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Resumo

Esta dissertação tem como objetivo propor uma abordagem metaheurística
para otimização de arrays de drones aplicada à maximização da área de cobertura
de sistemas de comunicação sem fio, contendo veículos aéreos não tripulados (UAV,
em inglês) como estações-base. Para tanto, foram analisados dois tipos de redes que
utilizam UAVs: uma rede Wi-Fi padrão operando a 2,4 GHz e uma rede wireless
de baixa potência (LPWAN), ambas considerando ambientes medianamente ou al-
tamente arborizados. LPWAN são sistemas projetados para trabalhar com taxas
de dados baixas que mantêm, ou até mesmo melhoram, a ampla áre de cobertura
fornecida por redes de alta potência. O tipo de LPWAN escolhido para estudo é o
LoRa, que opera em um espectro não licenciado de 915 MHz e requer que os usuários
se conectem a gateways para transmitir informações a um servidor central - neste
caso, cada drone no array tem um módulo LoRa instalado e serve como um gateway
não-fixo. A fim de classificar e otimizar o melhor posicionamento para cada UAV no
array, três métodos concomitantes de otimização bioinspirada foram escolhidos: o
busca cuco (CS), o algoritmo de polinização de flores (FPA) e o algoritmo de ecolo-
calização de morcegos (BA). Os métodos têm uma distribuição de espaço de busca
baseada em voos de Lévy / Mantegna (CS, FPA) e distribuição normal (BA) e apre-
sentam resultados de desempenho distintos para ambos os casos de rede de drones.
Os resultados da otimização de posicionamento são então simulados e apresentados
via MATLAB, primeiro para a rede Wi-Fi e depois para uma rede IoT-LoRa. Além
disso, um modelo de propagação ajustado empiricamente com medidas realizadas
no campus da UFPA foi desenvolvido para obter um modelo de propagação em am-
bientes com florestas. Por fim, o posicionamento dos drones utilizando o modelo de
propagação ajustado com medidas é comparado com o posicionamento utilizando o
modelo teórico clássico, mostrando que o modelo ajustado é mais eficiente na repre-
sentação do ambiente com florestas do que o modelo clássico usualmente utilizado
em publicações recentes.

Palavras-chave: IoT; LPWAN; LoRA; Metaheurística; Computação Bioinspirada;
UAV; Array de Drones.



Abstract

This dissertation aims to provide a metaheuristic approach to drone array
optimization applied to coverage area maximization of wireless communication sys-
tems, with unmanned aerial vehicle (UAV) base-stations. For this purpose, two types
of networks utilizing UAVs have been analyzed: a standard Wi-Fi network operat-
ing at 2.4 GHz, and a low-power wireless area network (LPWAN), both considering
medium to high-density forest environments. LPWAN are systems designed to work
with low data rates but still keep, or even enhance, the extensive area coverage
provided by high-powered networks. The type of LPWAN chosen herein is LoRa,
which operates at an unlicensed spectrum of 915 MHz, and requires users to con-
nect to gateways in order to relay information to a central server – in this case, each
drone in the array has a LoRa module installed to serve as a non-fixated gateway.
In order to classify and optimize the best positioning for every UAV in the array,
three concomitant bioinspired optimization methods have been chosen: the cuckoo
search (CS), the flower pollination algorithm (FPA) and the bat echolocation algo-
rithm (BA). All of these methods have a search space distribution based on Lévy
/ Mantegna flights (CS, FPA) and normal distribution (BA), and present distinct
performance results for both drone array network cases. Positioning optimization
results are then simulated and presented via MATLAB, first for the Wi-Fi network
and later for a high-range IoT-LoRa network. An empirically adjusted propagation
model with measurements carried out on the UFPA campus was developed to obtain
a propagation model in forested environments. Finally, drone positioning utilizing
the propagation model corrected with measurements is compared with the position-
ing using the classical theoretical model, showing that the corrected model is more
efficient in representing the forest environment than the classical model usually used
in recent publications.

Keywords: IoT; LPWAN; LoRa; Metaheuristics; Bioinspired Computing; UAV;
Drone Array.
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1 Introduction

Wireless communications have an intricate relationship with the technologies of
Internet of Things (IoT), a fairly new concept made for uniting and connecting all sorts of
devices, services and commodities in the contemporary world. Many of such wireless data-
transmitting protocols associated with IoT are high-speed networks to favor the heavy
data usage of mobile users, such as wide-area networks (WAN) and 4G-LTE or 5G systems.
However, it is not always that these high-power, high data rate services are needed. Often,
devices with low battery consumption cannot bear to operate at such power-consuming
paces, which characterizes a need for another kind of network: the low-power wide-area
networks (LPWAN).

LPWAN are systems designed to work with low data rates but still keep the
extensive area coverage provided by high-powered networks. Thus, a private and secure
network for the connection of low-power devices can be established, keeping financial
costs and battery consumption at the minimal. For instance, wireless sensor networks, or
WSN, are known to function effectively to models of different types of LPWAN, as seen in
(BORGES; VELEZ; LEBRES, 2014). One of these such types is Long-Range, also known
as LoRa, which is, currently, extensively studied and the most readily available.

In (LAVRIC; POPA, 2017), the authors discourse over the functioning of LoRa, its
benefits and its challenges. Given that is a bidirectional manner of sending data between
users and transmitters, a LoRaWAN can easily export information such as geolocation,
signal-interference-plus-noise ratio (SINR) and received signal strength indicators (RSSI).
This kind of flexibility and inherent monitoring of the network makes the integration
between receiving sensors and transmitting drones a promising implementation.

As LoRa modules are lightweight and generally have their own separate battery,
they can easily be attached to UAVs without interfering with its flight capabilities or
power consumption. Given that the battery life of drones is generally low, due to their
high-power flight demands, LoRa is an economic alternative to make drone-array networks
work.

For this dissertation, the focus is set on how to optimize an array of UAVs, uti-
lizing as examples a 2.4 GHz Wi-Fi system and a LoRaWAN, to give the best coverage
area possible, in which all network users/sensors are satisfactorily connected. In order to
accomplish this coverage area maximization, some metaheuristic optimization techniques
are to be used. These will also determine which details each sensor will use to connect to
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the drone base-stations, so they can obtain maximum coverage or maximum data rate.

Therefore, a simulation was constructed in software MATLAB, simulating a forest
environment, with the purpose of giving results that shall be applicable for the region in
which the measured data was collected.

1.0.1 Motivations

The greater motivations for the study are the lack of drone-array positioning stu-
dies for forest environments, and the prospects of utilizing this in conjunction to compu-
tational optimization to obtain satisfactory data coverage results in medium to densely-
forested ambiences. Furthermore, the use of drone-arrays to provide LPWAN connections
to sensors located on the ground, and in this kind of environment, highlights the work
herein as novel in the literature.

1.0.2 General Goals

The general goals of the study are to create an optimization environment for
maximizing the area of data coverage for drone base-station arrays in medium to densely-
forested environments, and test it with simulations for the frequencies of Wi-Fi (2.4 GHz)
and LoRa (915 MHz). It is important to denote that, in this study, only the LoRa appli-
cation possesses measured data feedback, with Wi-Fi simulation being purely theoretical.

1.0.3 Specific Goals

This Master’s Thesis has the following specific and secondary goals:

• Utilize of measured SINR, SF, RSSI and geolocation values provided by the LoRa
sensors in order to simulate the positioning of drones within the array;

• Produce the best results for maximum area coverage in which all users are receiving
acceptable signal quality and where the fewest possible drones are to be in operation;

• Prove, by employing a propagation model utilizing measured data, that the simu-
lation can foresee and apply the effects of SF on area coverage in a satisfactory
manner;

• Present simulation hypotheses in which the methodology and metaheuristic opti-
mization techniques are put to test, in order to produce reliable results and prove
their validity.
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1.0.4 Contributions

The main contributions for which this study aims are thus:

• A simulation environment in which drone base-stations are able to connect and
serve a high number of users for Wi-Fi internet usage, considering a search space
with forested characteristics, to maximize data coverage areas whilst maintaining
satisfactory SINR values;

• A simulation environment in which drone base-stations can connect several sensors
in a flexible way, with varying SF spectra, to reach optimal data coverage areas
according to user demand;

• The comparison of performance between a classic drone propagation model to an
empirical model measured for LoRa frequencies and applications, in a forested en-
vironment.

1.0.5 Structure of the Dissertation

There are seven chapters in this master degree’s thesis, organized as such:

• Chapter 2 denotes the main works currently in the literature and state-of-the-art on
drone-array base station systems, as well as optimization of data coverage by area;

• Chapter 3 discourses on the theory of LPWAN and LoRa communications, its diffe-
rences to high-power wireless networks and its particularities in relation to the work
present herein;

• Chapter 4 explains the theory behind the bioinspired computational optimization
methods utilized in the study;

• Chapter 5 shows the methodology of the propagation models utilized in the simula-
tion, the conducting of the measurement campaigns, the proposal of a propagation
model that ties up with measured data and, lastly, the structure of the simulation
algorithms;

• Chapter 6 presents the results of the simulations, for both the frequencies of Wi-Fi
and LoRa separately, and its comparison to measured data for LoRa applications;

• And Chapter 7 comments said results and considerations of the dissertation and
serves as its conclusion.
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2 Correlated Works

2.1 Initial Considerations
In this chapter, there will be an exposure of works in the literature that are relevant

for the study made in the dissertation. It shall be separated in the following categories:
LoRa implementations with UAVs, drone-array optimization via metaheuristics and stu-
dies with UAV systems in forested environments.

2.2 LoRa Implementations with UAVs
In (CARUSO et al., 2021), a model for a LoRa system of data collecting for

precision agriculture is proposed. The aim of this study is to perceive how close must the
drone in this type of setting fly by the sensors in order to collect data within a given
quality threshold. It considers the pathing of only one drone in a plantation grid which
has various sensors separated from each other by a certain distance k. Some metrics are
considered in the study for both small and large plantation fields, such as the minimum
autonomy time for the drone, the packet transmission times for different SF and the
maximum number of sensors that a drone can attend for different SF.

For the study in (DAMBAL et al., 2019), there is an analysis of LoRa networks
for urban and suburban environments. Given that the reach of the connection link can
be diminished if there are many shadowing objects and effects in its path, the authors
propose an air-to-ground LoRaWAN operating in outdoor settings (the third scenario in
the paper). Measurements on the received signal strength have been conducted for both
heights of 25 meters and 50 meters above ground, as well as for vertical (V-V) and cross-
polarization (V-H) of transmitting and receiving antennas. The height of 50 meters with
vertical polarization demonstrates the best results.

In (DELAFONTAINE et al., 2020), a UAV is used to better estimate the location
of a certain LoRa beaconing node in the ground. This optimization is made possible by
utilizing the received power formula, and then obtaining the distance from it. A simple
greedy algorithm is then applied to compare the geolocation data that the received power
formula has suggested, and iterates in order to find a very proximate real location result.
The authors claim that this method can increase location precision by up to ten times
compared to the one found in fixed LoRa gateways.



Capítulo 2. Correlated Works 5

An interesting approach to the usage of a LoRaWAN is found in (RAHMADHANI
et al., 2018), where it is utilized as a secondary (or emergency) communication network
for drone package delivery and telemetry. This is made possible by a LoRa module cou-
pled to the drone and a fixed gateway transmitting at around 2.4 GHz, that is, the Wi-Fi
spectrum. Telemetry data, in this paper, denote results almost in real-time, with a mi-
nimum interval of up to three seconds and only 10 to 20 bytes of payload - which is a
considerably low amount. Packet loss is kept at around less than 10% and, as expected,
greater SF values tend to increase air time and decrease the payload size.

And (GHAZALI; TEOH; RAHIMAN, 2021) presents a rich survey about the usage
of UAVs in real-time LoRa applications. Not only does it contain many of the technical and
theoretical information about its bit rate, spreading factor, transmission power, coding
rate, bandwidth and carrier frequencies around the world, a plethora of papers showing
UAV-base modules and UAV-based gateways are also evident within the survey. Some
of the most interesting are: (DAVE et al., 2020), that focuses on the detection of gas
leakages with air and humidity sensors, with a camera feed enhanced via machine learning;
(TRASVIÑA-MORENO et al., 2017) in which a wireless sensor network is proposed
for marine environmental monitoring, with compelling real-life results; and (ZORBAS;
O’FLYNN, 2019), a study on adaptable usage between LoRa and Wi-Fi for high-data
management in agricultural applications.

2.3 Drone-array Optimization via Metaheuristics
Many articles are available in the literature about the employment of metaheuristic

computation and machine learning in order to coordinate or facilitate the control, pathing
and positioning of drone-arrays.

One of such is found in (AL-TURJMAN et al., 2019), whence optimization methods
such as the genetic algorithm (GA) and simulated annealing (SA) with the intent of bet-
ter positioning UAV base stations (UAV-BS) propagating in the 5G spectrum. Results of
the simulation are then analyzed for an area of 80 square kilometers, and the objective
function to be minimized is the difference between the total area and the integration of
areas covered by each of the UAVs.

Whereas in (KALANTARI; YANIKOMEROGLU; YONGACOGLU, 2016), a heu-
ristic algorithm has been proposed to function on the optimization of drone positioning
in a 3D environment, in order to supply good area of coverage and data rates for densely-
populated user regions. The chosen optimization method in this paper was particle swarm
optimization (PSO), and allied with its inherent velocity, results are very promising. The
algorithm can also determine whether a number of drones is satisfactory or redundant, as
well as the maximum data rate of users which can be served by a UAV.
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It seems that many of the works found in the literature for drone-array coordination
and positioning are, in fact, based on PSO and its variants. For instance, in (YUHENG;
LIYAN; CHUNPENG, 2019), PSO is utilized to perform a simpler task of finding an
optimal position in a 3D space for UAVs in emergency network situations. Similar results
are attested in (AGGARWAL; GOYAL, 2021), in which UAVs are deployed for disaster
management situations. However in (ZHICAI; JIANG; HONG, 2021), a cooperative search
algorithm (based on PSO) optimizes the density and distance between micro UAVs in a
swarm-based micro drone system. The objective of the study is to prevent UAV clustering
in heavily occupied areas, thus distributing some of the drones to underpopulated areas
within the search space - potentially avoiding local optima and widening the system’s
coverage area.

There are, however, studies that utilize other kinds of machine learning for drone
optimization. One such example is (RAJASHREE; RAJESH; ANNEPU, 2019), where it
exposes another kind of bioinspired technique - the Spider Monkey algorithm - which is
quite a rare solution. It is used to compensate for the high localization error made by
geolocation via received signal strength (RSSI). This can be a money-saving measure,
as installing GPS sensors in each drone or on-ground signal receivers, although being a
slightly more precise method, could be much more costly. The paper, however, gives little
detail about the Spider Monkey optimization and its creation, with shallow comparison
between other bioinspired techniques in its Results section.

Some surveys on the usage of machine learning for UAV positioning and signal
propagation, which are interesting to denote, are contained in (MOZAFFARI et al., 2019)
and (ZHOU; RAO; WANG, 2020). The former contains a plethora of pertinent information
about utilizing UAV arrays in communication systems in general, but also draws attention
to many articles that deal with trajectory optimization, cellular network planning and
channel modeling via machine learning solutions. The latter, thus, exposes papers that
prefer to use a swarm-based learning approach. It also contains studies that analyze drone
applications in IoT and that aim to optimize area of coverage of signals, which are both
related to the work made in this dissertation.

2.3.1 Studies with UAV Systems in Forested Environments

Even though there are many examples in the literature on UAV usage for sensoring
and monitoring forested locations, the same cannot be stated about studies on the higher
demand and high-power wireless networks for internet users - which is considerably scarce.
This may be due to less necessity (in the past) compared to works that act on urban and
suburban environments, having different kinds of diffraction, shadowing and obstructions
to line-of-sight of signals. However, in order to make cellular networks available to anyone,
anywhere, those kinds of scenarios are now in need of further study and consideration.
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And since the work herein has the objective of tuning in UAV arrays for both sensor and
internet network usage, papers on both subjects are to be denoted in this subsection.

For high-power, internet-focused applications in forested areas, one has to gene-
rally look into non-line-of-sight (NLOS) studies that can corroborate channel and path
loss modeling that is compatible with this environment. In a survey by (KHAWAJA et
al., 2019), some examples in wooded and forested suburban locations, and even for the
modeling of shadowing caused by vegetation are found. The most interesting, for the
implementations in this article, are: (CID; ALEJOS; SANCHEZ, 2016), (KHAWAJA;
GUVENC; MATOLAK, 2016) and (NEWHALL et al., 2003).

Generally, for sensing and imaging of forested areas, UAVs are widely utilized.
Some of works include "remote sensing", where important factors such as vegetation den-
sity and forest fires are detected by imaging and outside data obtained via drones. And
there are papers that demonstrate on-ground sensoring of forested, rural and green su-
burban areas, which are more aligned to the main objectives of the dissertation study.

Several remote sensing works in forest environments have been published, but it is
enough to briefly point out three samples seen in a review article by (TORRESAN et al.,
2016). In (AICARDI et al., 2016), UAV multi-temporal imaging and reconstructed digital
surface models throughout 2008 to 2015 have been analyzed to evaluate the post-fire
recovery of a secondary forest in northern Italy. Whilst in (MICHEZ et al., 2016), an also
multi-temporal analysis is drawn to differentiate the density occupied by different tree
species, as well as their health conditions, in a riparian forest inside Belgium. Lastly, an
article by (PIERZCHAŁA; TALBOT; ASTRUP, 2014) discourses on the results of post-
deforestation and post-harvest soil displacement in a steep, mountainous area of Western
Norway; aerial imagery via drones and a 3D reconstruction of the affected terrain was
made to estimate soil volume and displacement in this 7-hectare perimeter.

An example of a valuable paper in regards to air-to-ground sensor communications
in a rural forested environment is (DUANGSUWAN; MAW, 2021). Within, a comparison
on the prediction of path loss in a precision-farming sensor network is made, between
PSO and two machine learning algorithms: k-Nearest and Random Forest. The objective
functions and equations pertaining to the output of all algorithms is explained in detail, as
well as the training processes involved. However, even though the theoretical part supports
multiple UAVs, measurements have been made in a small area of 50 x 30 meters, with
only one UAV and one IoT sensor. However, the path loss prediction shows satisfactory
results, and the Random Forest algorithm performs with the lowest root mean square
error (RMSE).
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2.4 Final Considerations
In this Section, many works present in the literature are exposed, which have

influenced this Master’s dissertation. It is also evident that the dissertation draws from
several sources and pertains to many areas of interest, such as, mainly, the ones from all
three subsections. The major contribution that the work herein aims to achieve is the
analysis between simulated and measured signal propagation results in light-to-heavily
forested environments via UAVs, using the campus of the Federal University of Pará (or
UFPA) as a reference within the Amazon rainforest area. The optimization technique is
then applied to position these UAVs in order to better attend the needs of users, and
maximize coverage area inside of this context.
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3 Low Power Wide Area Networks and LoRa

3.1 Initial Considerations
In this chapter, the theory behind Low Power, Wide Area Networks (LPWAN) and

LoRa is to be explained in a succinct manner. Some topics within this subject include:
types of LPWAN, wireless sensor networks, and the operation of LoRa.

3.2 LPWAN and Their Types
Low-power, wide-area networks are means of wireless communications that act on

low-data requirements, generally for the requirements of power saving and greater signal
range whilst sacrificing data rates. With the advancement and necessity of this technology,
there are, nowadays, many kinds of LPWAN - and the majority of them are utilized in the
context of Internet of Things (IoT) and wireless sensor applications. Many of the papers
in the previous Chapter have been displayed on the usage of said networks in order to
promote sensoring, evaluation and activation of IoT devices. The greater emphasis has
been put on LoRa, which is the technology and frequency spectrum utilized in this work
- and that shall be explained in further detail at its own section.

In broad terms, LPWAN are applied in situations which low-power usage and an
extensive range is required, which is contrasted to other technologies such as, e.g., Wi-Fi
(high-power, low-range), LTE (high-power, high-range) and Bluetooth/NFC (low-power,
low-range).

According to (XU; NI, 2021), there is a classification of two major types of LPWAN
according to their spectra: ones that do not have a licensed frequency band (LoRa and
SigFox) and the ones that operate at licensed spectra, generally supported by 3GPP
protocols (NB-IoT and LTE-M). Both types are well utilized in communications and IoT
settings, however, many recent studies favor unlicensed LPWANs, as they are easier to
implement and research. Therefore, some of the most frequently found LPWAN systems
are to be explained below.

SigFox is an ultra-narrow band (UNB) LPWAN designed and implemented by the
company of the same name. It is mainly utilized for medical, industrial and research-aid
applications, as attested in studies such as (CRYS; HWEE-PINK, 2019) and (RIBEIRO
et al., 2018). Since it has such a narrow band of operation, data rates tend to be extremely
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low, making it suitable to applications which need only a few bytes of data. It may not
be suitable for operating an array of drones or a sensor network with dozens of nodes.
However, power consumption is kept to a minimal and its coverage area tends to be the
greatest compared to all LPWAN, as denoted in (ALDAHDOUH et al., 2019).

As a network within a licensed spectrum, the NB-IoT technology also deals with
high-coverage, low-power and narrow-band transmissions. Its operation involves frequen-
cies in various LTE bands and elements from LTE and 3GPP standards are employed
as well. Generally, it is designed for IoT applications which require a greater amount of
data (around kbps) and connection speed, and that can benefit from the quality of service
(QoS) provided by 3GPP protocols, as seen in (MARTINEZ et al., 2019). Yet, its range is
lower than LoRaWAN and significantly lower than SigFox, and it consumes more power,
since transmission power is slightly higher than those.

LTE-M (or Long Term Evolution for Machines) is the oldest of the LPWAN mo-
dels, having backwards compatibility with 4G-LTE technologies and has been developed
parallel with NB-IoT and released at the same time. It possesses data-rates akin to 4G
systems, mostly reaching around 1 Mbps. Therefore, it supports a good quality of audi-
o/voice and low resolution video, and studies made using these properties of LTE-M have
shown to be sucessful, such as the one found in (HENG; HONGWEI, 2019). Also, (BOR-
KAR, 2020) further explains the resources available in LTE-M, its parallels to NB-IoT
and its adaptation to fit into 5G standards, which are all interesting discussions.

Having discoursed on the prominent details of LPWAN models, a deeper dive into
the functioning and features of LoRa is analyzed in the following section.

3.3 The Operation of LoRa
LoRa, or LoRaWAN, is a standardized type of LPWAN modulation that focuses

on the communication of low-data devices that need a greater coverage area than the
ones proposed by licensed-band ones. It has been assembled by the company of the same
name, located in France. It is also derived from a modulation technique known as Chirp
Spread Spectrum (CSS) in which the transmitted signal varies in frequency, inside the
allocated frequency spectrum, making it extremely robust to interference. An example of
a wave modulated under CSS method is found in Figure 1.
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Figura 1: Example of a wave signal modulated by Chirp Spread Spectrum technique.

Source: (SEMTECH, 2019a)

LoRa signal modulation is thoroughly explained in (SEMTECH, 2015). It is writ-
ten that "In LoRa modulation the spreading of the spectrum is achieved by generating a
chirp signal that continuously varies in frequency. [...] The frequency bandwidth of this
chirp is equivalent to the spectral bandwidth of the signal". Thus, the equation which
denotes the signal’s nominal bit rate is:

𝐵𝑅 = 𝑆𝐹.
4

4+𝐶𝑅

2𝑆𝐹

𝐵𝑊

(3.1)

In which BW is the spectral bandwidth, SF is the so called spreading factor of
the spread spectrum modulation - which is a constant with discrete values between 7 and
12 - and CR is the code rate that serves as an error-correction constant with discrete
values from 1 to 4. So this is the modulation as already corrected in order to improve
signal robustness. Given that these are all constant-dependent values, this formula can be
transformed into table of reference for convenience. (LAVRIC; POPA, 2017), for instance,
has a table that informs not only bit rate, but also the correct SINR limit, time on-air in
seconds for 10-byte packets and number of symbols (bytes) per second for every SF value.
Please note that these values reflect a bandwidth of 125 KHz.

A basic explanation on the architecture of LoRaWAN is given in (LAVRIC; POPA,
2017). It possesses a star-of-stars network topology. The system has a central network
server (back-end), which acts as a hub to connect one or more LoRa gateways that,
finally, receives, transmits and manages data from the network users (front-end). Some
users may communicate with more than one gateway if necessary. Figure 2 denotes the
architectural topology of LoRaWAN.
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Figura 2: LoRa topology and architecture

Source: (LAVRIC; POPA, 2017)

LoRaWAN is considered to have great scalability, simply because multiple ga-
teways can be implemented if the network needs to cover more users/devices. Low-cost
gateways can support 8 consecutive users, just like the one used to provide measured
data for the dissertation herein. This is also taken into account in the simulations, dis-
coursed about in Chapter 5. However, there are also a 16-channel mobile gateway module
and a 64-channel gateway intended for installation in cell towers and building rooftops,
according to (SEMTECH, 2019a).

3.4 Final Considerations
Brief explanations have been given for the differences of LPWAN, especially Lo-

RaWAN, to other types of systems. Being able to carry low amounts of data for an
extensive range, they tend to diverge greatly from Wi-Fi in terms of application, but
both can be utilized, in distinct contexts, to employ IoT implementations.

That being said, it is important to denote that SF and other information specific
to LoRa will be considered when simulating the drone array system in MATLAB. Chapter
5 ahead shall explain how these theoretical concepts tie up to produce the aforementioned
simulation environments for both LoRa and Wi-Fi. Furthermore, it shall demonstrate a
path loss model for LoRa propagation that has been calibrated with data taken from the
measurement campaigns at UFPA.

Up next in Chapter 4, the theory behind the three bioinspired algorithms utilized
in simulations will be discoursed.
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4 The Bioinspired Optimization Techniques

4.1 Initial Considerations
Bioinspired computational methods are mainly based on natural selection. They

are set to mimic the natural behavior of nature, in which the best and most surviving
individuals prevail. With that in mind, these bioinspired algorithms serve as good op-
timization methods for mathematical and engineering problems, especially those where
metaheuristic techniques (trial and error) can be applied to achieve one or more concrete
goals.

In this chapter, all three computational optimization methods are to be explained
in plain detail, with detailed set of instructions, pseudocodes and their respective equa-
tions. In order of appearance these are: the cuckoo search (CS), the flower pollination
algorithm (FPA) and the bat echolocation algorithm (BA). These have been chosen as
alternatives to more conventional techniques such as genetic algorithms (GA), differential
evolution (DE) and particle swarm optimization (PSO), as well as being slightly faster
in solving non-linear, multi-variable problems. They have all been designed and imple-
mented by Xin-She Yang (YANG, 2020). The cuckoo search algorithm was the first to be
released, in 2009. Then, around 2011, the bat echolocation algorithm has been published,
followed by the flower pollination algorithm a year later.

In the context of our study, the variables to be solved are the coordinates of all
drones within the array (x-axis, y-axis, height). On certain heavier application, i.e. when a
greater number of drones is to be required in simulation, these algorithms must act swiftly
and precisely to be able to maximize potentially demanding and numerous drone-array
systems.

4.2 Cuckoo Search
The Cuckoo Search algorithm (CS) has been coined by Yang and Deb in 2009

(YANG; DEB, 2009), proving itself to be a very effective metaheuristic algorithm for
all sorts of applications in mathematics, industry and engineering (SHEHAB; KHADER;
AL-BETAR, 2017). The main bioinspired idea behind this method is the computational
modeling of the parasitic behavior of cuckoo-type birds, that often lay their eggs inside
the nests of other types of birds. This is a natural occurrence in nature, as the host species
often does not perceive the cuckoo’s “alien” egg inside the nest, or either choose to ignore
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it completely or abandon the nest altogether, choosing another place to lay its eggs on.
However, if the egg is ignored and left to grow inside the host bird’s nest, the cuckoo
hatchling is born, and reaches maturity much faster than the other eggs, pushing the
host bird’s eggs outward. Thus, the cuckoo baby bird expels the other eggs from the nest,
resulting in a higher food share for it, and becoming well-fed.

Thus, according to the creators of the CS algorithm (X-S. Yang and S. Deb), the
whole process is based upon three major rules:

1. Each cuckoo lays one egg at a time, and deposits it in a random nest. Each egg is
considered a potential solution – metaheuristic

2. The best nests carry the best eggs (solutions), and these will survive the next gene-
rations due the parasitic nature of the cuckoo hatchlings – elitism.

3. The number of available nests is constant, and defined by the code developer. The
probability of a cuckoo egg being discovered by the host bird is defined as 𝑃𝑎 ∈ [0, 1).
After this, the bird may choose to discard this egg or abandon its nest – discarding
the worst solutions.

The latter rule can also be described by indicating that a probability fraction Pa
from the various n nests of host birds are replaced by new nests, presenting randomized
solutions.

The cuckoo birds in this method move according to the so-called Lévy Flights
(YANG; DEB, 2009). This device provides a random flight path that which each cuckoo
(in a number of i cuckoo birds) will trek to find nests. Equations (4.1) and (4.2) are a
mathematical representation of the Lévy Flight and Lévy Distribution, respectively, to
be implemented in code form:

𝑋 𝑡+1
𝑖 = 𝑋 𝑡

𝑖 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽) (4.1)

𝐿𝑒𝑣𝑦(𝛽) ∼= 𝑢 = 𝑡−(𝛽+1); (1 < 𝛽 ≤ 3) (4.2)

In which i is the maximum number of cuckoo birds in the current generation, and
t is the current code iteration. Constant 𝛼 is the step size to be utilized in the code, and
is adaptable to the developer’s need – it must always be greater than zero, and in this
study the value is set to 𝛼 = 1.

In equation (4.1), the Lévy Distribution is associated to the Lévy Flight with
the product ⊕, which means “entrywise multiplication” – a kind of product between two
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matrices of the same size. In the PSO algorithm, a similar product can be found, however,
for the Lévy Flight method, the search space can be much better harnessed.

As for equation (4.2), this is about the Lévy Distribution. It possesses infinite
variance and average values. The variable 𝛽 is the random step length, needed for providing
a variable magnitude to the random walk performed by the Lévy Flight.

Given that the Lévy distribution presents infinite variance, the search space is
virtually limitless, meaning that the length of the flight taken could be very short or
incredibly long. However, generally, the new solutions are generated through the Lévy
method around the best obtained solution on a given instant, accelerating the process
and concentrating the computational effort in a part of the search space. Oftentimes,
however, solutions are generated randomly across the space – this is good to prevent the
algorithm from getting stuck in local optima, which are not the globally best possible
solution.

An illustration showing a Lévy flight with around a hundred steps can be found
in 3. The nature of its short and long steps is clearly visible, and its infinite variance may
aid to even out and potentially exceed by small margins the search spaces which are to
be set in the drone simulations. This can be advantageous, as the work proposed herein
present network user sets generated by normal distribution, and may also, in some cases,
slightly surpass the optimization bounds. Lévy flights, therefore, could design solutions
able to attend the needs of said out-of-bounds users, as it shall be attested in the results
of the simulations, in Section 6.

Figura 3: Representation of a 100-step Lévy flight in its search space

Source: (NETO, 2015)

A pseudocode of the CS algorithm, as well as its multiobjective counterpart, can
be found in the article in which it was proposed by Yang and Deb (YANG; DEB, 2009).
Below, in algorithm 1, a transcription of this code is presented.
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Algoritmo 1 Cuckoo Search Algorithm
Define the objective function as 𝑓(𝑥), 𝑥 = (𝑥1, ..., 𝑋𝑑)𝑡

Generate the initial population of 𝑛 host nests 𝑥𝑖(𝑖 = 1, 2, ..., 𝑛)

while (𝑡 < number of iterations) or (stop criterion) do
Select a cuckoo randomly via Lévy Flight ◁ (4.1)
Evaluate the cuckoo’s fitness (represented by F)
Draft a random nest (say, j) out of the 𝑛 available

if 𝐹𝑖 < 𝐹𝑗 then
Replace randomly drafted 𝑗 by the new solution 𝑥𝑖

end if

Discard a fraction 𝑃𝑎 of worse nests and build new ones
Keep the best / better quality solutions
Rank the best nest set and find the current best

end while

Post-process and visualize results

4.2.1 The Flower Pollination Algorithm

A solution based on the behavior of natural flower pollinators has been proposed
by Yang (the same author of the cuckoo search and the bat echolocation algorithms),
which also utilizes the Lévy flight method of optimal space search. Its efficiency, in many
single and multi-objective applications is proven to be greater than Particle Swarm and
Genetic optimization algorithms (YANG, 2012).

As for the stages of the algorithm, four rules are defined thusly (YANG, 2012):

1. Biotic and cross-pollination is considered as global pollination process with pollen-
carrying pollinators performing Lévy flights.

2. Abiotic and self-pollination are considered as local pollination.

3. Flower constancy can be considered as the reproduction probability and is propor-
tional to the similarity of two flowers involved.

4. Local pollination and global pollination is controlled by a switch probability p ∈ [0,
1]. Due to the physical proximity and other factors such as wind, local pollination
can have a significant fraction p in the overall pollination activities.

Two kinds of pollination are considered and simulated: global and local pollination.
This assures that the code does not only fall for local solutions, healthily seeking to
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encounter a global solution to the objectives. For simplicity manners, the algorithm is
based on the idea that every plant possesses only one flower and can pollinate also just
one other flower at a time, when in true biological terms they can hold a few flowers and
millions of pollinating gametes. This is so that a plant / flower / pollinating gamete are
all considered to be part of one solution altogether.

Hence, the first rule (global pollination) and third rule (flower constancy) of FPA
are mathematically represented as shown in (4.3):

𝑋 𝑡+1
𝑖 = 𝑋 𝑡

𝑖 + 𝐿(𝑋 𝑡
𝑖 − 𝑔*) (4.3)

Where 𝑋 𝑡
𝑖 is the pollen i or solution vector 𝑋𝑖 at iteration t, and g* is the current

best solution among all solutions at the current iteration.

Pollination strength L is dealt via Lévy flight, in which it is a measure of each
flight’s step size, as denoted in (4.4). Here, the flights symbolize the path of insects and
pollinator animals in a given area - in the algorithm, this area is the optimization’s global
search space. However, the equation used in this algorithm differs from the one found in
cuckoo flights, as it is based on producing Lévy flights via the Mantegna algorithm. This
is basically a technique to generate pseudo-random step sizes via normal distributions in
order to provide an optimal performance whilst still maintaining the demands of the Lévy
distribution.

𝐿 ≈ 𝜆Γ(𝜆) sin(𝜋𝜆/2)
𝜋𝑠1+𝜆

, (4.4)

in which Γ(𝜆) is the standard, classic gamma function found in Lévy flights, and
other probabilistic and complex number applications.

The Mantegna step size algorithm can be explained as the equation (4.5).

𝑠 = 𝜆Γ(𝜆) sin(𝜋𝜆/2)
𝜋𝑠1+𝜆

, (4.5)

with 𝑠 being the step size, U being drawn from a Gaussian distribution of variance
𝜎2 and V also being drawn from a Gaussian distribution but with unitary variance, as can
be verified in (YANG; KARAMANOGLU; HE, 2014). Generally, the lambda is treated
as a parametric value and it is safe to assume that it is a constant with a possible value
of around 𝜆 ∈ [0.5, 1.5]. When 𝜆 = 1, the variance also equals 1, and results are in such
case easier to predict.

For the purpose of Rule 2 (local pollination), the flower constancy is mimicked for
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a limited neighborhood near to the reproductive flower’s position. It is represented as

𝑋 𝑡+1
𝑖 = 𝑋 𝑡

𝑖 + 𝜖(𝑋 𝑡
𝑗 − 𝑋 𝑡

𝑘), (4.6)

where 𝑋 𝑡
𝑗 and 𝑋 𝑡

𝑘 are pollens from different flowers of the same plant species.

The fourth rule is a probabilistic switch between global and local pollination, and
the probability p can be parametrically and singularly adjusted to improve optimization
performance, depending on the need of the objective function.

All stages of the algorithm are represented in pseudocode form by the recommen-
dations in (YANG, 2012), which are transcribed in algorithm 2. Some details previously
discussed can be noticed, such as an if/else switch for global and local pollination, which
are done by Lévy flights and random selection, respectively.

Algoritmo 2 Flower Pollination Algorithm
Define the objective function as 𝑓(𝑥), 𝑥 = (𝑥1, ..., 𝑋𝑑)𝑡

Generate an initial population of flowers/pollens as random solutions
Find, within this population, the best solution 𝑔*
Define the switch probability 𝑝 ∈ [0, 1]

while (𝑡 < number of iterations) or (stop criterion) do
for all 𝑛 flowers in the population do

if 𝑟𝑎𝑛𝑑 < 𝑝 then
Generate a step vector 𝐿 which obeys a Lévy distribution
Execute global pollination as in (4.3)

else
Pick a uniformly distributed number from 𝜖 = [0, 1]
Randomly choose individuals 𝑗 and 𝑘 from all solutions
Do local pollination according to (4.6)

end if

Evaluate new solutions
Update solutions that are better into the population

end for

Find the best current solution, represented by 𝑔*

end while
Post-process and visualize results
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4.3 Bat Echolocation Algorithm
The bat algorithm (BA) is based on the echolocation characteristics of bats, that

is, the supersonic frequency of obstacle detection. Basically, the more proximate a bat
is from a solution, the algorithm shall "feel"it by a simulated echolocation perspective.
Therefore, it uses a search space pathing based on a uniformly distributed echolocation
system, not on Lévy Flights.

This algorithm, compared to the other two flight-based one already exposed, has
the fastest computation and thus produces results in a more time-efficient manner. This
is due to its low calculation complexity, in which individuals do not "evolve", but are
simply "swarming"towards a solution. According to (YANG; HE, 2013), there are some
parallels to be drawn between the behavior and faster performance of this algorithm and
the more classic particle swarm optimization (PSO). Since one of PSO’s drawbacks lie
in multimodal optimization performance (which is something that applies to multi-drone
positioning optimization), the bat echolocation algorithm presents a major improvement
in that regard, and this justifies its usage as a replacement, or even an enhancement,
compared to PSO.

The following rules apply to the bat algorithm (YANG, 2011):

1. All bats use echolocation to to sense distance, and they also "know"the difference
between food/prey and background barriers in a sort of "magical"way;

2. Bats fly randomly with velocity 𝑣𝑖 at position 𝑥𝑖 with a frequency 𝑓𝑚𝑖𝑛, varying
wavelength 𝜆 and loudness 𝐴0 to search for prey. They can automatically adjust
the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse
emission r ∈ [0, 1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) 𝐴0 to a minimum constant value 𝐴𝑚𝑖𝑛.

Bats emit a frequency f to help situate themselves in the environment, they move
around in velocity v and possesses a certain loudness A, as well as repeating this process
at a rate r (also called pulse emission rate). Equations (4.7), (4.8), (4.9) and (4.10) explain
the implications of the process.

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (4.7)

𝑣𝑡+1
𝑖 = 𝑣𝑡

𝑖 + (𝑋 𝑡
𝑖 − 𝑋*)𝑓𝑖 (4.8)

𝑋 𝑡+1
𝑖 = 𝑥𝑡

𝑖 + 𝑣𝑡
𝑖 (4.9)
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𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝜖𝐴𝑡 (4.10)

In case of (4.7), 𝛽 is a random vector of normal distribution with values from 0 to
1. For (4.10), 𝜖 is also a random vector but ranging from [−1, 1].

Finally, in (4.11), the loudness and pulse emission rates are categorized, in which
two constants 0 < 𝛼, 𝛾 < 1 are utilized for further parametric optimization. Please notice
that 𝑟𝑖 refers to the pulse emission rate, as stated in Rule 2.

𝐴𝑡+1
𝑖 = 𝛼𝐴𝑡

𝑖; 𝑟𝑡
𝑖 = 𝑟0

𝑖 [1 − exp (−𝛾𝑡)] (4.11)

In basic terms, the only terms to be manually configured into the algorithm ap-
plication is the minimum and maximum frequency, the loudness and the pulse emission
rate, as all rules stem from those four variables. A general pseudocode of the BA can be
found at (YANG, 2011), and is exposed in algorithm 3.

Algoritmo 3 Bat Echolocation Algorithm
Define the objective function as 𝑓(𝑥), 𝑥 = (𝑥1, ..., 𝑋𝑑)𝑡

Generate the initial population with 𝑥𝑖(𝑖 = 1, 2, ..., 𝑛) and 𝑣𝑖

Define pulse frequencies 𝑓𝑖 for all bats
Initialize pulse rates 𝑟𝑖 and echo loudness as 𝐴𝑖

while (𝑡 < number of iterations) or (stop criterion) do
Generate new solutions by adjusting to new frequencies ◁ (4.7)
Calculate velocities and the new position of each solution ◁ (4.8) and (4.9)

if 𝑟𝑎𝑛𝑑 < 𝑟𝑖 then
Pick a solution among the best solutions
Generate a local solution in the vicinity of the selected best solution

end if

Generate a new solution by random flight

if 𝑟𝑎𝑛𝑑 < 𝐴𝑖 and 𝑓(𝑥𝑖) < 𝑓(𝑥*) then
Accept the newfound solution
Increase the pulse rate 𝑟𝑖 and decrease loudness 𝐴𝑖

end if

Rank the bats in the solution set and find the current best 𝑥*

end while
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4.4 Final Considerations
In this chapter, a detailed explanation into the theory of the chosen optimization

techniques has been realized. Furthermore, an explanation of the objective function model,
as well as its manner of associating and assigning users for each drone, has been described.
In the next chapter, the methodology and application of said algorithms and their common
objective function is to be analyzed, further explaining how the study herein has been
conducted and laying the foundation to elucidate and validate its results.

For more information on the vast field of research that is bioinspired computing,
there is an extensive overview on the subject compiled in a survey by (SER et al., 2019).
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5 Project Methodology

5.1 Initial Considerations
The methodology for the project of the simulations and the implementation of the

optimization codes is to be discussed in this section. Among many topics, examples are the
software and pseudocodes used, explanations about the chosen structure and variables of
the simulations, and information on measurement campaigns that produced the empirical
propagation model for LoRa.

The techniques and equations that conduct this study must act upon the objectives
as set in Section 1.0.2 and 1.0.3. So, mathematical relations must be input into the
computational optimization, which shall be distinct for Wi-Fi and LoRa applications,
in order to reach these goals. For instance, LoRa optimization and propagation differs
from Wi-Fi mainly on its Chirp Spread Spectrum feature, and the implementation of SF
values means it may produce results that are not proportional to the basic drone model
in Wi-Fi.

Since the methodology of this work is an extensive subject, this part is divided in
many subsections, which are summarized below.

Subsection 5.2 discourses about the path loss and propagation modeling utilized
as foundation to the results of this work. Subsections 5.2.1, 5.2.2 and 5.2.3 represent,
respectively, the theoretical Wi-Fi propagation model, the theoretical LoRa model, and
the LoRa model corrected by measured data. Furthermore, 5.2.3 explains the conduction
of the measurement campaigns within the forested UFPA campus, and in further detail
provides explication on the transformation of said measured results into a log-distance
propagation model formula that complements the theoretical UAV-guided LoRa model.

Subsection 5.3 clarify the structure of the algorithms which are used as the se-
arch space optimizers and that provide the estimate drone positioning. The theoretical
functioning of the bioinspired optimizers is already laid out in Section 4, so subsections
5.3.1 through 5.3.3 focus on the specific structures added upon the algorithms for drone-
array optimization for, respectively, the Wi-Fi theoretical model, the LoRa theoretical
model and the measurement-corrected LoRa model. This will mainly lay emphasis on
how each of said applications provide a different user-drone association function, that
influence directly into how and which drones will connect to a group of users. Since the
three computational techniques are generally similar in terms of structure, assigning one
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pseudocode for each of the three applications is enough.

And finally, Subsection 5.4 provide the closing remarks of this section.

5.2 Path Loss and Propagation Modeling of Drones
Herein lie the mathematical equations of propagation modeling of wireless signals

utilized in the algorithms. A strong theoretical basis for these is of great importance, as it
signifies, in the optimization process, the capacity of the algorithms to perceive a user as
connected or not, and to which drone should it connect to, based on the measurements of
received power (𝑃𝑟, as is most referred to in the text) and signal-to-interference-plus-noise
ratio (SINR).

The trigonometric equations on the positioning of drones, valid for all applications,
are found below in (5.1) and (5.2). Figure 4 is used to represent the trigonometric variables
visually. These equations are found in the work of (MOZAFFARI et al., 2015), which is,
overall, one of the most utilized propagation models for UAV systems in the literature,
as well as extensively within the author’s several articles.

Figura 4: Drone positioning variables

Source: (FERREIRA et al., 2021), (MOZAFFARI et al., 2015)

𝑑 =
√

𝑅2 + ℎ2 (5.1)
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𝜃 = arctan ℎ

𝑅
(5.2)

In which R is the distance from the projection of the drone on the user plane to
the user itself, h is the UAV height in relation to the user plane, d is the actual distance
from user to UAV and 𝜃 is the elevation angle of the UAV in relation to the user.

5.2.1 Wi-Fi Theoretical Propagation Model

The drone modeling for Wi-Fi frequency propagation is done in this study accor-
ding to (MOZAFFARI et al., 2015), in which a path loss model for UAV-specific operation
is described. The model conveys both Line-of-Sight (LoS) and Non-line-of-sight (NLoS)
losses and is represented in equations (5.3) and (5.4), and probability of having a LoS
connection for an elevation angle of 𝜃 is given by (5.5).

𝐿𝐿𝑜𝑆(𝑑𝐵) = 20 log (4𝜋𝑓𝑑

𝑐
) + 𝜁𝐿𝑜𝑆, (5.3)

𝐿𝑁𝐿𝑜𝑆(𝑑𝐵) = 20 log (4𝜋𝑓𝑑

𝑐
) + 𝜁𝑁𝐿𝑜𝑆, (5.4)

𝑃𝐿𝑂𝑆 = 1
𝑍

, 𝑍 = 1 + 𝛼 exp(−𝛽[180
𝜋

𝜃] − 𝛼) (5.5)

In which f is the propagated frequency and 𝜁𝐿𝑜𝑆 and 𝜁𝑁𝐿𝑜𝑆 are loss constants
related to LoS and NLoS propagations. Furthermore, 𝛼, 𝛽 are environmental constants
which are necessary to adapt this model to urban, suburban or rural ambiences, and
𝑃𝑁𝐿𝑂𝑆 = 1 − 𝑃𝐿𝑜𝑆. Values of d and 𝜃 are thus according to (5.1) and (5.2).

Hence, the average path loss between LoS and NLoS situations is described as:

𝐿𝑎𝑣𝑔(𝑅,ℎ) = 𝑃𝐿𝑜𝑆 × 𝐿𝐿𝑜𝑆 + 𝑃𝑁𝐿𝑜𝑆 × 𝐿𝑁𝐿𝑜𝑆, (5.6)

which is then, by applying eqs. (5.3), (5.4), (5.5) and (5.6), transformed into:

𝐿𝑎𝑣𝑔 = 20 log (4𝜋𝑓𝑑

𝑐
) + (𝜁𝐿𝑜𝑆 + 𝑍𝜁𝑁𝐿𝑜𝑆)

(1 + 𝑍) (5.7)

So, considering transmitting and receiving antenna gain, (5.8) denotes the received
power of the user based on the path loss:

𝑃𝑟(𝑑𝐵) = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 − 𝐿𝑎𝑣𝑔 (5.8)
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It is important to denote this is a value unique for each user connected to each
drone. In light of this, received power between drones in an array system might cause UAV-
to-UAV interference and, as such, has to be considered into the model. In that manner,
the SINR metric comes into activity, which determines how many users are connected to
the UAV array and the quality of its signal. As said previously, SINR is crucial for the
algorithm to decide which UAV should connect to which user, and its implementation is
given by:

𝑆𝐼𝑁𝑅𝑖,𝑗 = 𝑃𝑟𝑖,𝑗

𝑞 + ∑︀𝑁𝑈𝐴𝑉
𝑘=1,𝑘 ̸=𝑗 𝑃𝑟𝑖,𝑗

, (5.9)

where received power values for the j-th drone and the i-th user are then transfor-
med into SINR by dividing it for the noise floor level q added to the average of the sum
of the received powers of the other drones (that is, the UAV-to-UAV interference). The
formula was derived in accordance with SINR information in (GOLDSMITH, 2005) and
(CARDOSO, 2015). To calculate this formula more easily, SINR and Pr values should be
expressed linearly.

Values for the noise floor can be treated, for instance, as defined by the absolute
noise floor formula, given in (5.10) for ambient temperatures (around 300 K, or 27 ∘C),
as seen in (SEMTECH, 2015).

𝑞(𝐵𝑊 ) = −174 + 10 log (𝐵𝑊 ) (5.10)

Given that bandwidth values of regular Wi-Fi systems are 20 MHz or 40 MHz
according to IEEE 802.11 standards (KHANDURI; RATTAN, 2013), values are around
𝑞(20𝑀𝐻𝑧) = – 101 dBm and 𝑞(40𝑀𝐻𝑧) = – 98 dBm.

5.2.2 Theoretical Propagation Model for LoRa

For the theoretical modeling of LoRa, the equations in the Wi-Fi model, (5.3)
through (5.10), are to be reused. However, for the signal propagation of LoRa, there is a
change in the limits of signal propagation according to its spreading factor values, as a
result of the chirp spread spectrum technique. In theory, higher SF values provide greater
coverage area and robustness to noise but lower bit rates, and lower values enhance the
bit rate of the signal but sacrifices some area of operation.

But the way the SF enhances the coverage area is by lowering the sensitivity needed
so that the signal can be received properly. This results in lower RSSI and SINR values
being possible for higher SF values, and vice-versa. Thus, it is safe to conclude that SF
values should not actually be counted and adapted upon the propagation model itself – it
is only necessary to adjust the optimization limits in regards to received power and SINR
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according to the SF of the transmitted signal. Then, it is only up to the optimizers to
encounter optimal values in these ranges. In practice, even though it should not cause a
great difference in the results, altering SF values may cause distinct results and alter the
propagation modeling, and this is addressed by the corrected empirical model in section
5.2.3.

Table 1 refers to the signal sensitivity range and its respective SF values for a
bandwidth of 125 KHz and carrier frequency of 915 MHz, which is the recommended
LoRa operation values for Europe and Brazil. The FSK mode (short for frequency shift-
keying) specified here is another type of modulation that is also present in LoRa gateways
as an alternative to CSS, albeit generally less effective, and it is only listed as means of
comparison.

Tabela 1: SF reference values of LoRa for f = 915 MHz, BW = 125 kHz

Mode Bit Rate (kbps) Sensitivity (dBm) Δ (dB) Estimated Range
FSK 1.2 -122 – N/A
SF 12 0.293 -137 +15 10-12 km
SF 11 0.537 -134.5 +12.5 10 km
SF 10 0.976 -132 +10 8 km
SF 9 1.757 -129 +7 6 km
SF 8 3.125 -126 +4 4 km
SF 7 5.468 -123 +1 2 km
SF 6 9.375 -118 -3 N/A

Source: (SEMTECH, 2015), (SEMTECH, 2019a)

For the simulations, the SF 10 mode has been chosen, as it possesses good concor-
dance between data rates and estimated range to be utilized in its normally-distributed
search space environment. More details on Chapter 6. Also, since the bandwidth of LoRa
applications for this study is 125 kHz, (5.10) gives a value of around 𝑞(125𝑘𝐻𝑧) = – 123
dBm.

5.2.3 The Corrected Empirical Model for LoRa

Measured data to better represent medium to densely-forested environments has
been acquired at Federal University of Pará (UFPA) in a series of measurement cam-
paigns conducted by the staff of LCT-UFPA (in portuguese: Laboratório de Computação
e Telecomunicações). The objective was to create a database of LoRa empirical results
to be shared by students who work on the subject of drones and LoRa systems, and to
utilize these data in the different scientific studies present throughout the laboratory. The
study on this dissertation, thus, has benefited from this project.

An 8-user LoRa gateway module configured by an Arduino UNO has been used,
as well as two compact omnidirectional antennas with a maximum transmitting power
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sensitivity of around 10dBm and one drone, to which we attached the gateway, to realize
measurements at different heights.

The drone was kept at a fixed place, thus emulating its usage as a LPWAN gateway
transmitting data (Tx), as it transmitted down to the receiver antenna (Rx) which varied
its position. The Rx was attached to a car, and thus further distancing away from the
UAV in order to measure the variation of RSSI and SINR values according to distance
and to the LoRa mode in which the gateway was configured.

Figure 5 displays the path taken by the car for all measurements campaigns. The
journey encompassed a travelling distance of around 2.9 km, sprawling from UFPA’s bus
garage (in red) all the way to CEAMAZON (in green). The path chosen is painted in blue,
and the position of the drone, fixed in all campaigns, is represented as a purple circle in
the picture. Often, measurements would be halted exactly halfway in order to exchange
the drone’s battery packs, and then resume normally. A photo showing the Rx antenna
attached to the car and the utilized drone in mid-air is represented in 6. Notice that there
is a blue 3D-printed module on the back of the drone, made to attach it to the LoRa
gateway.

SF values of 8, 9, 10 and 11 were selected, as well as heights of 6 meters, 24 meters,
42 meters and 60 meters above ground. This amounts for a total of 16 measurement
journeys, and a total of 2824 points measured.

For the estimation of a path loss model for the measured data obtained, the log-
distance path loss model has been used (abbreviated to LDPL, in this dissertation). In
the work in (CHALL; LAHOUD; HELOU, 2019), they have used some of the different

Figura 5: Path taken in all measurement campaigns, at UFPA

Source: Google Earth, Author
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Figura 6: Setup showing the receiving antenna, and drone with LoRa gateway

Source: Author

path loss models to compare which would best fit their measured results - the log-distance
one being a part of them.

The equations, thus, have been derived from both measured data and the classic
LDPL model. Its general equations go as follows:

𝐿𝐿𝑃 𝐷𝐿 = 𝐿0 + 10𝑛𝑙𝑜𝑔( 𝑑

𝑑0
) + 𝑋, (5.11)

𝑃𝑟𝐿𝑃 𝐷𝐿 = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 − 𝐿𝐿𝑃 𝐷𝐿, (5.12)

in which 𝑑0 is the reference distance,𝐿0 is the path loss in the reference distance,
n is the path loss exponent (PLE), d is the distance or length of the path, 𝑃𝑟𝐿𝑃 𝐷𝐿 is an
estimate of the received power with zero antenna gains and X is a normal random variable
with mean equaling to zero, which is supposed to emulate the fading effects of signal loss.

From (GOLDSMITH, 2005), values for signal amplitude and, therefore, inference
of the proper path loss model used to approximate modeled results to measured ones are
then transcribed into (5.13) and (5.14):

𝐴 = 10𝑙𝑜𝑔
𝑑

𝑑𝑜
, (5.13)

𝑛 = 𝐴∖(−𝑅𝑆𝑆𝐼(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) + 𝐿0), (5.14)
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in which A is a distance to reference distance ratio for log-distance and free space
models, that is to be inputted into the path loss equation. Given that these calculations
need to be input in vector or matrix form in MATLAB, there is in (5.14) a matrix left di-
vision symbol, which is necessary to yield the correct results. Furthermore, 𝑅𝑆𝑆𝐼(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

is the vector of received power values, or RSSI, featured in the measured data. Hence, the
path loss exponent is estimated.

Next, for the calculation of the standard deviation 𝜎 to be utilized in random
variable X, the mean square error between measured results and calculated ones must be
employed. So, the equation goes as the following:

𝑀𝑆𝐸 =
∑︀𝑁𝑑𝑎𝑡𝑎

𝑛=1 (𝑅𝑆𝑆𝐼(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) − 𝑝)2

𝑁𝑑𝑎𝑡𝑎

; , 𝜎 =
√

𝑀𝑆𝐸 (5.15)

where p is the calculated result of RSSI as in (5.12) but without the random
variable included. And since MSE is a variance that is considered to be unbiased, it is
enough to take its square root to discover the standard deviation.

Since there are different RSSI and distance values than expected in theoretical
calculation, in every set of SF values, path loss exponents may differ for every SF mode.
Thus, both figures 7 and 8 represent the log-distance model proposed. As for figure 7, it
represents the model for only values in SF 10, as it is the value chosen to be utilized in
the simulation, whereas 8 displays a calculation over measured data of all SF values.

In Table 2, values of path loss exponent, standard deviation, reference loss and
distance found for each SF are discoursed. Reference values have been found by looking
for the minimum RSSI value between measured data, for each SF, and annotating its
distance. For all SF, reference values are an average of the reference values between all
SF. Notice that the high values of PLE of around 4 match empirical observations for
outdoor environments with many NLoS losses, as is the case for densely forested areas
and not for suburban ambiances, as the model suggested by (MOZAFFARI et al., 2015)
utilizes.

Tabela 2: Values for the LoRa-LDPL model

Mode PLE 𝜎 Reference Distance (m) Reference Loss (dB)
SF 11 4.3 11.75 95.04 77
SF 10 4.63 11.82 94.06 76
SF 9 3.88 13.27 91.51 80
SF 8 4.77 11.26 119.57 75

All SF 4.37 11.8 95.04 77
Source: Author

The curve fitting with values of Table 2 produces, therefore, satisfactory results
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Figura 7: Log-distance model for SF 10, expressed in RSSI

Source: Author

that follow the slope of measured data, but with a visible flaw: values for greater distances
in measured data all around seem to have smaller variance to calculated results. This opens
up possibilities for the enhancement of this model in the future, in order to create more
accurate modeling.

Lastly, since the SINR is an equation that is independent of any path loss model,
(5.9) is still applied in this case.

5.3 Structure of the Algorithms
In this section, it is discussed the specific implementations of the three algorithms

for each of the three applications. Given that each of the three distinct simulations (Wi-Fi,
LoRa, empirical LoRa) possesses different details, variables and constants, it is important
to separate the codes into their specific parts. As said previously, the same association
function is employed for all three bioinspired algorithms. Thus, only one pseudocode per
application (Wi-Fi, LoRa, empirical LoRa) is enough to represent the process - it is enough
in the pseudocodes to add a line that represents the choice of the bioinspired technique
by the code’s user.

There is but one simple, single-variable objective to be optimized in all applications
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Figura 8: Log-distance model for all SF, expressed in RSSI

Source: Author

and algorithm implementations, which is the coverage area of drones. Given that the
measurements of SINR are fundamental to the signal quality of connection between base-
station and user - or gateway and sensors, as is the case for LoRaWAN - it is safe to
assume as a standard for all objective functions in this study that the algorithms must
always strive for SINR > 0. That is, a drone-array in the optimizations will only recognize
a user is connected to it if the corresponding SINR measurement, for any of the drones
within the array, is greater than the noise floor and the UAV-to-UAV interference.

Therefore, the number of users connected to the UAV array (𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑) is bound by
the user’s SINR values through a conditional statement. The algorithm of user association
via SINR, represented in 4, is to be appended to all simulations.



Capítulo 5. Project Methodology 32

Algoritmo 4 SINR User Association
for Number of users in the optimization’s boundaries do

Obtain SINR values from all drones for the iterated user
Compare which drone provides the best SINR
Take and store maximum found SINR value as 𝑆𝐼𝑁𝑅𝑚𝑎𝑥

if 𝑆𝐼𝑁𝑅𝑚𝑎𝑥 > 0 then
Recognize user as connected to the drone-array
Add one more user to number of connected users: 𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

end if
end for

In light of this, the objective function is given in (5.16) as the difference between
the number of total users and the number of connected users in the system. Therefore
the objective function represents the number of disconnected users in the optimization,
which ideally must be approximated to zero.

𝑍(𝑆𝐼𝑁𝑅) = 𝑁𝑢𝑠𝑒𝑟𝑠 − 𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑆𝐼𝑁𝑅), (5.16)

But in order to obtain the values for this function, we must compute the raw input
variables of the positioning of drones until we can obtain SINR values through them.

The input variable quantity is the number of drones in the simulation multiplied
by three. Each population iteration will present solutions for drone position data, just as
in (5.17):

𝑃𝑜𝑝𝑣𝑒𝑐𝑡𝑜𝑟 = [𝑥𝑈𝐴𝑉 1, 𝑦𝑈𝐴𝑉 1, ℎ𝑈𝐴𝑉 1, 𝑥𝑈𝐴𝑉 2, 𝑦𝑈𝐴𝑉 2, ℎ𝑈𝐴𝑉 2, ..., 𝑥𝑈𝐴𝑉 𝑛, 𝑦𝑈𝐴𝑉 𝑛, ℎ𝑈𝐴𝑉 𝑛], (5.17)

where [𝑥, 𝑦, ℎ] are values of the each drone in the simulated environment space.
That is, the greater amount of UAVs in the array there are, also greater is the number of
inputs - which increases computational cost and time.

Some general equations applied to all algorithms are adaptations to the trigonome-
trical properties d (distance from user to drone) and 𝜃 (elevation angle between user and
drone). In order to intertwine the propagation models with the optimization algorithms,
values of every population vector are then used to calculate adaptive values of R, d and
𝜃. This relation is given by equations (5.18), (5.19) and (5.20):

𝑅(𝑖,𝑗) = 𝑠𝑞𝑟𝑡(𝑥𝑈𝐴𝑉 𝑗 − 𝑥𝑖)2 + (𝑦𝑈𝐴𝑉 𝑗 − 𝑦𝑖)2, (5.18)

𝜃(𝑖,𝑗) = tanh ℎ𝑈𝐴𝑉 𝑗

𝑅𝑖,𝑗

, (5.19)
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𝑑(𝑖,𝑗) = 𝑠𝑞𝑟𝑡𝑅2
𝑖,𝑗 + ℎ2

𝑈𝐴𝑉 𝑗, (5.20)

which all imply that for all j-th drones and i-th users, the difference of their posi-
tioning is what creates the variables of distance in the xy-plane (R), total tridimensional
distance (d) and the elevation angle (𝜃). So, inside the simulation, an (i by j) matrix of
these variables is created in relation to every user (index i) and and every drone (index
j).

Therefore, by applying these (i by j) matrices in the calculation of path loss,
received power and SINR, one can reach the conditional statement elucidated in algorithm
4.

5.3.1 Algorithm for Wi-Fi Theoretical Model

The pseudocode of algorithm 5 takes the association function of algorithm 4 and
ties it to the calculation of the Wi-Fi theoretical model explained in Section 5.2.1.

Algoritmo 5 Wi-Fi specific UAV-to-User Association
Define the objective function as defined in (5.16)
Load the normally-distributed set of Users
Define the number of Users and space search bounds
Define number of UAVs 𝑁𝑈𝐴𝑉 as integer: 𝑁𝑈𝐴𝑉 = 𝑁𝑢𝑠𝑒𝑟𝑠

50

Execute one of the three bioinspired optimizations (CS, FPA, BA)

Begin association function:

Set constant values necessary to calculate equations (5.1) through (5.10) for Wi-Fi
frequency

for (i = 1:1:𝑁𝑢𝑠𝑒𝑟𝑠) and j = (1:1:𝑁𝑈𝐴𝑉 ) do
Calculate d and 𝜃 as specified in (5.20), (5.19)
Use d and 𝜃 to calculate path loss and received power
Take the matrix of received powers for all drones and users and calculate SINR

end for

Associate users to drone-array via SINR, as seen in 4

Calculate objective function and iterate the bioinspired algorithm

Post-processing and visualization of results (SINR, Fitness)
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5.3.2 Algorithm for Theoretical LoRa Model

The are not many issues that differ this implementation of the user-association and
bioinspired optimization from the one found in the Wi-Fi application. Main differences
attain to the loading constants and variables that are specific to LoRaWAN instead (e.g.
LoRa carrier frequency, bandwidth and noise floor), as well as the number of drones
utilized.

Since LoRa modules can only work with 8 simultaneous connections, a total cap of
8 users per drone must be fulfilled. So, the pseudocode for the theoretical LoRa simulation
is discoursed in algorithm 6

Algoritmo 6 Theoretical LoRa specific UAV-to-User Association
Define the objective function as defined in (5.16)
Load the normally-distributed set of Users
Define the number of Users and space search bounds
Define number of UAVs 𝑁𝑈𝐴𝑉 as integer: 𝑁𝑈𝐴𝑉 = 𝑁𝑢𝑠𝑒𝑟𝑠

8

Execute one of the three bioinspired optimizations (CS, FPA, BA)

Begin association function:

Set constant values necessary to calculate equations (5.1) through (5.10) for LoRa
frequency

for (i = 1:1:𝑁𝑢𝑠𝑒𝑟𝑠) and j = (1:1:𝑁𝑈𝐴𝑉 ) do
Calculate d and 𝜃 as specified in (5.20), (5.19)
Use d and 𝜃 to calculate values of (5.8) and (5.6)
Take the matrix of received powers from all drones and users and calculate SINR

end for

Associate users to drone-array via SINR, as seen in 4

Calculate objective function and iterate the bioinspired algorithm

Post-processing and visualization of results (SINR, Fitness)

5.3.3 Algorithm for the Empirical LoRa Model

Since there are adjustments to propagation characteristics in the empirically-
corrected LDPL for LoRa, the algorithm shall contain the equations related to this change.
Values of distance continue to be defined just as in (5.1), as they are not model-specific.
But the other equations must change in order to reflect the implementation of the new
model.
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Therefore, the pseudocode for this implementation of the simulation goes as fol-
lows:

Algoritmo 7 Empirical LoRa’s specific UAV-to-User Association
Define the objective function as defined in (5.16)
Load the normally-distributed set of Users
Define the number of Users and space search bounds
Define number of UAVs 𝑁𝑈𝐴𝑉 as integer: 𝑁𝑈𝐴𝑉 = 𝑁𝑢𝑠𝑒𝑟𝑠

8

Execute one of the three bioinspired optimizations (CS, FPA, BA)

Begin association function:

Set constant values necessary to calculate equations (5.11) and (5.12)

Load 𝜎, reference and PLE values for chosen SF

for (i = 1:1:𝑁𝑢𝑠𝑒𝑟𝑠) and j = (1:1:𝑁𝑈𝐴𝑉 ) do
Calculate d as specified in (5.20)
Use d, 𝜎 and PLE to calculate loss and received power
Take the matrix of received powers from all drones and users and calculate SINR

end for

Associate users to drone-array via SINR, as seen in 4

Calculate objective function and iterate the bioinspired algorithm

Post-processing and visualization of results (SINR, Fitness)

5.4 Final Considerations
In the methodology chapter, three main focus were considered:

• Explain the model proposed by (MOZAFFARI et al., 2015) which is to be used in
theoretical Wi-Fi and LoRa simulations;

• Define the specific values found by a log-distance path loss model proposed by the
author, which relates measured data to a propagation model to be used in an impro-
ved, empirically-corrected model for LoRa applications in forested environments;

• Lastly, elucidate how the optimization algorithms are structured and coded for the
simulations to occur.

The models have been expressed through numerous and thoroughly explained
equations. The theoretical drone modeling proposed by (MOZAFFARI et al., 2015) is
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robust and substantiated by many of his works. So, good accuracy is expected for Wi-Fi
simulations which use this model in this study, since his examples of applications follow
carrier frequencies very proximate to 2.4 GHz Wi-Fi. But his equations have yet to prove
themselves as the best in terms of lower frequency, sub-GHz LoRaWAN systems, and the
simulations herein are a way to test this.

Since the log-distance path loss model has been fitted into actual measured data
of LoRaWAN propagation, it should be expected to see this model provide best results -
even if by small margin.

Also, the simulation environments built in MATLAB provide sound coding for the
implementation of the bioinspired techniques and their adaptation to fit calculation of
the propagation models that they employ. The process to generate the objective function
is shown with caring detail in this Chapter.

In Chapter 6 ahead, results are shown for the simulations made and some compa-
rative statements between applications and bioinspired techniques are to be drawn.
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6 Results

6.1 Initial Considerations
In this chapter, results of the simulations discoursed through this entire disser-

tation shall be exposed. A brief explanation of the objective function settings are to be
discussed in Section 6.2, as well as some relevant, general information on the simulation
environment built in MATLAB.

There are, as previously informed in other chapters, three sets of simulation values
to be analyzed here. Each of them sprawl a number of users by normal distribution in a
user plane, and a number of drones defined automatically by the algorithm shall work to
maximize the area of coverage via their positioning, in order to attend to many users as
possible. The three cases to be analyzed here are: Wi-Fi system with theoretical drone
path loss formula, LoRaWAN system with theoretical drone path loss formula and a
LoRaWAN system with a measurement-corrected path loss formula.

All three of these cases shall be simulated by the three bioinspired algorithms
present in Chapter 4, that in return will execute three distinct sets of generated user data.
This is to evaluate both the strength of the bioinspired techniques and the flexibility of
the algorithm, as different sets of users require different UAV-array positioning and total
number of drones. This amounts to, therefore, 27 simulations.

So, in reference to Section 5.3, the objective function for all algorithms can be
defined as:

𝑍(𝑆𝐼𝑁𝑅) = 𝑁𝑢𝑠𝑒𝑟𝑠 − 𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑆𝐼𝑁𝑅), (6.1)

where the number of users present in the simulation in total is to be minimized
by the amount of users connected to the drone array. So, the closer to zero, the better
the positioning of UAVs will be. It is characterized as a single-objective system, that is,
it only presents one output variable.

In terms of statistical measuring, the relative error C of the objective function can
be calculated by the average of disconnected users in relation to the total of users:

𝐶 = 𝑍(𝑆𝐼𝑁𝑅)

𝑁𝑢𝑠𝑒𝑟𝑠

(6.2)
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Inputs for the positioning of drones behave just as explained in equations (5.20)
and (5.19), in Section 5.3. They are obligatory for the calculation of distance and elevation
angle, which in turn are used to obtain the received power and SINR. Since the output
depends on the SINR value, the objective function can be simplified to display itself like
in (6.1) with just one input.

It is worth noticing that all simulations consider only the drones within the array
as mobile. Users are kept to fixed locations, since the number of users is considerably
high and would imply in increased complexity for both simulational coding and results
analysis.

Also, all simulations have been held in MATLAB, on a computer with 16 GB
RAM and an AMD Ryzen© 3.6GHz 4-core CPU. Through trial and error to obtain best
results whilst still maintaining short computational time, 200 iterations and 25 solutions
per iteration has been selected for Wi-Fi and 500 iteration with 25 solution per iteration
has been chosen for both LoRa applications. Locking optimizers in a constant iteration
cap makes drawing comparisons between them easier. If the relative error between two
optimizers is equal, the best one is chosen by the lowest run time.

Compared to (FERREIRA et al., 2021), where SINR was not taken into account
for the drone simulation, its addition has significant weight on computational cost, but
also on the accuracy and production of more real-life results. UAV-to-UAV interference
is generally very considerable, even so in situations where received signal strength is
proximate to noise levels. This dissertation not only takes SINR into account but utilize
it as the input variable in optimization.

As for the structure of the chapter, Section 6.2 shall deal with the Wi-Fi appli-
cation, its drone positioning results for a varying set of number of users and drones in
the system; Section 6.3 displays the results of the LoRa system, in which the application
is capped at 8 users per gateway and the number of drones vary under that constraint;
finally, Section 6.4 denotes results for the formulas found at the empirical LoRa model
in Section 5.2.3 - variation of users in simulation is kept to the same number of users as
the simulation for the theoretical model, for comparison purposes. Section 6.6 present the
author’s final remarks for the chapter.

6.2 Theoretical Wi-Fi Simulation
Simulations on a Wi-Fi setting have been conducted on three different sets of

users, all of them generated by normal distribution MATLAB function randn and then
truncated to the search space bounds. So, the algorithms attempt to optimize sets of 150,
200 and 300 users. Given that many Wi-Fi gateways do not possess a maximum user
capacity, it is assumed a number of 50 users per drone.
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The lower and upper bounds of the search space have been set as a plane of 16
𝑘𝑚2 (or a 4x4 km surface) centered at (x, y) = (0, 0), as well as for drone heights between
100 and 400 meters.

Below, in Table 3, a list of relevant variables and constants that define the opti-
mizations for Wi-Fi simulation are found.

Tabela 3: Variables and Constants of the Optimizations - Wi-Fi

Parameters Values
Lower bounds (x, y and h) (m) [-2000; -2000; 100]
Upper bounds (x, y and h) (m) [2000; 2000; 400]

Number of iterations 200
Solutions per iterations 25

𝑁𝑢𝑠𝑒𝑟𝑠 [150; 200; 300]
𝑁𝑈𝐴𝑉 [3; 4; 6]

Switch Probability p (FPA) 0.3
Transmitted Frequency 2.4 GHz

Bandwidth 20 MHz
𝛼 9.6
𝛽 0.28

𝜁𝐿𝑂𝑆 1 dB
𝜁𝑁𝐿𝑂𝑆 20 dB

𝑁 (20 MHz bandwidth) -101 dBm
𝐺𝑡 and 𝐺𝑟 0 dB

Transmitted Power (all UAVs) 20 dBm
Source: Author

It can be seen that transmitted power has been kept at 20 dBm, which is a common
full-power transmitting value for Wi-Fi wireless modems and antennas. 𝛼 and 𝛽 are chosen
to reflect suburban, lightly-forested areas, and are the most readily found constant values,
so the simulation is run on them.

6.2.1 Wi-Fi Fitness and Propagation Results

The fitness evaluation of all algorithms, divided by user sets are present in Figure
9. Notice that better fitness results are expressed when there are more drones covering
the area.
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Figura 9: Fitness evaluations for (a) 150-user, 3-drone set; (b) 200-user, 4-drone set; (c)
300-user, 6-drone set

(a)

(b)



Capítulo 6. Results 41

(c)

Source: Author

Since there are less UAV in less-populated search spaces, it is expected that the
coverage area should be smaller, and thus, users connected to the array may take a hit.

Visual representations of drone positioning and SINR values for the 150-user set is
seen as in Figure 10. Notice that users scattered throughout the user plane are represented
in black dots, and their values may surpass the search space by a little - this is due to
normal distribution not exactly having a limit on the values it may generate, but truncated
normal distribution generation makes results become more proximate to the search space.
The exact position of UAVs are represented by red dots. This coloring pattern is made
standard in all SINR plots in this study.

For the SINR and positioning of UAVs in a 200-user, 4-drone set, results are shown
in Figure 11.

And finally, the estimated values for SINR and UAV-array positioning in a 300-
user, 6-drone set, results are seen in Figure 12.

In light of all obtained results, Table 4 denotes the error of the best fitness values
for every algorithm and all user sets, the relative error C, and average time consumption
in the simulation.

It is noticeable the amount of time consumption as more input variables are neces-
sary to run the code. For instance, the time required to run 200 iterations of the cuckoo
search for 150 users is little more than one and a half minute, but for 300 users it is around
6 minutes.

For reference, and according to values in Table 4, the best positioning solutions
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Tabela 4: Best Fitness Outputs (Wi-Fi)

User Set Algorithm Best Fitness C Run Time (s)
𝑁𝑢𝑠𝑒𝑟𝑠 = 150 CS 21 14% 103.55
𝑁𝑢𝑠𝑒𝑟𝑠 = 200 CS 1 0.5% 159.899
𝑁𝑢𝑠𝑒𝑟𝑠 = 300 CS 0 0% 356.992
𝑁𝑢𝑠𝑒𝑟𝑠 = 150 FPA 21 14% 80.072
𝑁𝑢𝑠𝑒𝑟𝑠 = 200 FPA 2 1% 109.936
𝑁𝑢𝑠𝑒𝑟𝑠 = 300 FPA 0 0% 211.832
𝑁𝑢𝑠𝑒𝑟𝑠 = 150 BA 42 28% 55.56
𝑁𝑢𝑠𝑒𝑟𝑠 = 200 BA 12 6% 84.981
𝑁𝑢𝑠𝑒𝑟𝑠 = 300 BA 3 1.5% 188.436

Source: Author

for each user set will be exposed below:

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 150, the best optimizer is FPA. Best Solution (x, y, h) in meters:
[-715.26, -1179.91, 392.68; 1297.54, -231.29, 399.99; -113.12, 986.49, 400]

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 200, the best optimizer is CS. Best Solution (x, y, h) in meters: [3354.87,
1327.17, 397.58; 1408.97, -960.34, 399.98; -1740.58, 1934.03, 400; -1480.73, -1033.5,
400]

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 300, the best optimizer is FPA. Best Solution (x, y, h) in meters:
[-802.5, -1997.82, 400; 1018.64, 2000, 343.10; 1698.77, 926.86, 400; -822.28, 403.53,
399.99; 1835.55, -1879.63, 386.97; -1987.67, 1325.7, 395.45]
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Figura 10: Drone positioning based on SINR values (see colorbar) for 150 users: (a) CS,
(b) FPA and (c) BA

(a)

(b)

(c)

Source: Author
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Figura 11: Drone positioning based on SINR values (see colorbar) for 200 users: (a) CS,
(b) FPA and (c) BA

(a)

(b)

(c)

Source: Author
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Figura 12: Drone positioning based on SINR values (see colorbar) for 300 users: (a) CS,
(b) FPA and (c) BA

(a)

(b)

(c)

Source: Author



Capítulo 6. Results 46

6.3 Theoretical LoRa Simulation
For the LoRa setting utilizing the equations specified in Section 5.2.1, and sug-

gested by (MOZAFFARI et al., 2015), the three sets of network users 𝑁𝑢𝑠𝑒𝑟𝑠 = [24; 40;
56] are to be utilized, resulting in 𝑁𝑈𝐴𝑉 = [3; 5; 7], because the reference LoRa gateways
chosen only support 8 consecutive users.

Users in LoRaWAN are the representation of sensors and/or other IoT devices
that might be connected to its LPWAN network, be it mobile or fixed. This is why it is
important to have an adaptive drone-array system to deal with such flexible traffic and
movement of users.

Given that LoRa coverage area is considerably greater than what Wi-Fi can pro-
duce, the lower and upper bounds of the search space have been set as a plane of 256 𝑘𝑚2

(that is, 16x16 km) centered at (x, y) = (0, 0). This is a giant increase in coverage area
compared to Wi-Fi, however, LoRa systems can keep connections up to a range between
2 km and 12 km depending on its SF. Given that the SF = 10 has been chosen for simula-
tional purposes, it is safe to assume that the noise floor value should reflect the sensitivity
of SF = 10 - which then would result in q = –132 dBm.

In Table 5, a list of relevant variables and constants that define the optimizations
for the simulations of LoRaWAN are found.

Tabela 5: Variables and Constants of the Optimizations - Classic LoRa

Parameters Values
Lower bounds (x, y and h) (m) [-8000; -8000; 6]
Upper bounds (x, y and h) (m) [8000; 8000; 60]

Number of iterations 500
Solutions per iterations 25

𝑁𝑢𝑠𝑒𝑟𝑠 [24; 40; 56]
𝑁𝑈𝐴𝑉 [3; 5; 7]

Switch Probability p (FPA) 0.3
Transmitted Frequency 915 MHz

Bandwidth 125 kHz
𝛼 9.6
𝛽 0.28

𝜁𝐿𝑂𝑆 1 dB
𝜁𝑁𝐿𝑂𝑆 20 dB

𝑞 (SF = 10) –132 dBm
𝐺𝑡 and 𝐺𝑟 0 dB

Transmitted Power (all UAVs) 20 dBm
Source: Author
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Drone heights have been set to between 6 to 60 meters, in order to correlate with
data measured at the measurement campaigns (with set heights of [6; 24; 42; 60]).

The transmitted power has been kept to around 20 dBm, as many LoRa gateways
can support this output to Tx antennas. For instance (SEMTECH, 2019b; SEMTECH,
2022) are a LoRa transceiver and a LoRa gateway, respectively, that can generate up to
22 dBm of Tx output. Propagation constants, therefore, have been kept equal to the ones
in Wi-Fi simulation.

6.3.1 Theoretical LoRa Fitness and Propagation Results

The fitness evaluation of all algorithms, divided by user sets are present in Figure
9.

Figura 13: Fitness evaluations for (a) 24-user, 3-drone set; (b) 40-user, 5-drone set; (c)
56-user, 7-drone set

(a)
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(b)

(c)

Source: Author

Visual representations of drone positioning and SINR values for the 24-user set is
seen as in Figure 14.

For the SINR and positioning of UAVs in a 40-user, 5-drone set, results are shown
in Figure 15.

And finally, the estimated values for SINR and UAV-array positioning in a 56-user,
7-drone set, results are seen in Figure 16.

Contrary as to what is observed in Wi-Fi simulations, in which peak SINR values
are ever present in near distances but fade away quicker in far distances, LoRa propagation
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proves to possess a great range with lower high-SINR coverage in the near distances - but
that preserves signal range throughout a much longer distance.

According to SF 10 range values given by LoRaWAN and Semtech themselves,
each drone should be able to reach coverage areas of up to 8 km in diameter, which the
UAVs in the pictures approximately represent.

Table 6 denotes the error of the best fitness values for every algorithm and all user
sets, the relative error C, and average time cost of the simulation.

Tabela 6: Best Fitness Outputs (LoRa)

User Set Algorithm Best Fitness C Run Time (s)
𝑁𝑢𝑠𝑒𝑟𝑠 = 24 CS 13 54.17% 92.62
𝑁𝑢𝑠𝑒𝑟𝑠 = 40 CS 10 25% 114.146
𝑁𝑢𝑠𝑒𝑟𝑠 = 56 CS 14 25% 125.607
𝑁𝑢𝑠𝑒𝑟𝑠 = 24 FPA 13 54.17% 108.43
𝑁𝑢𝑠𝑒𝑟𝑠 = 40 FPA 14 35% 180.136
𝑁𝑢𝑠𝑒𝑟𝑠 = 56 FPA 16 28.57% 187.48
𝑁𝑢𝑠𝑒𝑟𝑠 = 24 BA 14 58.3% 60.189
𝑁𝑢𝑠𝑒𝑟𝑠 = 40 BA 18 45% 63.203
𝑁𝑢𝑠𝑒𝑟𝑠 = 56 BA 24 42.85% 71.417

Source: Author

It is enough to see that these values are not satisfactory, and that in its limit
of 200 iterations, this theoretical formula of LoRa falls short. Increasing the number of
iterations may yield better fitness values, but this is of no use since the values found for
the corrected LoRa model, in Section 6.4, converge faster and to better solutions.

For reference, and according to values in Table 6, the best positioning solutions
for each user set will be exposed below:

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 24, the best optimizer is CS. Best Solution (x, y, h) in meters: [4409.54,
4089.43, 54.67; -265.7, 3969.24, 42.37; 3193.43, -2985.31, 55.87];

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 40, the best optimizer is CS. Best Solution (x, y, h) in meters: [-5729.37,
-2648.03, 7.05; 330.82, -1233.81, 6.35; 1400.12, 2342.55, 52.58; 637.72, -3963.64, 5.68;
-3125.61, 2087.21, 6];

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 56, the best optimizer is CS. Best Solution (x, y, h) in meters: [5477.3,
-1463.32, 59; 1758.64, 1025.32, 58.21; -3726.87, -4968.69, 6; 1165.32, -1644.07, 9.04;
2221.12, -5488.63, 43.33; -3732.71, 1193.68, 6; -677.55, 7702.87, 6].
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Figura 14: Drone positioning based on SINR values (see colorbar) for 24 users: (a) CS,
(b) FPA and (c) BA

(a)

(b)
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(c)

Source: Author

(b)
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Figura 15: Drone positioning based on SINR values (see colorbar) for 40 users: (a) CS,
(b) FPA and (c) BA

(a)

(c)

Source: Author
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Figura 16: Drone positioning based on SINR values (see colorbar) for 56 users: (a) CS,
(b) FPA and (c) BA

(a)

(b)
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(c)

Source: Author

6.4 Empirically-Corrected LoRa Simulation
In this application of the simulation, many constant values for LoRa optimization

seen in the last section are kept the same. The same values of height, search space bound
area, and other details that build the boundaries of the optimization environment are
equal to what is implemented in the theoretical LoRa optimization. The main difference,
of course, is in the empirically-corrected propagation model that complements the LoRa
optimization, putting into evidence the findings and mathematical modelings made in
Section 5.2.3. The objective here is to keep as much proportionality between both types
of LoRa optimization, in order to address if the LoRa propagation system with empirical
adjustments can produce better results than the theoretical UAV equations.

In Table 7, a list of relevant variables and constants that define the optimizations
for the simulations is compiled.
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Tabela 7: Variables and Constants of the Optimizations - Empirical LoRa

Parameters Values
Lower bounds (x, y and h) (m) [-8000; -8000; 6]
Upper bounds (x, y and h) (m) [8000; 8000; 60]

Number of iterations 500
Solutions per iterations 25

𝑁𝑢𝑠𝑒𝑟𝑠 [24; 40; 56]
𝑁𝑈𝐴𝑉 [3; 5; 7]

Switch Probability p (FPA) 0.3
Transmitted Frequency 915 MHz

Bandwidth 125 KHz
𝜎 (SF10) 11.824

Path Loss Exponent (n) 4.6293
Reference Distance 94.06 m

Reference Path Loss -76 dB
𝜁𝐿𝑂𝑆 1 dB

𝜁𝑁𝐿𝑂𝑆 20 dB
𝑞 (SF = 10) –132 dB
𝐺𝑡 and 𝐺𝑟 0 dB

Transmitted Power (all UAVs) 20 dBm
Source: Author

The standard deviation, path loss exponent and reference values are chosen for the
LDPL modeling for the curve of SF 10 measurements (see Table 2), and thus these are
the ones utilized for this implementation of simulations.

6.4.1 Empirically-Corrected LoRa Fitness and Propagation Results

The fitness evaluation of all algorithms, divided by user sets are present in Figure
17.
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Figura 17: Fitness evaluations of Empirically-Corrected LoRa for (a) 24-user, 3-drone set;
(b) 40-user, 5-drone set; (c) 56-user, 7-drone set

(a)

(b)
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(c)

Source: Author

Visual representations of drone positioning and SINR values for the 24-user set is
seen as in Figure 18.

For the SINR and positioning of UAVs in a 40-user, 5-drone set, results are shown
in Figure 19.

Lastly, the estimated values for SINR and UAV-array positioning in a 56-user,
7-drone set, results are seen in Figure 20.

Table 8 denotes the error of the best fitness values for every algorithm and all user
sets, the relative error C, and elapsed times of the simulations.

Tabela 8: Best Fitness Outputs (Empirically-Corrected LoRa)

User Set Algorithm Best Fitness C Run Time (s)
𝑁𝑢𝑠𝑒𝑟𝑠 = 24 CS 12 50% 105.251
𝑁𝑢𝑠𝑒𝑟𝑠 = 40 CS 8 20% 111.262
𝑁𝑢𝑠𝑒𝑟𝑠 = 56 CS 10 17.85% 125.328
𝑁𝑢𝑠𝑒𝑟𝑠 = 24 FPA 12 50% 176.698
𝑁𝑢𝑠𝑒𝑟𝑠 = 40 FPA 9 22.5% 181.652
𝑁𝑢𝑠𝑒𝑟𝑠 = 56 FPA 11 19.64% 190.963
𝑁𝑢𝑠𝑒𝑟𝑠 = 24 BA 13 41.6% 54.815
𝑁𝑢𝑠𝑒𝑟𝑠 = 40 BA 16 40% 56.540
𝑁𝑢𝑠𝑒𝑟𝑠 = 56 BA 23 41.07% 64.041

Source: Author
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For reference, and according to values in Table 8, the best positioning solutions
for each user set will be exposed below:

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 24, the best optimizer is CS. Best Solution (x, y, h) in meters: [3299.09,
-3055.51, 6; 3371.48, 4147.71, 18.15; -2533.08, 2906.48, 6];

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 40, the best optimizer is CS. Best Solution (x, y, h) in meters: [-
6678.2, -2181.07, 6; -2559.31, 2167.2, 6; 776.65, -558.94, 15.17; 5846.74, -4900.88,
59.95; 2964.94, 4613.36, 6];

• For 𝑁𝑢𝑠𝑒𝑟𝑠 = 56, the best optimizer is CS. Best Solution (x, y, h) in meters: [-4377.95,
1046.65, 6; 1315.09, 1121.75, 6.8; -3988.44, -4820.87, 51.85; -4276.23, 7987.71, 59.36;
2781.01, -2518.95, 59.94; 3364, -7030.14, 6.2; 7701.87, -2431.09, 55.98].
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Figura 18: Drone positioning based on SINR values (see colorbar) for 24 users: (a) CS,
(b) FPA and (c) BA

(a)

(b)
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(c)

Source: Author
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Figura 19: Drone positioning based on SINR values (see colorbar) for 40 users: (a) CS,
(b) FPA and (c) BA

(a)

(b)
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(c)

Source: Author

Figura 20: Drone positioning based on SINR values (see colorbar) for 56 users: (a) CS,
(b) FPA and (c) BA

(a)
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(c)

Source: Author

(b)

As it can be seen, contour lines do not differ greatly from the ones found in
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theoretical LoRa simulation. But the modeling does change, especially for the shorter
distances in which the LDPL predicts higher SINR values. However, analyzing the images
between both models, coverage area range shows little difference. And it is safe to conclude
that the empirical model helps optimization algorithms to find more precise solutions.

6.5 Final Considerations
In this results section, several theoretical simulations have been conducted in two

distinct search spaces (one for Wi-Fi, another for LoRa).

For all cases, it can be seen in the contour plots of SINR contained in this Chapter
that the algorithms described in Section 5.3 have built a solid basis for the simulations.
Drones tend to cluster into user-heavy areas and prefer those than going for hard-to-reach
users, since this could mean less connected users overall. It can be observed, also, that
they tend to not stay too close in order to avoid interference effects, being proximate only
if power and interference values are low between UAVs.

Wi-Fi propagation simulation is kept to a very low level of disconnection of users,
and results are satisfactory for 4 drones or more in the set search space. It is observed that,
as drone quantity increases in a certain area, also greater is the coverage area, allowing
for a user to connect to a more distant UAV base-station in case the one nearest to him
is deemed at full capacity. Therefore, upscaling the number of drones, even with UAV-to-
UAV interferences in mind and upscaling the number of users as well, is bound to produce
better area of coverage results almost always.

It is important to notice that the greater amount of users present in the Wi-Fi
simulations, compared to the LoRaWAN one, did impact significantly in running time of
the algorithms - in some instances taking more than 5 minutes to reach an optimal value.

As for LoRa simulations, SF 10 values have been chosen as they have been figured
to fit better into the simulational examples created in this study, as well as in its search
space boundaries.

Comparing the results in Table 8 with Table 6, there is a glaring difference in
the relative error of the results, as well as some time gain, all in favor of the empirically-
corrected LoRa. It is safe to assume that, for all comparative simulations herein presented,
that the empirical LoRa model produces better, more accurate results. Time cost for 500
iterations seems to tie across the board, with no propagation model being heavier than
the other.

Also, around all simulations, the best optimized results all favor the cuckoo search
algorithm, with flower pollination being a close second - sometimes matching the fitness
provided by CS but losing on time cost. The bat algorithm did not produce the best
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results in this kind of problem, however, it is lightweight and for the rare cases in which
it provides passable accuracy for much less computational time (see Wi-Fi results in 4, it
might be proven useful.
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7 Conclusion

In this dissertation, an extensive, simulation-heavy analysis and application of
drone-array optimization has taken place. This has been made possible by extensive co-
ding in MATLAB by the author, as well as much studying of not only optimizations via
bioinspired algorithms, but also of propagation models for UAV wireless communication
systems.

It is safe to presume that all objectives set in the introduction of this dissertation
have been concluded. The proposal of a simulational environment to determine optimal
positioning of drones in an array system in order to maximize a signal’s area of coverage
in MATLAB has been accomplished.

The objective of producing fast and accurate responses to the simulational pro-
blems proposed herein is achieved by the high computational speed of the bioinspired
algorithm techniques. The algorithms are swift, rapid forms of optimization that are me-
ant to be ported into an UAV micro-controller and used on-the-fly - or even by a remote
control station with greater computational power, for faster results. With only a few se-
conds to obtain an optimal result for Wi-Fi networks and a few minutes for LoRaWANs
it proves itself to be an adaptable method of optimally re-positioning drones to cover as
many users as possible with acceptable (or higher) signal values.

Also, the objective of finding a way to relate measured data of LoRa for forested
environments into a calculated model produces better results than purely theoretical,
simulational data, as noticed in the improvements between LoRa simulations in this work.

Compared to the conference paper made by the author, published in (FERREIRA
et al., 2021), where a raw version of said simulation environments was exposed, quality of
results and methodology behind the study has improved massively. This paper only pre-
sented Wi-Fi, theoretical data, and a slightly inaccurate distance equation that eschewed
results. Not only all of the flaws in the paper have been corrected, but its topics have been
expanded upon. The addition of LoRa simulation, an estimate of calculated LoRa values
via measured data, the crucial implementation of SINR and the enlargement of statistical
data by simulating various user sets to prove the adaptability of the codes – all of this
has been done in this dissertation.
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7.0.1 Future Prospects

However, there are many prospects of improvement in this work. For instance,
measured and calculated data in the empirically-corrected LoRa model still produced a
somewhat large standard deviation, which tends to scatter calculated results further when
on large distances. Finding a fix to this would, probably, improve the optimization process
even more.

User association to drones in the array may actually be improved as well. Since
the association method created and utilized in this dissertation only counts connection
by maximum SINR, there is no way to guarantee with total certainty that a LoRa drone-
array guided by the algorithms present herein shall connect up to exactly 8 users per
drone. So, the optimization techniques depend upon a third-party code or a native LoRa
support that can aid in these situations of "user overflow", or inability to connect due to
reaching the maximum capacity of a drone.

And to sum up to ideas of improvement, a way to better automatize transmitted
power values would be of interest to the literature. For instance, if the code is adapted
to minimize the necessary transmitted power, that would mean more battery saving for
UAVs, transmitters, transceivers and gateways. Energy efficiency to improve the air-time
of UAVs is an extensively studied topic throughout the literature, and this could be a
welcome addition.

One general manner in which the transmitted power can be optimized is by at-
taching it with some equation or mathematical condition as on output in the objective
function - but as of this moment the implementation necessary to accomplish this is
unknown to the author.

As prospects for the future, the author wishes to continue studying on the subject
of bioinspired optimization and finding ways to attach this optimization knowledge to
applications in dynamic networks such as the ones found in UAV arrays. The contents
of this dissertation shall be compiled into a journal paper, by will of the author and the
recommendation of his academic advisor.

7.0.2 Publications

Some of the publications which the author of this dissertation has penned or
participated as coauthor are listed below:

1. FERREIRA, F.H. et al. Tri-Band, Stable and Compact Patch Frequency Selective
Surface Optimized via Hybrid Bioinspired Computing for Applications at 2.4, 3.5
and 5.8 GHz. Journal of Microwaves, Optoelectronics and Electromagnetic Appli-
cations. To Be Published. Accepted: June 25th, 2021.
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2. FERREIRA, F.H. et al. Positioning Optimization of Base-Station Drone Arrays via
Bioinspired Computing Techniques. In: XI Conferência Nacional em Comunicações,
Redes e Segurança da Informação (ENCOM 2021), 2021, online.

3. ALCANTARA NETO, M. C. ; ARAUJO, J. P. L. ; BARROS, F. J. B. ; FERREIRA,
F. HENRY C. S. ; CASTRO, B. S. L. ; MOTA, R. J. S. ; CAVALCANTE, G. P. S.
. Design and Synthesis of an Ultra Wide Band FSS for mm-Wave Application via
General Regression Neural Network and Multiobjective Bat Algorithm. Journal of
Microwaves, Optoelectronics and Electromagnetic Applications, v. 18, p. 530-544,
2019.
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