Redes neurais convolucionais aplicadas à inspeção de componentes do vagão ferroviário

Carregando...
Imagem de Miniatura

Data

03-02-2020

Afiliação

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Tipo de acesso

Acesso Abertoaccess-logo

Agência de fomento

Contido em

Citar como

ROCHA, Rafael de Lima. Redes neurais convolucionais aplicadas à inspeção de componentes do vagão ferroviário. Orientador: Cleison Daniel Silva; Coorientadora: Ana Claudia da Silva Gomes. 2020. 78 f. Dissertação (Mestrado em Computação Aplicada) - Núcleo de Desenvolvimento Amazônico em Engenharia, Universidade Federal do Pará, Tucuruí, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/12790. Acesso em:.

DOI

O vagão ferroviário é um dos patrimônios mais importantes em uma empresa mineradora, onde toneladas de minério são transportados por este diariamente, além disso, o vagão ferroviário pode ser utilizado para o transporte de pessoas. Por isso, a inspeção de defeitos em componentes estruturais do vagão ferroviário é uma atividade de suma importância, possibilitando evitar problemas na logística da ferrovia, assim como prevenir acidentes. A tarefa de inspeção é realizada visualmente por um técnico operacional que está exposto a acidentes no local em que a inspeção é realizada, além da possibilidade de erro humano devido ao estresse, fadiga e outros. O pad é componente ferroviário analisado neste trabalho, onde este é responsável pela suspensão primária, papel que é importante na dinâmica dos vagões. Assim, o intuito deste trabalho é utilizar técnicas de aprendizado profundo, especificamente redes neurais convolucionais (CNN) para a realização da inspeção do componente. A CNN classifica a imagem do componente estrutural analisado em relação aos possíveis estados em que ele se encontra na ferrovia, pad ausente, pad não danificado e pad danificado. Além disso, pretende-se investigar a contribuição da imagem do componente no domínio da frequência obtida através da magnitude e fase da transformada discreta de Fourier (DFT) da imagem original (domínio espacial) no processo de classificação da CNN. As técnicas de equalização de histograma e o aumento do número de imagens através do data augmentation também são examinadas, de modo a avaliar suas colaborações na melhoria no desempenho de classificação. Os resultados da inspeção do pad por CNN demonstram-se bastante inspiradores, em especial quando é utilizada a imagem espacial do componente em conjunto da imagem da magnitude da DFT da imagem de origem como entradas da CNN, que se demonstram superiores quando é utilizada somente a imagem original (espacial) do componente, atingindo uma acurácia de classificação de 95,65%. Em especial, o método que utiliza o aumento do número de imagens de treinamento pelo data augmentation e as imagens do domínio espacial e da frequência (magnitude) é o que alcança a maior acurácia, com 97,47%, que representa aproximadamente 385,5 imagens classificadas corretamente de um total de 395,2 imagens.

browse.metadata.ispartofseries

Área de concentração

País

Brasil

Instituição(ões)

Universidade Federal do Pará

Sigla(s) da(s) Instituição(ões)

UFPA

item.page.isbn

Fonte

item.page.dc.location.country

Fonte URI

Disponível na internet via site: https://ppca.propesp.ufpa.br/index.php/br/teses-e-dissertacoes/dissertacoes