard the irrelevant information and avoid the problem mentioned earlier. The

critical difference between the LSTM and the RNN is that the former can learn which informa-

tion to retain and which to discard.

In particular, the LSTM network comprises a modified version of the RNN that features a

repeat module inside the neuron (or unit) with four interactive layers, as illustrated in Fig. 5.6.

xn(t− 1)

σ tanhσ σ

tanh

h(t)

xn(t)

h(t− 1) h(t+ 1)

Output gate

xn(t+ 1)

Forget gate
Cell state

Input gate

Figure 5.6: LSTM unit.

As Fig. 5.6 describes, the top part of the LSTM unit denotes the cell state. This state

uses three different gates: forget, input, and output. The forget gate uses a Sigmoid function

(denoted by the symbol Σ), and takes two inputs, the previous hidden state h(t − 1), and the

current cell input xn(t), and outputs a value between 0 and 1 as described in (5.19). As the

name suggests, the forget gate decides which information to discard from the cell state.

f(t) = Σ(unfx(t) + wnfh(t− 1)). (5.19)

The input gate and a hyperbolic tangent function tanh determine which new information

to inject into the cell state. Firstly, the tanh function generates potential candidates for the cell

state as follows:

c(t) = tanh(uncxn(t) + wnch(t)), (5.20)

where, similarly to the forget gate’s weights, the parameters unc and wnc are weights respec-

tively of the input and the hidden of the cell state. After that, the input gate selects which

58

information gets added to the cell state as follows:

i(t) = Σ(unix(t) + wnih(t− 1)). (5.21)

The result of the two (5.20) and (5.21), passes through a point wise multiplication ⊗,

which generates a element wise multiplication between the two functions [48], combining the

result of the two equations as follows:

I(t) = c(t)⊗ i(t). (5.22)

This way, the new cell state denoted as Cstate(t) can be calculated by (5.23), which

combines the results of (5.19), (5.22) and the previous cell state Cstate(t− 1).

Cstate(t) = f(t)⊗ Cstate(t− 1) + I(t). (5.23)

Finally, to calculate the output of the LSTM unit, a tanh function receives the cell state

Cstate(t) as input, then this result is multiplied with the output gate’s result, this calculation

decides what the LSTM unit’s hidden state. This process is described in (5.24), where similarly

to the previous equations, the parameters uno and wno are weights respectively of the input and

the hidden of the output gate.

h(t) = tanh(Cstate(t))⊗ Σ(unox(t) + wnoh(t− 1)). (5.24)

With this final (5.24), all states and outputs of a simple LSTM can be understood. Similar

to the traditional RNNs, the LSTM network utilizes the backpropagation through time algo-

rithm.

5.4 Transformer networks

In 2017 the study [29] entitled as "attention is all you need" first introduced the trans-

former network, an entirely novel model to solve sequence-to-sequence tasks, focused at this

moment in Natural language processing (NLP), more specifically text-to-text translations. Its ar-

chitecture can be seen in Fig. 5.7. It counts with an encoder-decoder structure commonly found

in recurrency models in sequence-to-sequence tasks. The main difference between transform-

ers to the standard recurrence-based models is how the encoder and decoder are constructed.

Transformers use self-attention mechanisms to build the encoder and decoder module and rely

upon positional encodings to insert the notion of position in the input and output sequences.

59

attention
Multi -head

Positionwise
FFN

Positional

encoding

Positional

encoding

Embeding Embeding

Add & norm
Add & norm

Add & norm

Positionwise
FFN

attention
Multi -head

attention
multi -head

Masked

Add & norm

Add & norm

Sources Targets

Encoder

FC

Decoder

Figure 5.7: Transformer model architecture.

The change from recurrency layers to attention mechanisms significantly enhanced per-

formance, logistics, and inference explicability. According to [49], transformers brought with

them key advantages for time series tasks:

• The self-attention mechanism can catch even longer relationships of the input than the re-

currence layers. The transformer can generate a rich representation of the input sequence,

treating each sequence’s positions equally. At the same time, models such as LSTM tend

to prioritize a limited number of time steps stored in their hidden state.

• In contrast to recurrence-based models, transformer networks can be trained in a parallel

distributed manner. As it does not depend on any recurrence mechanism, it does not

60

depend on its previous states of itself. Therefore it may be trained in a parallel and

distributed manner, which is crucial for larger models with millions and even billions of

hyper-parameters.

• Transformers produce potentially explicable inferences. Self-attention can output a scor-

ing matrix of the input sequence, and depending on the application, this score can easily

explain its inference.

5.4.1 Transformer Components

As shown in Fig. 5.7, the standard transformer introduced by [29] can be divided into five

key components, those being the positional encoder, embedding layer, multi-head attention,

encoder module, and decoder module.

Embedding layer This layer is responsible for transforming the entry features into a represen-

tation in the dimension dmodel, to be further processed in the other components. The embedding

layer does that by passing its entries by a fully connected network, this way mapping the input

of shape Bsz × Ts × Ft to a representation along dmodel, of shape Bsz × Ts × dmodel. This

mapping process is originally used to transform integers word tokens to a float representation

in dmodel dimension. One can visualize this process in the time series context as generating a

richer representation of the features, fusing them in a single dimension.

Positional encoder Differently than the LSTM that uses the recurrency mechanisms to pro-

cess sequences, the transformer network does not natively possess the ability to perceive se-

quences. Thus, to solve this problem, the transformer architecture counts with the positional

encoder. This mechanism is capable of inserting the notion of sequence in an array of features

by using sine and cosine functions of different frequencies [29], inserting this sequential notion

in a vector of dimension dmodel as follows:

PEpos,2i = sin(pos/10002i/dmodel), (5.25)

PEpos,2i+1 = cos(pos/10002i/dmodel), (5.26)

Multi head attention This particular attention mechanism can catch the relationships be-

tween each of its inputs via the scaled dot product attention, introduced by [29], which is as

61

follows:

Attn(Q,K,V) = softmax(
QKTs

√
dk

)V (5.27)

Attn(Q,K,V) = softmax(Attnweights)V (5.28)

Attn(Q,K,V) = AttnScoresV (5.29)

where Q, K, V represents respectively the Query, Key and Values, and 1√
dk

, is the scaling

factor based on the key dimension size(dk). A set of three different trainable embedding layers

are responsible for generating those from the transformer’s input, respectively Qw, Kw, Vw, as

follows:

Q = Qw · Src (5.30)

K = Kw · Src (5.31)

V = Vw · Src (5.32)

This process ultimately generates three different representations of the input (Src) itself, each

with shape Bsz × Ts × dH ×H, where H is the number of attention heads, and dH is given

by dmodel

H
. This way, each attention head H will possess a part of Q, K and V projections,

and calculate the scaled dot product attention with it, outputting each a Attn and AttnScores.

Finally, the multi-head attention concatenates each Attn value and passes it through a linear

layer, generating its final output. This entire process is described in Fig. 5.8. In the explicability

context, one may visualize the attention scores from each attention head, defined in 5.29 as the

softmax component in the scaled dot product attention. These scores matrices have the shape

of Ts ×Ts ×H, meaning that each attention head has its own perception of the transformer’s

inputs relationships. One may use these scores to extract explications to the transformer output

and hypothesize on top of that.

Encoder After the process of the positional encoder, the encoder block receives the entries

called Src in shape Bsz×Ts×dmodel and processes it using it’s of n identical encoder layers,

each of which consists in a self-attention sub-layer using nhead attention heads and a fully-

connected feedforward sub-layer, followed by a normalization layer.

The resulting vector has the same shape as Src, representing this meaningful projection,

incorporating the attention from the self-attention process. Thus, one can view this output as

the encoder understanding extracted from the input. Therefore the encoder block can be seen

62

Multi-head

Q K V
Reshape

Scaled dot product

dmodel

Key projection Value projection

Ft
Entry projection &

Ts Ts

dmodel

H

Ts

dmodel

Ts

Attnout
Attnscore AttnoutConcat

dmodel

H

Ts

dmodel

H

Ts

H

positional embeding

attention

Querry projection

H

H

dmodel
H

TsTs

Ts

H

attention

Figure 5.8: Multi head attention flux

as the block responsible for understanding the transformer input and generating a meaningful

representation. This entire flux and each step outputs shape is described in Fig. 5.9.

Due to its high capacity to extract meaningful representations from sequences, multiple

applications use the transformer encoder alone. These applications are mainly derived from the

need to understand a sequence, thus, focused mainly on classification tasks, such as sentiment

prediction, named entity recognition, and various others in the NLP field. In the time series

scenario, one may use encoder-only transformer models to perform time series classification

tasks, such as anomaly detection.

Decoder The decoder block process begins after the encoder process, where the decoder

block receives the encoder’s output, here named as memory Ts and an entry vector named

63

Encoder

SrcBs×Ts×Ft

Embeding

Positional

Encoding

Multi-head
attention

Add & norm

Feed forward

OutputBs×Ts×dmodel

Add & norm

Feed forward

SrcBs×Ts×dmodel

SrcBs×Ts×dmodel

SrcBs×Ts×dmodel

SrcBs×Ts×dmodel

Figure 5.9: Transformer encoder information flux

target Tgtin. With the Tgtin, the decoder first generates a self-attention representation named

Decself . This self-attention follows the steps as the encoder process using the Src input, with

one major change, the presence of an attention mask, which is introduced in the attention scores

(AttnScores) calculation, as follows:

Decself (Q,K,V) = AttnMasked
Scores ·V (5.33)

Decself (Q,K,V) = softmax(Attnweights + Attnmask) ·V (5.34)

Decself (Q,K,V) = softmax(
QKTs

√
dk

+ Attnmask) ·V (5.35)

The Attnmask is a causal attention mask used to prevent the decoder from peeking into the

future, i.e., in a timestamp n, the resulting attention scores are calculated without information

of timesteps greater than n. This mask, described in Fig. 5.10, is composed of one (1) and

minus infinity (−∞) values, which the attention mechanism uses to restrict the Attnweights

inside the softmax component in 5.35. The resulting AttnScores possesses only causal rela-

tionships between its timesteps, whereas non-causal relationships will possess a 0 value. After

this initial step, the decoder block then uses the Decself and Ts representations to generate a

64

x[n] x[n+ 1]x[n+ 2]

Causal attention mask

Input

Output

x[n] 1

x[n+ 1] 1

x[n+ 2] 1

x[n+ 3] 1

1

1

1

x[n+ 4] 1 1 1

1

1

−∞ −∞

−∞

x[n+ 3]

1

1

−∞

−∞

−∞

x[n+ 4]

1

−∞

−∞

−∞

−∞

Figure 5.10: Decode causal attention

cross-attention Deccros. This cross-attention uses the Ts to generate its Key and Query matri-

ces, while it uses the Decself to produce its Value notion. While the self-attention output Attn

may represent the Values embedded with the Src inner relationships, the cross-attention output

Deccros represents the Values embedded with the Decself and Ts relationships. Ultimately,

one can view this process output as a richer representation of the Tgtin and Src relationships.

The decoder block represents the generative part of the transformer network, commonly

used in NLP tasks involving text production as output, including summarization and text gen-

eration tasks. In a time series context, this block is responsible for producing predictions.

Depending on the decoding process, it may produce recursive one-step-at-a-time or many pre-

dictions simultaneously.

With the Deccros latent representation, the decoder block passes it through dense, ad-

dition, and normalization layers, resulting in the transformer output value. This output value

was originally designed to produce one-step-ahead predictions at each time step in an auto-

regressive decoding style. Thus, in a time series scenario, the decoder would receive a sequence

named Tgtin, output a prediction Tgtout as follows:

Tgtin = [x[n], x[n+ 1], x[n+ 2] . . . x[n+m]] (5.36)

Tgtout = [x[n+ 1], x[n+ 2], x[n+ 3] . . . x[n+m+ 1]] (5.37)

During the training phase, the Tgtin and Tgtout are composed of real values. Thus the

65

only difference is that Tgtout is one step ahead of Tgtin. The literature often calls this process

teacher forcing training, where the algorithm trains the model to converge in an auto-regressive

style using only values from the aimed time series. In the inference phase, the Tgtin entry

vector only possesses the starting value, this being equal to the last known time step. At each

inference, the Tgtin receives the last prediction to produce the next value, and so on. This

particular prediction scheme is the iterative auto-regressive scheme and is used in the standard

transformer architecture.

5.4.2 State of the art transformer in time series

Following the introduction of the first transformer architecture, several works have investi-

gated its applicability in addressing sequence problems beyond NLP, particularly in time-series

tasks. In this regard, [50] conducted a study to evaluate the performance of standard transformer

networks, specifically iterative inference, for flu prediction tasks. Their results indicated that

the proposed approach outperformed commonly utilized ARIMA and LSTM models.

Moreover, [33], [49], [30], and other researchers have explored the potential of trans-

former networks for time-series tasks and proposed novel ways to utilize the components of the

transformer and the self-attention mechanism.

[33] proposed a method to reduce memory usage in the attention mechanism of trans-

former networks by employing a LogSparse attention mechanism. This approach improved the

forecasting accuracy of time-series data with fine granularity and strong long-term dependen-

cies, even with a limited memory budget.

[49] introduced the concept of utilizing a single part of the transformer, specifically the

encoder, for pre-training and downstream tasks such as classification and regression.

While capable of producing one-step ahead predictions at each timestep, this decoding

style does not necessarily restrict the transformer architecture. One may change the attention

mask 1 and∞ values distribution to produce multi-step ahead predictions. The authors of [30]

extensively research this approach in their study, where the authors aim for a multi-step ahead

prediction executed in a single inference. The masking scheme used by the authors is described

in Fig. 5.11.

An alternative approach is to utilize decoder-only architectures, similar to encoder-only

models, with some notable differences. One such difference is that encoder-only architectures

often have an output layer designed for classification tasks, such as a linear layer with many

66

x[n] x[n+ 1]x[n+ 2]

Causal attention mask multi step

Input

Output

x[n] 1

x[n+ 1] 1

x[n+ 2] 1

x[n+ 3] 1

1

1

1

1

1

1

x[n+ 4] 1 1 1

1

1

x[n+ 3]

−∞

−∞

−∞

−∞

−∞

x[n+ 4]

−∞

−∞

−∞

−∞

−∞

Figure 5.11: Decode causal attention in a multi-step scheme

classes for each time series or time step. In contrast, a decoder-only transformer should have

a linear layer capable of expressing one or more values per time step. Another key difference

is the use of attention masks, typically employed in a semi-supervised pre-training process to

estimate a randomly masked token in a non-causal manner for encoder-only models. Decoder-

only models should utilize attention masks for causal prediction tasks, whether one-step or

multi-step oriented.

In this work, we utilize a transformer architecture that consists solely of a decoder de-

signed to generate multiple output steps in a single interaction. To achieve this, we adopt the

architecture proposed in [49] and employ the same masking technique as described in [30].

This structure allows us to balance model size, which is small enough to run on a local GPU

and maintain a good performance.

Chapter 6

Proposed method

The primary objective of the proposed method is to address the issue of a free-running

state in the slave clock during a reference loss in a PTP synchronization scenario, precisely, in a

PTS deployment scenario [51] by proposing the use of a software-based holdover to provide a

temporarily timing notion during the holdover state. This deployment scenario refers to a situ-

ation where all nodes in a network rely solely on PTP as a synchronization source, as presented

in the subsections 2.3.2 and in 3.2.2. To this end, all proposed models utilize temperature and

past time offset estimates to assist the slave clock during holdover operation.

In addition to the PTS deployment scenario, it is also possible to employ PTP as a sec-

ondary reference to a higher-level reference, such as GNSS, which is known as the APTS [51].

However, this work did not investigate an APTS deployment scenario, but it could be a means

to extend the concepts and experiments of this study.

Fig 6.1 depicts a situation where it is assumed that the slave clock has maintained commu-

nication with its reference for several hours before a loss occurs and has access to temperature

variation data through a temperature sensor. Utilizing the temperature and synchronization

measurements time-series data, the slave clock can feed this data into a holdover algorithm to

maintain adequate synchronization levels during the loss of reference.

Consequently, this work proposes to employ the proposed models alongside a time series

processing pipeline to assist the slave clock in the scenario depicted in Fig 6.1. Furthermore,

offline experiments using datasets captured from a PTP synchronization testbed were conducted

to train, validate and test the proposed models.

This chapter is organized as follows: Section 6.1 presents the testbed setup and the pro-

cess used to obtain datasets for this work. Section 6.2 provides a detailed explanation of the

68

Clock master

Clock slave
PTP

Holdover
algorithm

PTP
measurementsTemperature

sensor

Figure 6.1: Algorithm assisted holdover in a PTP scenario

time-locked loop (TLL) algorithm in the context of PTP, and how it filters noisy time offset

measurements for further use in the three selected models, namely ARIMA, LSTM, and Trans-

former network. Finally, Section 6.3 describes the proposed approach that incorporates the

proposed models in combination with time-series analysis and transformations.

6.1 Testbed and dataset obtention setup

The present study introduces an algorithmic approach to holdover applications, which is

evaluated on datasets obtained from a real PTP synchronization testbed. This testbed comprises

two RRU devices and a BBU that implements an Ethernet-based FH. This study focuses on

achieving master and slave time synchronization and simulating holdover situations. Thus the

radio segment of the FH and the temporal alignment of frames sent by the RRU device are dis-

regarded. Specifically, the study investigates the feasibility of implementing holdover operation

aided by the proposed models: ARIMA, LSTM, and transformers.

6.1.1 Testbed

This study employs the identical testbed as [52], which presents a comprehensive ac-

count of the testbed. The testbed consists of two Xilinx Virtex 7 field-programmable gate array

(FPGA)s that implement a PTP master and slave devices. A PTP-capable Ethernet media ac-

cess control (EMAC) with hardware timestamping is initialized in the FPGA, along with a time

counter that is powered by a free-running clock signal.

As in [21]-[22]-[23], different oscillators are employed on the slave clock side (RRU)

of the testbed, including a low-cost oscillator and a robust oscillator. Specifically, the low-

cost oscillator is the ICS844021I (XO) clock generator, with a frequency tolerance of ±50

69

Clock master
Clock slavePTP

PTP timestampsTemperature
sensor

Serial communication

Computer

Figure 6.2: Testbed setup

ppm, which is embedded in the Virtex 7 FPGAs to test a low-cost implementation. For robust

implementation testing, this study uses the AD9548 (OCXO) as the local reference clock in the

slave clock side, with a frequency tolerance of ±5 ppb.

Therefore, a substantial difference exists between low-cost and robust oscillator options.

In deterministic terms, it can be stated that the selected OCXO is ten thousand times more stable

than the chosen XO. Consequently, a significant performance difference between the robust and

low-cost implementation scenarios is expected in this work’s results. Due to this divergence,

the proposed algorithm’s potential to enhance the slave’s accuracy in holdover operation, even

in low-cost applications, can be examined.

The present work adopts a synchronization testbed architecture depicted in Fig. 6.2. In

this architecture, the described switches are emulated using VLANs configured in a commercial

switch, the Intelbras SG 2404 MR, which is not PTP-aware switch. This feature allows the

testbed to employ several hops in the tests in an automated manner, making it possible to capture

tests from one up to four hops. However, in order to conduct experiments that are closer to an

ideal PTP connection scenario, as in G.8273.2/Y.1368.2 and [21], this work uses only one hop

without additional virtual local area network (VLAN)s between the master and slave clocks.

The testbed is also equipped with two temperature sensors, an MCP9808, and an LM35,

connected to an Arduino board for monitoring the ambient temperature effect on synchroniza-

tion performance. As recommended by ITU-T G.8271.1 [7] and [21], the testbed is also pro-

vided with access to ground truth time offset, with a precisely synchronized 1PPS output mea-

sured on both the master and slave clocks. This is essential for registering the actual time offset,

as well as the time offset of the proposed algorithm and the time offset in the controlled stage.

70

6.1.2 Datasets obtention setup

This study employs datasets generated by the testbed described in Section 6.1.1, which

allows for post-processing evaluation of the proposed algorithm’s impact on a PTP synchro-

nization scenario, without the need to execute the algorithm in real-time in the testbed.

The datasets are acquired by a computer that communicates via a serial interface with the

slave clock and an Arduino device, which is connected to the temperature sensors. A program

running on the computer reads the serial communication, logs the temperature, and acquires

timestamps (T 1, T 2, T 3 and T 4) from the slave, as well as ground truth timestamps (PPS).

The datasets comprise temperature data, PTP timestamp measurements, and ground truth

(1PPS) timestamps. Using this information, the open-source PTP dataset analysis library (PTP-

DAL) [53] post-processes the datasets, performing PTP calculations with timestamps from a

free-running slave clock. However, it should be noted that the real free-running behavior after a

locked period of several hours is not present in the datasets, as the free-running timestamps are

post-processed during the analysis.

6.2 PTP time locked loop (TLL)

In numerous applications, particularly in scenarios where PTP is deployed over networks

lacking timing awareness [54], the slave clock initially processes the estimates of (2.10) and

subsequently applies corrections to the local clock. This process is warranted as the estimates

of (2.10) are susceptible to noise originating from various factors, such as delay asymmetry

between the master-to-slave and slave-to-master directions and network delay variations.

To perform this filtering, this work proposes an algorithm that initially feeds the time

offset estimates from (2.10) into a proportional-integral (PI) controller, denoted as the TLL.

The resulting post-processed time offset is represented as:

x̂[n] = x̂[n− 1] + κpe[n− 1] + κi

n−1∑
i=0

e[i], (6.1)

where κp and κi are the proportional and integral constants, respectively, and e[n] = x̃[n]− x̂[n]

denotes the loop error between the input measurement from (2.10) and the loop’s prediction of

the time offset x̂[n]. Moreover, this work assumes x̂[0] = x̃[0] as the initial condition.

71

+-

Error Detector
PI Controller

x̃[n]

κp

κi

z−1

z−1
Predictor

x̂[n]

∆̂x[n]

e[n]

Figure 6.3: TLL structure

The purpose of the control loop is to minimize the error e[n] between the input measure-

ment from (2.10) and the loop’s prediction of the time offset x̂[n]. As the loop processes x̃[n]

samples over time, it learns the average time offset drift between consecutive time offset ob-

servations, leading to a reduction in the error between the measurements from (2.10) and the

loop’s prediction.

All raw estimation samples are processed by the TLL to produce the estimates x̂[n]. These

estimates are then utilized in the training process of the holdover model. As this work focuses

on a PTS application scenario, the estimates from (6.1) are used as a feature and label in the

holdover model’s training, thereby simulating a real PTS scenario where the slave clock does

not have access to the ground truth time offset.

6.3 Proposed architecture

To support holdover operation, the proposed model in this work utilizes past estimates of

x̂ obtained through the TLL process and past temperature values as inputs. Using these inputs,

the short-term holdover models can learn a time series model to forecast the entire holdover

period.

For multiple-step predictions, two common strategies are direct and iterative. The direct

72

approach involves training the model to predict only one step into the future, repeating the

training process for each distinct prediction interval. This produces multiple models with the

same parameters but trained for a specific forecast step. In contrast, the iterative approach

predicts one step per iteration, utilizing previous predictions as inputs. However, this approach

may lead to error accumulation in longer forecasts.

n+ L− 1 n+ L

Multi output direct predicton

n−K + 1 n−K + 2 n n+ 1

Input

Output

X

Y

Ỹ

M = 400

K = L = 400

Figure 6.4: MO strategy

This dissertation uses a multiple output (MO) strategy [55], where the training algorithm

fits the model to predict multiple steps, i.e., multiple time offset values ahead. Fig. 6.4 illustrates

how this strategy works, where the parameters M , K, L respectively represent the forecast

horizon, the feature window size, and label window size. Therefore, the model focuses on

a pre-defined forecast horizon. In this work, the time horizon is the short holdover period,

defined by [7] as 1000 seconds.

There is also the possibility of combining the MO strategy with an iterative strategy, form-

ing the MO-iterative strategy. The main difference between that strategy is that it can update

the feature window in addition to relying on past samples, as shown in Fig 6.5, it can update

the feature window. Nevertheless, there are multiple trade-offs between the two strategies. The

Section 8 highlights some trade-offs in utilizing the two strategies.

6.3.1 Time series forecasting method

In statistical time series models, such as ARIMA, traditionally, it is necessary to have prior

knowledge of the time series’ stationary state before parameter selection and fitting. Hence, the

first step in these methods involves applying the autocorrelation function to analyze the statis-

73

n+ 200 n+ 201

Multi output iterative prediction

1º iteration’s Input

1º iteration’s

output

2º iteration’s

Y input

n+ 400

2º iteration’s

X input

2º iteration’s

Output

Total prediction

Ỹ

X

Y

n−K + 1 n−K + 2 n n+ 1

K = L = 200

M = 400

Figure 6.5: MO iterative strategy

tical properties of the time series. If the time series function does not satisfy WSS conditions,

it is essential to transform the time function until it meets the WSS conditions, as described in

Section 4.

However, the literature on ML approaches often does not discuss this process, as neural

networks focused on time series processing such as LSTM and transformers can learn and

predict short and long-term factors such as trend and seasonal patterns. Nevertheless, [56]

suggests that the WSS form of the time series provides better performance as input than the

original non-stationary form.

One way to obtain the WSS form of a time series is through a differentiation process, as

stated in Section 4. The discrete first-difference form of the time offset is expressed using (4.4)

as support:

∆wx[n] = x[n]− x[n− w]. (6.2)

Here, w is the window length of the discrete difference, and ∆ denotes the difference

operator. It is worth noting that this section focuses on estimating the time offset drift using the

first differentiation of the time offset estimation. To simplify the notation, this section will refer

to the first differentiation of the time offset estimation x̂ as ∆̂x
w. Thus, (6.2) can be represented

74

using estimations as follows:

∆̂x
w[n] = x̂[n]− x̂[n− w], (6.3)

In order to satisfy the requirements of WSS, an additional differentiation is applied as

follows since the time offset drifts can vary over time due to the oscillator’s frequency offset

fluctuations, and in some cases, the temperature can have a more significant impact on the

oscillator than the frequency offset, as shown in (6.2):

∆p∆wx[n] = ∆wx[n]−∆wx[n− p]. (6.4)

It should be noted that the second differentiation process may not necessarily improve the

performance of machine learning-based techniques. This is because it can harm the correlation

between the time offset drift (∆̂x
w) and temperature samples (τp[n]), even when the principles of

co-integration are followed by applying the second differentiation to τp[n] as well. Moreover,

the differentiation process requires a summation to reverse the differentiation, which can add

noise to the result.

In our previous work [8], the second differentiation process was applied in only one

case. In this present work, we have removed this process to simplify the time series processing

pipeline. Therefore, it is assumed that the machine learning-based models applied in this work

will learn the seasonal correlation between temperature samples and ∆̂x
w, ultimately forecasting

the ∆̂x
w by taking this correlation into account.

Using the samples obtained from (6.3), the model can learn and predict M steps by using

previous estimations by the TLL in its training as features and labels in an auto-supervised

manner. However, the pipeline must transform the time-offset drift samples into time-offset

samples. Thus, the following equation expresses future time offset samples in terms of (6.3)

and a past sample of x̂:

x̂[n+M] = x̂[n− Cw] +

bM
w
c∑

j=0

∆̂x
w[n− Cw + w(1 + j)], (6.5)

where, Cw = w(bM
w
c + 1) −M and bM

w
c denotes the floor operation in this division. This Cw

term is an auxiliary operator in this discrete windowed integration.

Fig 6.6 illustrates the complete data pipeline, which includes decimation and interpolation

steps. These steps reduce the amount of input data required to execute the model. The rationale

75

behind this is that if the model can perceive the overall behavior of the time offset evolution,

then the sample rate can be reduced to facilitate the processing. Following the decimation and

differentiation processes, the pipeline scales the input data, and finally, it reverts the scaling.

STEP 1

Interpolation

Time offset

Differentiation

inversion

STEP 2

Forecast and post process

Scaling

inversion

Pre-processing and training

Forecast

Rolling window

processing

Labels Features

Fitted model

ARIMA

Model fiting

Transformer

LSTM

Decimation Decimation

Scaling Scaling

Standardization1º differentiation

Entry series

x̂ τp

past samples past samples

Figure 6.6: Model Data pipeline.

To prepare the samples obtained after the first step of data processing for the LSTM and

Transformer networks, the pipeline formats them as features and labels, which the networks

use for training and testing. The pipeline organizes the time series into windows, where each

feature window consists of K differentiated time offset samples and K temperature samples.

Each label window includes L differentiated time offset samples. The algorithm sequentially

applies the rolling window process to the dataset, as depicted in Fig. 6.7. Before testing each

76

ML model, the algorithm inserts a gap of M samples between the training and test sets to

ensure that the forecast does not contain overlapping information. This gap is unnecessary in

the ARIMA model.

Features rolling

window

Labels

Time offset

drift samples

Temperature

samples

n−K,n−K + 1, ..., n− 1

n, n+ 1, ..., n+ L− 1

n−K + 1, n−K + 2, ..., n

n+ 1, n+ 2, ..., n+ L

Rolling window at n Rolling window at n+ 1

n−K n−K + 1 n− 1 n n+ 1 n+ L− 1 n+ L

Figure 6.7: Rolling window processing.

It is important to note that this process is not required for statistical models such as the

ARIMA model applied in this work. In the pipeline, the differentiated samples are directly

inputted into the ARIMA model fitting process, eliminating the need for the windowing process.

Fig. 6.6 shows this as a bypass to the ARIMA model.

Each feature window can be denoted as a matrix containing pre-processed temperature

and time offset differentiated samples in this rolling window process. This way, a feature win-

dow starting at n−K, of size K that can be defined as follows:

Fw =

∣∣∣∣∣∣ τp[n−K] τp[n−K + 1] ... , τp[n− 1]

∆̂x
w[n−K] ∆̂x

w[n−K + 1] ... , ∆̂x
w[n− 1]

∣∣∣∣∣∣ (6.6)

The rolling window process involves organizing the time series into windows, where each

feature window is represented as a matrix containing pre-processed temperature and time offset

differentiated samples. Alternatively, the feature window of size K starting at n −K can also

be denoted as:

77

Fw =

∣∣∣∣∣∣X[n−K] X[n−K + 1] ... , X[n− 1]

Y [n−K] Y [n−K + 1] ... , Y [n− 1]

∣∣∣∣∣∣ , (6.7)

where Y denotes the differentiated time offset processed features, i.e, the endogenous time

series, and X represents the post-processed temperature samples, the exogenous time series.

Alternatively, one can also represent the feature window using the time series notation

discussed in Section 4.3. Here, the input consists of an endogenous time series Y representing

the differentiated time offset processed features and an exogenous time series X representing

the post-processed temperature samples. In this notation, the feature window can be defined as:

Lw =
∣∣∣Y [n] Y [n+ 1] ... , Y [n+ L− 1]

∣∣∣ , (6.8)

It should be noted that both the feature and label windows utilize only the samples avail-

able on the slave clock side, which simulates a real-world PTS holdover application scenario.

In such scenarios, the slave clock is unaware of the ground truth time offset.

Once the rolling window process of the input series is completed, the ML-based models

are trained using the resulting feature and label windows. To test and validate these networks,

they receive multi-input features and output a multi-step forecast. The information flow of the

LSTM is depicted in Fig.6.8, while the transformer information flow is described in Fig.6.9.

The resulting output of the networks is denoted as a prediction window, which can be defined

as follows:

Pw =
∣∣∣Ŷ [n] Ŷ [n+ 1] ... , Ŷ [n+ L− 1]

∣∣∣ , (6.9)

Finally, utilizing L = M , the ML-based models presented in this study are capable of

forecasting all the steps of the time offset drift, which allows the data pipeline to estimate the

time offset of the slave clock during the holdover operation.

It is important to note that the ML-based holdover algorithms can also integrate the MO

strategy with an iterative strategy, known as the MO iterative prediction [57]. This approach

enables the model to forecast the time offset using not only past samples but also data from past

predictions and the most recent data. During each iteration, the model can predict L samples,

and subsequently, the pipeline can update the time offset derived samples using the prediction

and update L temperature samples using the most recent data. Therefore, the algorithm can

employ the holdover model iteratively until reaching the total length of prediction M .

78

Hidden layers

Input layer

LSTM unit

LSTM unit

X[n−K + 2]

X[n−K + 1]

X[n]

Y [n−K + 1]

Y [n−K + 2]

Y [n]

Multi-stepLSTM layer LSTM layer

Ŷ [n+ 2]

Ŷ [n+ L]

Temperature
features

Time offset
features Full connected

output layer

Ŷ [n+ 1]

Feature window
Fw

Prediction window

prediction

Pw

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

Figure 6.8: LSTM model architecture.

To determine the best combination of all model parameters, the algorithm conducts a ran-

dom search, trains and validates the network multiple times through a walk-forward validation

process [58], as depicted in Fig 6.10. This process utilizes samples only from the training set

and creates several folds of training and validation sets, similar to a cross-validation process,

but considers the time-series behavior of the input data. As a result, the algorithm does not

randomize the training and validation sets, as is typical in standard k-fold cross-validation.

79

LSTM unit

LSTM unit

Multi-step

prediction

Ŷ [n+ 2]

Ŷ [n+ L]

Ŷ [n+ 1]

Pw

Input sequences

Y [n−K + 1]

Y [n−K + 2]

Y [n]

Time offset

features

X[n−K + 1]

X[n−K + 2]

X[n]

Temperature

features

Fw

ndec

Positional

encoder

Transformer

decoder

Transformer

decoder

Transformer

network

Transformer

decoder

Figure 6.9: Transformer decoder architecture

Fold 1ValidationM

Processed windows

Training dataset

ValidationData

Training

Fold 2ValidationM

Fold 3ValidationTraining M

MTraining

Training

Test

Training windows
Validation window

Test window
Gap of M

windows

Figure 6.10: Walk forward validation.

Chapter 7

Results

This chapter details the results obtained with each model analyzed in this work. Firstly,

it describes each experiment and its parameters in Section 7.1, and Section 7.2 details the base-

lines considered in each Experiment. After that, this chapter introduces and discusses the MTIE

results obtained by the experiments in Section 7.3. Then, it discusses and introduces the TE re-

sults in Section 7.4.1. Lastly, this chapter discusses the results obtained in the sense of frequency

stability, using the Allan deviation plot as the primary tool for this analysis.

7.1 Experiments

This work conducted experiments in an indoor environment characterized by distinct tem-

perature patterns. Specifically, the experiments were divided into two categories: constant tem-

perature, where temperature fluctuations were less than 1ºC, and variable temperature, where

temperature fluctuations exceeded 1ºC. In experiments where the temperature varied, an air

conditioner was used to control temperature, while it was turned off in experiments where the

temperature was constant. This counter-intutitive behavior is because the air conditioner op-

erates with cycles, introducing variability, whereas the scenario without air conditioning was

recorded when the ambient temperature was naturally close to constant (no sudden environ-

mental changes). The behavior of temperature with and without an air conditioner is depicted

in Fig. 7.2, and the time offset drift behavior of the XO is shown in Fig. 7.3 for both cases.

All experiments used one hop between master and slave without further VLANs, as illus-

trated in Fig. 7.1. The synchronization message rate exchanged between the devices was four

packets per second. Each dataset was obtained using either an XO or an OCXO as the local

81

oscillator. To adhere to the recommendations of ITU-T G.8271.1 [7] and [21], each dataset

captured the ground truth time offset, with a precisely synchronized 1PPS output measured on

the slave and master clock.

BBU

RRU #1

RRU #2

Figure 7.1: Testbed experiment setup.

Table 7.1 describes the four datasets used in the experiments. The temperature in this

table corresponds to the average value obtained from two sensors, MCP9808 and LM35, using

four measurements per second.

Table 7.1: Experiments description.

Experiment number
|∆ Temp | during

training (ºC)

|∆ Temp | during holdover

operation (ºC)
Oscillator

1 3.25 1.55 OCXO

2 0.375 0.34 OCXO

3 3.25 1.725 XO

4 0.75 0.3075 XO

Each dataset contains 6 hours of data, which the pipeline divides between training and

test sets, according to the walk-forward validation scheme in Fig 6.10. Considering the ML-

based models, the algorithm runs each model with random parameters until it encounters the

best parameter combination for each model. After that, the run that obtained the best MSE

metric using the walk-forward validation scheme is considered the best and therefore possesses

the best parameters for the ML network and the pipeline parameters.

Now considering the ARIMA model, we perform a similar process. However, this time

82

28.0

27.0

26.0

25.0

24.0

Temperature AC Off

Temperature AC On

0 1 2 3 4 5 6

Hours

T
em

p
er

at
u
re

 º
C

30.8

30.6

30.4

30.2

30.0

29.8

T
em

p
er

at
u
re

 º
C

Figure 7.2: Temperature behavior depending on the air conditioner state.

the MTIE and the AIC are considered to select the best combination of parameters. After each

fold, the algorithm generates the values of AIC and MTIE, the combination that produces the

better values of MTIE and AIC at the same time is considered the better combination. The only

parameter that is hardcoded in the algorithm is the s, as the seasonal period must be known and

analyzed a priori.

Fig. 7.4 shows an example of the result of the walk-forward validation scheme for exper-

iment 2. It is possible to see that each training and validation fold converges to similar error

values as the number of epochs increases. Another strong indicator that the model did converge

is the presence of similar MSE peaks in the training and validation for the same epoch and

fold. This way, what the model learns in training relates directly to the same fold’s correspond-

ing validation error.

Table 7.2 presents each Experiment’s time series data pipeline parameters. As all exper-

iments employ datasets with four packets per second, the time horizon of 1000 s corresponds

to 4000 samples per Experiment. Applying a decimation step order of 100 reduces the 4000

83

10

0

-10

-20

-30

-40

20

0

-5

-10

-15

-20

-25

-30

Time offset drift AC On

TIme offset drift AC Off

0 1 2 3 4 5 6

Hours

T
im

e
o
ff

se
t

d
ri

ft
 (

n
s)

T
im

e
o
ff

se
t

d
ri

ft
 (

n
s)

Figure 7.3: XO time offset drift behavior depending on the air conditioner state.

samples to 40. Therefore, each model generates a forecast for 40 samples, representing a time

offset of 1000 s after completing all steps in the time series data pipeline. It should be noted

that the parameters of the feature window (K) only apply to machine learning-based models.

In contrast, the ARIMA model employs all available steps before conducting the forecasting.

In addition, Table 7.2 illustrates that this study employed matching values of drift window

(w) and decimation step order. However, to execute the ARIMA model training process with

seasonal components, the decimation step had to be increased as the computer utilized for the

models’ training process was incapable of handling the training process of SARIMA models.

Therefore, different combinations of decimation steps and w were tested to find an appropri-

ate match. After conducting numerous experiments, it was discovered that matched numbers

produced the least amount of noise in the end-to-end process. As a result, we increased the

decimation step to 100 while keeping the level of noise generated by the pipeline at low values.

Table 7.3 describes the best parameters encountered by each model. Each model takes 4

hours of data in the training process. The test set contains 1000 seconds of data taken imme-

84

Table 7.2: Experiments pipeline parameters.

Experiment number
Drift window

w

Decimation

step order

Feature window

K

Label window

L

1 100 100 40 40

2 100 100 40 40

3 100 100 40 40

4 100 100 40 40

diately after the gap of M samples. This division ensures the training algorithm fits the model

with the most recent data before holdover.

0 20 40 60 80 100

Step

1.0

V
al

id
at

io
n
 M

S
E

fold 1 Transformer loss fold 2 Transformer loss
fold 1 LSTM loss fold 2 LSTM loss

0.00

0.25

T
ra

in
 M

S
E

0.5

0 20 40 60 80 100

Figure 7.4: Experiment 2 walk forward validation MSE.

85

Table 7.3: Model parameters for each Experiment

Panel A: ARIMA parameters

Experiment number p q d P Q D s

1 5 0 1 1 1 0 88

2 0 0 3 0 0 0 0

3 4 0 5 2 1 1 88

4 2 0 3 0 0 0 0

Panel B: LSTM parameters

Experiment number
LSTM units

per layer

Hidden

layers hl

Multi step

strategy

1 120 2 MO iterative

2 80 2 MO iterative

3 100 1 MO iterative

4 190 1 MO

Panel C: Transformer parameters

Experiment number dmodel

Number of

decoder layers ndec

Number of

attention heads H

Multi step

strategy

1 128 3 2 MO iterative

2 128 3 8 MO

3 64 3 8 MO

4 64 2 4 MO

86

7.2 Baselines

Before presenting this study’s results, it is pertinent to elaborate on the benchmarks that

will be employed to evaluate our results. As elaborated in Sections 2.6, 3.4, and 3.3.1, this work

incorporates a range of specifications and standards to assess the efficacy of a software-based

holdover mechanism. These criteria encompass MTIE masks and TE thresholds and curves.

Regarding the MTIE metric, this work follows the recommendation provided in [7] as

the primary requirement. This recommendation outlines two MTIE masks for situations where

only frequency layer input is available and no time input is present. These masks consider an

ideal PTP link that enters the holdover state within an observation interval of 1000 seconds,

with one mask assuming a constant temperature (within ±1K) and the other assuming a variable

temperature (above ±1K), while still connected to a SyncE frequency input. However, due to

the utilization of a commercial PTP-unaware switch (Intelbras SG 2404 MR) in the hardware

architecture of this study, an ideal PTP link was not employed. As a result, the tests conducted

in this study may not be compatible with these masks. Nevertheless, the masks proposed in [7]

can serve as a baseline for the MTIE results obtained in this study, as indicated in Section 3.4.

In addition to the MTIE masks, this study aims to examine the MTIE outcomes reported

by [21]. However, it should be noted that our work cannot be directly compared to their results

since we tested the holdover operation under a non-ideal PTP connection, whereas this was not

the case in [21].

This study considers two scenarios regarding the TE requirements. In the first scenario,

the slave clock must adhere to the overall TE budget, which considers the link asymmetry

and other noise sources, as described in Section 2.6. In the second scenario, the slave clock

must comply only with the holdover operation-specific requirements. However, this particular

requirement may vary depending on the network topology. Although our experiments do not fit

into a FTS scenario, we will use both FTS, and PTS TE baselines imposed respectively by the

recommendations ITU-T 8271.1 [19], and 8273.4 [7].

Concerning the related work in the holdover literature, we can use the studies [23]-[22]

as baselines for the TE metric, which Table 3.2 describes the values encountered by both refer-

ences. Although, one should keep in mind that our work is not directly comparable to the tests

made by [23]-[22], as discussed in Section 3.3.

Alongside the literature, we will also compare the current results with our previous work

[8]. This way, we can better understand the benefits of the time series pipeline in this work

87

compared to the last work.

7.3 MTIE results discussion

Fig. 7.5 presents the MTIE results of the OCXO datasets. The results with constant tem-

perature show that all models could learn the patterns of the PTP locked operation’s time offset

and predict a time offset within the baseline.

101 102 103

Time (s)

50

100

150

200

250

M
T
IE

(n
s)

ITU-T SyncE assisted mask
(|∆ Temp | > 1 ºC)
PTP locked (|∆ Temp | > 1 ºC)
ARIMA (|∆ Temp | > 1 ºC)
LSTM (|∆ Temp | > 1 ºC)
Transformer (|∆ Temp | > 1 ºC)

ITU-T SyncE assisted mask
(|∆ Temp | < 1 ºC)
PTP locked (|∆ Temp | < 1 ºC)
ARIMA (|∆ Temp | < 1 ºC)
LSTM (|∆ Temp | < 1 ºC)
Transformer (|∆ Temp | < 1 ºC)

Figure 7.5: OCXO MTIE results.

In Experiment 1, the temperature exhibits a sinusoidal pattern. Similarly, the time offset

drift also displays a sinusoidal pattern. Consequently, this temperature variation affects the

frequency of the OCXO, as evidenced by the magnitude of the MTIE values of the PTP-locked

OCXO in the variable temperature scenario compared to the constant temperature scenario.

This significant difference is also visible in the performance of each model, where only the

results for the transformer network are close to fitting in the ITU-T MTIE mask for a variable

temperature.

88

Furthermore, it is worth considering that the frequency-temperature relationship in OCXOs

and TCXOs may exhibit complex characteristics. This is because the frequency error incorpo-

rated in the oscillator frequency control mechanism is a residual error of the OCXO compensa-

tion scheme, as noted by [27]. However, this does not occur in the XO, as the entire temperature

effect is passed to the frequency. Thus, Experiment 1 may exhibit the most complex frequency-

temperature behavior of all experiments, and each model needed to be more complex than in the

constant temperature scenario. For example, in this scenario, the transformer network required

the use of the Multi-Objective (MO) iterative strategy instead of MO.

In our previous work [8], we employed a second differentiation process in this scenario

using a decimation step of 10. With these pipeline parameters, the Long Short-Term Memory

(LSTM) achieved an MTIE value of 175 ns in a observation period of 1000 seconds. However,

in this work, the LSTM could not achieve this value, which can be attributed to the absence of

the second differentiation process. Instead, we achieved a mark of 166 ns using a Tranformer

network, while reducing the amount of data required to train and forecast by ten-fold by ap-

plying a decimation step of 100. This reduction in the amount of data needed for training and

forecasting is an exciting step towards embedding ML-based solutions in the slave clock.

The constant temperature XO MTIE results in Fig. 7.6 shows that the ML based models

could achieve sub-millisecond accuracy, achieving values close to 750 ns of error in both mod-

els. On the other hand, this was not the case for the ARIMA model, which achieved the mark of

1076 ns. Our last work [8] achieved the final MTIE value of 1208 ns, which is worse than every

single model employed in this work. This difference can be explained by the optimizations of

the time series pipeline used in this work by using matched values of w and the decimation step.

In a similar test in [21], a slave clock with a TCXO achieves 3922 ns of maximum MTIE

considering a observation period of 1000 seconds in a free-running state for a constant temper-

ature scenario. Thus, this shows the potential of software-based holdover applications.

89

101 102 103

Time (s)

0

250

500

750

1000

1250

1500

M
T
IE

(n
s)

ITU-T SyncE assisted mask
(|∆ Temp | > 1 ºC)
PTP locked (|∆ Temp | > 1 ºC)
ARIMA (|∆ Temp | > 1 ºC)
LSTM (|∆ Temp | > 1 ºC)
Transformer (|∆ Temp | > 1 ºC)

ITU-T SyncE assisted mask
(|∆ Temp | < 1 ºC)
PTP locked (|∆ Temp | < 1 ºC)
ARIMA (|∆ Temp | < 1 ºC)
LSTM (|∆ Temp | < 1 ºC)
Transformer (|∆ Temp | < 1 ºC)

Figure 7.6: XO MTIE results.

Experiment 3 was also exposed to a variable temperature scenario with a seasonal pat-

tern, similar to Experiment 1. However, the temperature had a more significant impact on the

stability of the local oscillator, as the XO lacks any mechanism to provide temperature compen-

sation in its frequency stability. This impact can be observed by comparing the values of PTP

locked operation between the two temperature scenarios. In the variable temperature scenario,

all models achieved similar results with MTIE values below 1500 ns, with the LSTM model

achieving the lowest loss.

It is worth mentioning that our previous work [8] achieved an MTIE value of 1750 ns

using the LSTM model. Hence, all the models used in this work have surpassed our previous

results. This improvement can be attributed to the changes made in the time processing pipeline

employed in this work compared to our previous work.

During each Experiment, the slave clock operates in a free-running mode. However,

the actual free-running behavior of the oscillators after multiple hours of locked operation is not

captured in the offline post-processing, where the proportional-integral (PI) controller calculates

90

the PTP locked operation. To estimate the free-running behavior, one can use (6.5) and consider

the last drift of window w present for the entire holdover period as the only correction to the

time offset value. Fig.7.7 depicts the estimated free-running behavior of all experiments.

101 102 103

Time (s)

0

5000

10000

15000

M
T
IE

(n
s)

OCXO (|∆Temp | ≤ 1 ºC)
OCXO (|∆ Temp | > 1 ºC)

XO (|∆Temp | ≤ 1 ºC)
XO (|∆ Temp | > 1 ºC)

Figure 7.7: Free running MTIE of all experiments

As anticipated, the experiments that employed the OCXO as the reference clock yielded

higher accuracy than the ones using XO. The temperature was a critical factor that affected the

performance of the slave clocks. In Experiments 1 and 3, the temperature followed a period

pattern resembling a sinusoidal wave, whereas, in the constant temperature datasets presented

a behavior similar to a logarithmically variation within the range of 1 ºC. Both temperature

patterns remained stable throughout the training and test sets. Therefore, when the temperature

variation is regular and expected to fluctuate less than 1 Kelvin, using only past samples in the

MO direct strategy enhances the model’s performance. This way, the algorithm trains the model

to counteract the effects of regular temperature variations on the slave clock’s time offset drift,

as was the case in Experiment 4 (constant temperature with the XO).

However, in cases where the temperature pattern is irregular or the oscillator is not tolerant

to temperature variation, using the MO iterative strategy may yield better results than relying

solely on past samples to forecast the entire holdover operation time offset.

91

Figure 7.8: XO |TE| results

7.4 TE results discussion

Fig 7.8 displays the results of |TE| for the XO in Experiments 3 and 4. In both exper-

iments, all models were able to meet the TDD TE time budget of 1.5 ms, despite the strong

asymmetry caused by the use of PTP-unaware infrastructure. However, none of the models

could comply with the TE baselines recommended by the ITU-T.

In related works [22]-[23], similar holdover performance tests were conducted in a smart

grid scenario with constant temperature, using PTP-aware infrastructure and OCXOs or TCXOs

as slave clocks. The best and worst results achieved maximal TE of 1736 and 10256, respec-

tively, as summarized in Table 3.2. Therefore, we can infer that the results of Experiments 3 and

4 compared to [22]-[23] demonstrate the capabilities of the software-based holdover. Moreover,

in contrast to our previous work [8], all models in this study achieved results within the TDD

TE threshold, whereas our last work results could not achieve the same mark.

92

Figure 7.9: OCXO |TE| results.

Similarly to the XO results, the OCXO results in Fig. 7.9 managed to comply with the TE

baseline budget even with the influence of the link asymmetry. Furthermore, even the enhanced

clock stability provided by the use OCXO as the slave clock oscillator was enough to comply

with the selected TEREA and TEHO. Besides these two baselines, the Experiments 1 and 2 had

achieved the TDD and the phase error mask proposed by ITU-T G.8273.4.

Considering an APTS scenario where the slave clock has access to a GNSS reference,

and it can use it to solve the link asymmetry, the XO results without the link asymmetry were

greatly improved, however, even with the asymmetry correction the TE requirements besides

the TDD were not able to be achieved. The OCXO results, in Fig. 7.12, also were significantly

improved. Without the asymmetry, the OCXO experiments were able to maintain the TE error

inside the margin of all TE requirements considered in this work.

93

Figure 7.10: XO |TE| results results without bias.

94

Figure 7.11: OCXO |TE| results without bias.

95

7.4.1 Allan deviation results discussion

Now considering the results in terms of Allan deviation, Fig 7.12 describes the results of

Experiments 1 and 2 in terms of Allan deviation. In both scenarios, the free-running behavior

resembles the classical free-running behavior, with a strong influence of random walk FM noise

as the averaging time increases. Besides that, in Experiment 1, all the models analyzed reached

similar levels, with the transformer network reaching slightly better results. For Experiment 2,

all models reached the same level as the free running, reaching similar values to the PTP locked

in many points.

Thus, for the OCXO, there is no significant influence of the proposed models to improve

the frequency stability. The fact that the free running reached similar values to the algorithms

contributes to this conclusion. This fact can be explained by the robust frequency stability

mechanisms already present in the OCXO clock.

Figure 7.12: OCXO Allan deviation results

Considering the XO case, a similar conclusion can be made in the constant temperature

96

scenario, where each model comes close to reaching the same levels as the free-running result.

On the other hand, the variable temperature scenario shows promising results regarding temper-

ature compensation, as all models deviate from the free-running behavior and come close to the

PTP locked values, with the slight advantage of the LSTM.

Figure 7.13: XO Allan deviation results

Chapter 8

Conclusion

This work presented a software-based holdover evaluation using three different models, a

statistical-based model ARIMA, and two ML-based models, the LSTM and the transformer net-

work. Alongside that, this software-based holdover experimented on various datasets containing

different local oscillators and temperature variations. First, considering the OCXO results, the

sole model that could almost comply with all MTIE masks proposed by [7] was the transformer

network, even though during the PTP link is not ideal during the locked state. Considering the

results obtained by each model with XO, it is safe to conclude that the models did not achieve

the same accuracy as the OCXO. However, it could still improve the slave clock performance

during the short-term holdover operation. In fact, it could achieve the limits for TDD operation,

even considering the effect of link asymmetry.

Nevertheless, considering our last work [8] results, it is safe to assume that our optimized

version of the data pipeline could provide better results in almost every case if compared to the

last work. Besides that, optimizing the pipeline enabled us to reduce the amount of data used in

each model tenfold, improving the possibility of embedding this solution in a slave clock.

Alongside that, the results of [21], [22], and [23] show the potential of our software-based

approach, as the results obtained by these authors in free-running tests with TCXO oscillators in

a similar test environment than us reached MTIE and Maximum |TE| worse than our software-

based holdover approach using XO oscillator.

It is possible to conclude that in Experiment 3, software-based holdover using every model

could compensate, in part, for the high drift variation caused by the temperature changes. This

is demonstrated by the values of the Allan deviation analysis, where all three models produced

values below the estimated free-running behavior.

98

For evaluating the best model for a software-based approach, it is crucial to consider

that the transformer network and LSTM models reached very similar values in several results.

However, the transformer model reached significantly better values in Experiment 1, which is

the experiment that may present the most complex frequency-temperature behavior. This way,

the transformer network may be a better choice for the software-based holdover application.

It will always depend on the slave clock’s hardware capabilities. The standard transformer

network has several benefits compared to the LSTM, but embedding model sizes are not one

of those. Thus it will always depend on the slave clock capabilities. The ARIMA model could

provide a good performance tradeoff if a very lightweight software-based holdover is needed.

On the other hand, depending on the slave clock hardware, the use of LSTM or Transformer

networks could provide a great solution.

Another notable factor is that our work explored different situations than those presented

in the related works. Our proposed software-based approach could also be expanded to other

use cases besides the PTP slave case. As our approach is generalistic, it could be easily adapted

to new topologies.

8.1 Future works

The current work is situated in a scenario of PTS, where the application solely relies

on PTP for providing time and frequency distribution between the master and slave clocks.

Nonetheless, the proposed method can be applied in the regular PTP operation, serving to filter

the estimations done by the PI-TLL samples of equation (6.1), or even replace the PI-TLL, thus

filtering the noisy PTP samples of equation (2.10).

Future research endeavors could further investigate additional holdover scenarios, such

as an extended time horizon, where the model would target hours instead of minutes. In some

cases, a short time horizon could enhance time synchronization, such as in mitigating packet

loss. Here, the holdover model could estimate the time offset when packet loss is detected and

revert to the locked control algorithm as soon as the application identifies the packets again.

Moreover, there is a possibility to explore the software-based holdover application in

small periods, noisy signals, or intentionally relying on the holdover mechanism instead of the

PTP locked signal depending on the situation. This could be useful in expanding the current

work in scenarios where, for example, a significant increase in background packets is detected

99

in the networks, leading to a degradation of the PTP locked timing notion.

Another potential area of exploration is the use of massive training data in the Transformer

network as a means of pre-training. As noted by [49], the pre-training of transformer networks

for forecasting has not been extensively studied in the time series literature. As our data could

be categorized based on the number of hops in the network, temperature variation, oscillator

used in the slave clock, and background traffic, we could use the data specific to a situation to

pre-train the transformer model and subsequently fine-tune it for the particular scenario.

The scenario of APTS also offers exciting possibilities for a ML model. In this scenario,

PTP assists a more accurate synchronization source, such as GNSS. This approach enables an

algorithm in the slave clock to learn the asymmetry when locked to the primary synchronization

source. If this source becomes unavailable, PTP can provide time distribution using an ML

algorithm for bias correction.

Another exciting avenue for investigation in the APTS scenario would be real-time train-

ing, i.e., the online learning training strategy of the model during the locked operation. The

model could be trained during this operation, considering the primary source’s time offset as a

label and the PTP time offset measurement as a feature. When the primary source is lost, the

PTP time offset estimation can be improved by the online learning model.

Outside the holdover operation, some concepts in this work could also be expanded. As

seen in the results of the PTP locked synchronization in the XO experiment with variable tem-

perature, it suffers from temperature degradation, even with the presence of PTP synchroniza-

tion. Therefore, it would be interesting to test the ML-based algorithms proposed in this work

to provide temperature compensation to the slave clock, similar to what [27] proposed.

Bibliography

[1] F. Girela-López et al., “IEEE 1588 High Accuracy Default Profile: Applications and Chal-

lenges,” IEEE Access, vol. 8, pp. 45 211–45 220, 2020.

[2] I. Godor, M. Luvisotto, S. Ruffini, K. Wang, D. Patel, J. Sachs, O. Dobrijevic, D. P.

Venmani, O. Le Moult, J. Costa-Requena et al., “A look inside 5g standards to support time

synchronization for smart manufacturing,” IEEE Communications Standards Magazine,

vol. 4, no. 3, pp. 14–21, 2020.

[3] F. Cavaliere, P. Iovanna, J. Mangues-Bafalluy, J. Baranda, J. Núñez-Martínez, K.-Y. Lin,

H.-W. Chang, P. Chanclou, P. Farkas, J. Gomes et al., “Towards a unified fronthaul-

backhaul data plane for 5g the 5g-crosshaul project approach,” Computer Standards &

Interfaces, vol. 51, pp. 56–62, 2017.

[4] “ ECPRI Interface Specification. ,” Common Public Radio Interface (CPRI), Available:

http://www.cpri. info/spec.html v2.0, 2023.

[5] “G.810:definitions and terminology for synchronization networks,” ITU-T, Standard,

1996.

[6] H. Zhou et al., “Adaptive correction method for an OCXO and investigation of analytical

cumulative time error upper bound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control.,

vol. 58, no. 1, pp. 43–50, 2011.

[7] “G.8273.2/Y.1368.2:Timing characteristics of telecom boundary clocks and telecom time

slave clocks for use with full timing support from the network,” ITU-T, Standard, 2020.

[8] R. Dutra, I. Freire, P. Bemerguy, A. Klautau, I. Almeida, and E. Medeiros, “An lstm-based

approach for holdover clock disciplining in ieee 1588 ptp applications,” in 2021 IEEE

Global Communications Conference (GLOBECOM). IEEE, 2021, pp. 1–6.

101

[9] ITU-T, “Rec. G.8273.2:Timing characteristics of telecom boundary clocks and telecom

time slave clocks,” Aug. 2019.

[10] J. R. Vig, “Introduction to quartz frequency standards. revision,” ARMY LAB COM-

MAND FORT MONMOUTH NJ ELECTRONICS TECHNOLOGY AND DEVICES

LAB, Tech. Rep., 1992.

[11] D. Bladsjö et al., “Synchronization aspects in LTE small cells,” IEEE Commun. Mag.,

vol. 51, no. 9, pp. 70–77, 2013.

[12] I. Freire, “FPGA Implementation and Evaluation of Synchronization Architectures for

Ethernet-based Cloud-RAN Fronthaul,” Master’s thesis, Universidade Federal do Pará,

2016.

[13] I. Freire, C. Novaes, I. Almeida, E. Medeiros, M. Berg, and A. Klautau, “Clock synchro-

nization algorithms over ptp-unaware networks: Reproducible comparison using an fpga

testbed,” IEEE Access, vol. 9, pp. 20 575–20 601, 2021.

[14] “Ieee standard for a precision clock synchronization protocol for networked measurement

and control systems,” IEEE Std 1588-2019 (Revision ofIEEE Std 1588-2008), pp. 1–499,

2020.

[15] D. W. Allan et al., “Time and frequency(time-domain) characterization, estimation, and

prediction of precision clocks and oscillators,” IEEE transactions on ultrasonics, ferro-

electrics, and frequency control, vol. 34, no. 6, pp. 647–654, 1987.

[16] P. Skurowski and M. Pawlyta, “On the noise complexity in an optical motion capture

facility,” Sensors, vol. 19, no. 20, p. 4435, 2019.

[17] E. Fernández, D. Calero, and M. E. Parés, “Csac characterization and its impact on gnss

clock augmentation performance,” Sensors, vol. 17, no. 2, p. 370, 2017.

[18] G.8271.1/Y.1366.1: Time and phase synchronization aspects of telecommunication net-

works,Amendment 1, ITU-T, March 2018.

[19] G.8271.1/Y.1366.1: Network limits for time synchronization in packet networks with full

timing support from the network, ITU-T, March 2020.

102

[20] J.-C. Lin, “Synchronization Requirements for 5G: An Overview of Standards or Specifi-

cations for Cellular Networks,” IEEE Vehicular Technology Magazine, vol. PP, pp. 1–1,

06 2018.

[21] R. M. Kaminsky, “Test results of IEEE 1588v2 Network Synchronization Holdover Per-

formance using Various Types of Reference Oscillators,” in 2019 ISPCS. IEEE, 2019,

pp. 1–5.

[22] J. Amelot, J. Fletcher, D. Anand, C. Vasseur, Y.-S. Li-Baboud, and J. Moyne, “An ieee

1588 time synchronization testbed for assessing power distribution requirements,” in 2010

IEEE International Symposium on Precision Clock Synchronization for Measurement,

Control and Communication. IEEE, 2010, pp. 13–18.

[23] J. Amelot, Y.-S. Li-Baboud, C. Vasseur, J. Fletcher, D. Anand, and J. Moyne, “An ieee

1588 performance testing dashboard for power industry requirements,” in 2011 IEEE In-

ternational Symposium on Precision Clock Synchronization for Measurement, Control and

Communication. IEEE, 2011, pp. 132–137.

[24] C. Nicholls and G. Carleton, “Adaptive OCXO drift correction algorithm,” in Proc. 2004

IFCS, 2004. IEEE, 2004, pp. 509–517.

[25] Y. S. Shmaliy and L. Arceo-Miquel, “Efficient predictive estimator for holdover in GPS-

based clock synchronization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 55,

no. 10, pp. 2131–2139, 2008.

[26] D. Pallier, V. Le Cam, and S. Pillement, “Energy-efficient gps synchronization for wireless

nodes,” IEEE Sensors Journal, vol. 21, no. 4, pp. 5221–5229, 2020.

[27] V. Vozár and T. Kovácsházy, “Self-learnning of the dynamic, non-linear model of

frequency-temperature characteristic of oscillators for improved clock synchronization,”

in 2021 IEEE International Symposium on Precision Clock Synchronization for Measure-

ment, Control, and Communication (ISPCS). IEEE, 2021, pp. 1–6.

[28] V. J. Mathews, G. Sicuranza et al., Polynomial signal processing. John Wiley & Sons,

Inc., 2000.

103

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” Advances in neural information processing

systems, vol. 30, 2017.

[30] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Be-

yond efficient transformer for long sequence time-series forecasting,” in Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[31] W.-H. Hsu et al., “Frequency calibration based on the adaptive neural–fuzzy inference

system,” IEEE Trans. Instrum. Meas., vol. 58, no. 4, pp. 1229–1233, 2009.

[32] ——, “SVM-based fuzzy inference system (SVM-FIS) for frequency calibration in wire-

less networks,” in Proc. 3rd ICCIT. Citeseer, 2009, pp. 207–212.

[33] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “Enhancing the locality

and breaking the memory bottleneck of transformer on time series forecasting,” Advances

in neural information processing systems, vol. 32, 2019.

[34] P. J. Brockwell, R. A. Davis, and M. V. Calder, Introduction to time series and forecasting.

Springer, 2002, vol. 2.

[35] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: forecasting and control.

John Wiley & Sons, 2011, vol. 734.

[36] M. H. DeGroot, M. J. Schervish, X. Fang, L. Lu, and D. Li, Probability and statistics.

Addison-Wesley Reading, MA, 1986, vol. 2.

[37] K. Pearson, “Vii. note on regression and inheritance in the case of two parents,” proceed-

ings of the royal society of London, vol. 58, no. 347-352, pp. 240–242, 1895.

[38] C. Chatfield and D. Prothero, “Box-jenkins seasonal forecasting: problems in a case-

study,” Journal of the Royal Statistical Society: Series A (General), vol. 136, no. 3, pp.

295–315, 1973.

[39] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh,

E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, “Detecting novel associations in large

data sets,” science, vol. 334, no. 6062, pp. 1518–1524, 2011.

104

[40] S. Makridakis and M. Hibon, “ARMA models and the Box–Jenkins methodology,” Jour-

nal of Forecasting, vol. 16, no. 3, pp. 147–163, 1997.

[41] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous ac-

tivity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[42] D. O. Hebb, The organization of behavior: a neuropsychological theory. J. Wiley;

Chapman & Hall, 1949.

[43] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organi-

zation in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[44] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural networks

for perception. Elsevier, 1992, pp. 65–93.

[45] A. Géron, “Hands-on machine learning with scikit-learn and tensorflow: Concepts,” Tools,

and Techniques to build intelligent systems, 2017.

[46] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings

of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[47] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber et al., “Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies,” 2001.

[48] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[49] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A transformer-

based framework for multivariate time series representation learning,” in Proceedings of

the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp.

2114–2124.

[50] N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep transformer models for time series

forecasting: The influenza prevalence case,” arXiv preprint arXiv:2001.08317, 2020.

[51] Calnex, “"what is partial timing support (pts)?",” Whitepaper.

[52] I. Freire et al., “Testbed evaluation of distributed radio timing alignment over ethernet

fronthaul networks,” IEEE Access, pp. 1–1, 2020.

105

[53] I. Freire, “5G fronthaul synchronization via IEEE 1588 precision time protocol: Algo-

rithms and use cases,” Ph.D. dissertation, Federal University of Pará, Dec. 2020.

[54] G.8275/Y.1369:Architecture and requirements for packet-based time and phase distribu-

tion, Amendment 2, ITU-T, August 2017.

[55] Y. Zhou et al., “Explore a deep learning multi-output neural network for regional multi-

step-ahead air quality forecasts,” Journal of cleaner production, vol. 209, pp. 134–145,

2019.

[56] D. T. Viedma, A. J. R. Rivas, F. C. Ojeda, and M. J. del Jesus Díaz, “A First Approximation

to the Effects of Classical Time Series Preprocessing Methods on LSTM Accuracy,” in

International Work-Conference on Artificial Neural Networks. Springer, 2019, pp. 270–

280.

[57] X. Wang and Y. Zhang, “Multi-step-ahead time series prediction method with stacking

LSTM neural network,” in 2020 3rd ICAIBD. IEEE, 2020, pp. 51–55.

[58] D. Falessi, L. Narayana, J. F. Thai, and B. Turhan, “Preserving order of data when

validating defect prediction models,” CoRR, vol. abs/1809.01510, 2018. [Online].

Available: http://arxiv.org/abs/1809.01510

http://arxiv.org/abs/1809.01510

	422e5c65872be9bc255019d8ed93d3aba8d97450f60b88a5b7bd8258ea5442cf.pdf
	59a391fd0caba19d433f65ba416e7eca73afd06ab77735d7e3adfa41b5499881.pdf
	422e5c65872be9bc255019d8ed93d3aba8d97450f60b88a5b7bd8258ea5442cf.pdf
	Acknowledgment
	Glossary
	Symbols
	List of Figures
	List of Tables
	Contents
	Abstract
	Resumo
	Introduction
	Motivation
	Synchronization overview
	Holdover overview

	Dissertation outline
	Contributions

	Fundamentals of Time Synchronization in Packet-based Networks
	Clocks and Oscillators
	Types of oscillators

	Frequency and phase synchronization
	Time and frequency offset

	Synchronization distribution scenarios
	Synchronization protocols
	Packet-based network synchronization topologies

	PTP synchronization
	Synchronization and clock stability metrics
	Allan deviation
	MTIE

	Synchronization requirements in telecommunications
	Timing requirements
	Frequency requirements

	Holdover operation
	Free running and holdover modes
	Holdover scenarios
	FTS holdover
	PTS holdover
	APTS holdover

	Related works
	Clock robustness tests in holdover mode
	Statistical-based holdover applications
	Machine learning based holdover applications

	Holdover requirements

	Time series
	Stationary models and time series
	Time series components
	Multivariate time series analysis

	Time series prediction algorithms
	ARIMA
	Neural Networks
	MLP networks
	Training process of a neural network
	Recurrent networks

	LSTM
	Transformer networks
	Transformer Components
	State of the art transformer in time series

	Proposed method
	Testbed and dataset obtention setup
	Testbed
	Datasets obtention setup

	PTP time locked loop (TLL)
	Proposed architecture
	Time series forecasting method

	Results
	Experiments
	Baselines
	MTIE results discussion
	TE results discussion
	Allan deviation results discussion

	Conclusion
	Future works

	Bibliography

