cese escempar consponde a manier final da tese defendida por Marilena Emmi Aranjo e aprovada pela Comissor Julgadora em 21.08.90. Hearcom

ESTUDO EXPERIMENTAL DO EXCESSO DA ENERGIA LIVRE

DE GIBBS DOS SISTEMAS CICLOHEXANO/2-BUTANOL E

N-HEXANO/2-BUTANOL ENTRE 323,15 E 348,15 K.

ではここがで Elisado Fearin**al** UNICAMP - Universidade Estadual de Campinas Faculdade de Engenharia Química

"ESTUDO EXPERIMENTAL DO EXCESSO DA ENERGIA LIVRE DE GIBBS DOS SISTEMAS CICLOHEXANO E N-HEXANO/2-BUTANOL ENTRE 323,15 E 348,15 K"

Autor: MARILENA EMMI ARAUJO 70

Tese submetida à comissão de Pós-Graduação da Faculdade de Engenharia Química - UNICAMP como parte dos requisitos necessários para a obtenção do grau de "MESTRE EM ENGENHARIA QUÍMICA"

Aprovado por :

reocor **************

Orientador : Prof. Dr. Artur Zaghini Francesconi 👘

Mr. K. S. Profa. Dra Maria Angela M. Petenate Prof. Dr. Sergio Persio Ravagnani

Campinas-SP-Brasil

21 de agosto de 1990

A minha avó Magdalena, com saudades

.

*

Agradeço

ao Professor Doutor Artur Zaghini Francesconi, pela dedicada e valiosa orientação

1

ao Departamento de Operações e Processos Químicos da Universidade Federal do Pará pelo apoio e oportunidade

a Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior pela oportunidade

a Roger Zemp pela colaboração dada no laboratório

a Ana Eleonora Almeida Paixão pela elaboração dos gráficos

a minha familia pela compreensão

ÍNDICE

PAGIN
RESUMO i
ABSTRACT ii
NOMENCLATURA iii
CAPÍTULO I - INTRODUÇÃO 01
CAPÍTULO II - REVISÃO BIBLIOGRÁFICA
CAPÍTULO III - FUNDAMENTOS TEÓRICOS
III.1 - Equilíbrio líquido/vapor
III.1.1 - Cálculo da fugacidade na
fase vapor
III.1.2 - Cálculo da fugacidade na
fase líquida
III.2 - Cálculo dos Coeficientes
Viriais
III.3 - Cálculo dos Volumes líquidos
molares
III.4 - Consistência Termodinâmica
III.4.1 - Teste da Área Global
III.4.2 - Teste de Fredenslund
CAPÍTULO IV - MODELOS PARA FASE LÍQUIDA 18
IV.1 - Introdução 18
IV.2 - Teoria Química
IV.3 - Teoria de Solução Associada
IV.4 - Teoria de Solução Associada
(Nath e Bender, 1981)

 $d_{\rm O}$

PÁGINA

	IV.4.1 - Determinação da constante	
	de associação	24
	IV.4.2 - Teoria de Solução Associada UNIQUAC:	27
	IV.4.2.1 - Equações para o modelo de Solução	
	Associada UNIQUAC	29
	IV.4.2.2 - Procedimento para o cálculo	
	$ d \Theta \gamma, \gamma \Theta g^E \dots \dots$	33
	IV.4.3 - Modificações para o Modelo de	
	Solução Associada	34
	IV.4.3.1 Modelo de Solução Associada	
	UNIQUAC com $K = 0$	34
	IV.4.3.2 - Modelo Flory/UNIFAC	35
CAPÍTULO	V - MÉTODO EXPERIMENTAL E APARELHAGEM	38
	V.1 - Princípio do Método Experimental	38
	V.2 - Descrição Geral da Aparelhagem	38
	V.2.1 - Ebuliômetro "FISCHER"	39
	V.2.1.1 - Funcionamento do Ebuliômetro	44
	V.2.1.2 - Roteiro Básico de uma Operação	
	Isotérmica	46
	V.3 - Medição da Pressão	46
	V.4 - Medição da Temperatura	46
	¥.5 - Determinação da Composição	47
CAPÍTULO	VI - TESTE DO EQUIPAMENTO	48
	VI.1 - Introdução	48
	VI.2 - Curvas de Pressão de Vapor	48
	VI.2.1 - Pressão de Vapor do Etanol	48
	VI.2.2 - Pressão de Vapor da Água	52

•

	VI.3 - Sistema Ciclohexano/Tolueno
	a 323,15 K [°] 55
	VI.4 - Conclusões sobre o teste do
	equipamento
	VI.5 - Análise das Incertezas e suas
	Propagações 58
CAPÍTULO	VII - EQUILÍBRIO LÍQUIDO/ VAPOR DOS SISTEMAS
	CICLOHEXANO(B)/2-BUTANOL(A) E
	N-HEXANO(B)/2-BUTANOL(A)
	VII.1 - Reagentes Utilizados
	VII.2 - Determinação das Composições 60
	VII.3 - Determinações Experimentais 61
CAPÍTULO	VIII - CORRELAÇÃO DOS DADOS E DISCUSSÃO
	VIII.1 - Correlação dos Dados
	VIII.1.1 - Resultados
	VIII.2 - Discussão dos Resultados
	VIII.2.1 - Resultados Experimentais
	VIII.2.2 - Resultados obtidos através
	dos ajustes
CAPÍTULO	IX - CONCLUSSES E SUGESTOES 87
REFERÊNCI	IAS BIBLIOGRAFICAS
TABELAS .	
APÊNDICE	Å
APÊNDICE	B 117
APENDICE	C 119
APENDICE	D 146
APÊNDICE	Ε

•

.

RESUMO

O objetivo principal deste trabalho foi a determinação experimental do excesso da energia livre de Gibbs de sistemas binários do tipo hidrocarboneto/álcool.

A seleção dos sistemas teve como critérios a expansão de informações experimentais sobre o excesso da energia livre de Gibbs e um estudo sistemático do comportamento do excesso da energia livre de Gibbs face à variação da temperatura e à modificação da cadeia do hidrocarboneto.

O excesso da energia livre de Gibbs foi determinado através de medidas isotérmicas do equilíbrio de fases líquido/vapor.

O equipamento utilizado para as determinações experimentais foi um ebuliômetro de recirculação das fases em equilíbrio de marca "FISCHER", que é uma versão comercial do ebuliôm<u>e</u> tro Stage - Müller (1961)

Com a finalidade de testar o desempenho do equipamento foram determinadas as curvas de pressão de vapor do etanol e da água. na faixa de 13 a 107 kPA, e os dados de equilíbrio líquido/vapor para o sistema ciclohexano/tolueno a 323,15 K. Os dados obtidos foram comparados com os da literatura.

Foram estudados os sistemas ciclohexano/2-butanol e n-hexano/2-butanol a 323,15 K, 338,15 K e 348,15 K. Todos os da dos experimentais foram testados quanto a consistência termodinămica.

Os dados experimentais do excesso da energia livre de Gibbs foram correlacionados através da teoria de solução associada UNIQUAC e através da equação UNIQUAC. Foram propostas duas modificações no modelo de solução associada UNIQUAC com a finalidade de diminuir o número de parâmetros ajustáveis.

ABSTRACT

The main purpose of this work was the experimental determination of the excess Gibbs free energy of binary systems of the hydrocarbon/alcohol type.

The criteria used for selection of the systems included the expansion of experimental information about the excess Gibbs free energy, and a systematic study of its behaviour with regard to temperature variation and modification in the hydrocarbon chain.

The excess Gibbs free energy was determined through isotermal measures of vapor/liquid phase equilibria.

A "FISCHER" recirculating still, which is a comercial version of the Stage-Muller recirculating still (1961), was used for collecting experimental data.

In order to test the performance of the equipament, the vapor pressure curves for ethanol and water in the range 13 to 107 kPa, and the vapor/liquid equilibrium data for the cyclohexane/toluene system at 323,15 K, were determined. The collected data were compared with literature results.

The systems, cyclohexane/2-butanol and n-hexane/ 2-butanol, were studied at 323,15, 338,15 and 348,15 K. All experimental data were tested with regard to thermodynamic consistency.

The excess Gibbs free energy experimental data were correlated through the UNIQUAC associated solution theory, and the UNIQUAC equation. In order to decrease the number of adjustable parameters, two modifications were proposed to the UNIQUAC associated solution theory.

a___ = parâmetro de interação de grupo da equação UNIFAC a, = coeficiente do polinômio de Legendre Ai = parâmetro da equação de Tsonopoulos para o componente i A_i = i-mero do componente que se associa Aij = parâmetro cruzado da equação de Tsonopoulos A1, A2 = áreas acima e abaixo do eixo das abcissas B = segundo coeficiente virial da solução, cm^3/mol Bi = parâmetro da equação de Tsonopoulos para o componente i But = segundo coeficiente virial para o componente i, cm^3/mol Bij = segundo coeficiente virial cruzado, cm²/mol Bij = parâmetro cruzado da equação de Tsonopoulos C i = concentração molar do i-mero na solução C_1 = concentração molar do monômero na solução D = desvio médio relativo $\overline{\mathbf{D}}$ = desvio médio fi = fugacidade do componente i na solução, atm f_i^c = fugacidade do componente i no estado padrão, atm f_{i}^{ext} = fugacidade do componente i no estado de saturação g^{E} = excesso da energia livre de Gibbs, J/mol s = energia livre de Gibbs de associação, J/mol h = entalpia de associação, J/mol h^{E} = entalpia de excesso, J/mol Δh^V = entalpia molar de vaporização J/mol K = constante de associação $K_{AB} = constante de solvatação$

 \mathbf{k}_{i} = constante característica da equação de Tsonopoulos m = massa do componente 1, g m_{1} = massa do componente 2, g n = número total de moles na solução ni = número de moles do componente i n = número de moles da espécie química, AiB P = pressão do sistema, kPa P_i^{sat} = pressão de saturação do componente i, atm Pci = pressão crítica do componente i, atm Pcij = pressão crítica cruzada, atm qi, q'i = parâmetros de estrutura molecular da equação UNIQUAC $Q_k = parâmetro de interação de grupo da equação UNIFAC$ R = constante universal dos gases, J/mol K ri = parâmetro de estrutura molecular da equação UNIQUAC s = entropia de associação T = temperatura do sistema, KTci = temperatura crítica do componente i, K Tcj = temperatura crítica do componente j, K Tcij = temperatura crítica cruzada, K Tri = temperatura reduzida do componente i Δu_{AB} , Δu_{BA} = parâmetros da equação UNIQUAC J/mol $\mathbf{v}^{\mathbf{E}}$ = volume excesso v_{1} = volume molar do componente A, cm²/mol $v_{r} = volume molar do componente B, cm³/mol$ $v_{AB} = volume molar da solução, cm³/mol$ v =volume do complexo AiB, cm²/mol vm = volume molar da mistura, cm^{*}/mol

 v_A^0 = volume molar do componente A puro presente como monômero ωi = fator acêntrico do componente i $x_i^{}$ = fração molar do componente i na fase líquida $X_m^{}$ = fração de grupo da equação UNIFAC $y_i^{}$ = fração molar do componente i na fase vapor Z = fator de compressibilidade z = número de coordenação da equação UNIQUAC

LETRAS GREGAS

 γ_i = coeficiente de atividade do componente i $\hat{\phi}_i^{\vee}$ = coeficiente de fugacidade do componente i na fase vapor ϕ_i^{scat} = coeficiente de fugacidade do componente i na saturação ϕ_{Ai} = fração volumétrica do i-mero do componente A Φ_i = fração de segmento da equação UNIQUAC ϕ_{Ai} = fração volumétrica do monômero A ϕ_{OB} = fração volumétrica do componente B μ_i = potencial químico do i-mero μ_i^* = potencial químico de um líquido puro contendo somente i-mero θ_i, θ_i^* = frações de área da equação UNIQUAC τ_{AB}, τ_{BA} = parâmetros da equação UNIQUAC

I NTRODUÇÃO

Termodinamicamente, os desvios em relação à idealidade de sistemas líquidos podem ser descritos pelas chamadas funções excesso, dentre elas o excesso da energia livre de Gibbs, g^{E} , a entalpia excesso, h^{E} e o volume excesso, v^{E} . O conhecimento experimental dessas funções, em particular do excesso da energia livre de Gibbs molar, g^{E} , é útil no projeto de equipamentos de separação (ex.destilação) usados na indústria química, e no desenvolvimento de teorias de solução, as quais tentam interrelacionar as grandezas termodinâmicas da solução com aquelas dos componentes puros; é também útil para a determinação de grandezas termodinâmicas de sistemas multicomponentes em função de parâmetros determinados a partir de dados binários dos componentes que os compõe.

Este trabalho visa dar continuidade ao programa de pesquisa de grandezas termodinâmicas de sistemas do tipo hidrocarboneto/álcool, iniciado por Maciel (1985), sobre o excesso da energia livre de Gibbs dos sistemas, n-hexano/1-propanol, n-hexano/2-propanol e n-hexano/1-butanol a 323,15 K, 338,15 K e 348,15 K.

Foram feitas medidas isotérmicas do excesso da energia livre de Gibbs para os sistemas ciclohexano/2-butanol e n-hexano/2-butanol a 323,15K, 338,15 K e 348,15 K. Através destas determinações experimentais e da modelagem para a fase líquida, foi analisado o comportamento dos sistemas face a modificações na cadeia do hidrocarboneto (alifático ou cíclico), a posição do grupo hidroxila e a temperatura.

Em consequência do grande interesse que despertam os sistemas alcoólicos por apresentarem interações específicas fortes, devido à presença de ligações de hidrogenio, foram desenvolvidas várias teorias para a modelagem desses sistemas, dentre elas podemos citar Renon e Prausnitz (1964) e Nagata foi utilizada a trabalho (1977). Neste Teoria de Solução UNIQUAC, Nagata (1979), que Associada fornece bons resultados para estes tipos de sistemas. É sugerida uma modificação no modelo com o objetivo de diminuir o número de parâmetros ajustáveis comumente utilizado na modelagem da fase liquida.

Quanto aos sistemas estudados neste trabalho, verificou-se a inexistência de publicações de dados de equilíbrio líquido/vapor e de dados do excesso da energia livre de Gibbs na faixa de temperatura e pressão estudada.

CAPÍTULO II

REVISÃO BIBLIOGRÁFICA

O estudo experimental de g^{E} para sistemas do tipo hidrocarboneto/álcool tem despertado a atenção de muitos grupos de pesquisa. lá que esses sistemas apresentam interações relativamente simples, representados por um componente "neutro" (hidrocarboneto) e um componente que se associa (álcool). Dentre esses trabalhos podem ser citados os seguintes sistemas estudados: 2,2,4-trimetilpentano, tolueno e ciclohexano em 1-butanol e n-heptano/etanol a 45°C (Ramalho e Delmas, 1968); benzeno em 2-metil-1-propanol, 2-butanol e 2-metil-2-propanol e n-hexano/1-propanol a 45 °C (Brown e colaboradores,1969);isomeros do n-hexano com isopentanol e n-pentanol a 25 °C (Sayegh e Ratcliff, 1976); n-hexano ,ciclohexano e benzeno em metanol, etanol e 1-propanol a 25 °C (Hwang e Robison, 1977>; n-hexano/1-butanol e n-hexano/2-metil-1-propanol a 332.53 K (Berro e colaboradores, 1982); n-heptano/1-butanol n-heptano/ 2-metil-1- propanol (Berro e Péneloux, 1984) a 333,15 K e 363,15 K; n-hexano em 1-propanol, 2-propanol e 1-butanol a 323,15 K 338,15 K e 348,15 K (Maciel, 1985).

Verifica-se nesses trabalhos que a análise do comportamento de g^{E} é desenvolvida utilizando os mais diferentes modelos para a fase liquida. Alguns estudos, como o de Wieczorek e

Stecki (1973), que propõem uma equação empírica para o coeficiente de atividade (γ i), baseada na teoria química. Porém, verifica-se uma série de estudos que envolvem a predição de g^E baseados no modelo de solução associada. Convém citar os trabalhos de Renon e Prausnitz (1967), que propõem um modelo de associação baseado na teoria de soluções poliméricas de Flory (1944), Nagata (1977), que aplicou o modelo de associação desenvolvido por Kretschemer e Wiebe (1954), a dados existentes na literatura e Ksiazczak e Buchowski (1984), que propõem a predição de g^E baseado no modelo de solução associada de Mecke e Kempter, calculado pelo método de Mullens e colaboradores (1971).

Neste trabalho foi utilizado o modelo de solução associada de Nath e Bender, o qual é baseado na teoria de solução associada UNIQUAC de Nagata e Kawamura (1979).

CAPÍTULO III

FUNDAMENTOS TEÓRICOS

O cálculo do excesso da energia livre de Gibbs molar é obtido através da seguinte equação :

$$\frac{\varepsilon^{E}}{RT} = \sum_{i} x_{i} \ln \gamma_{i}$$
(III.1)

onde γ_i = coeficiente de atividade,

R= constante universal dos gases, T= temperatura absoluta.

Através da equação (III.1) e da condição de equilíbrio líquido/vapor relaciona-se g^E com as variáveis T(temperatura), P(pressão), x(fração molar da fase líquida), y(fração molar da fase vapor) medidas experimentalmente.

III.1 - Equilibrio liquido/vapor

A condição de equilíbrio líquido/vapor de acordo com os critérios gerais de equilíbrio é dada por :

$$T^{V} = T^{L}$$

$$P^{V} = P^{L}$$

$$f_{i}^{V} = f_{i}^{L}$$
(III.1.1)

onde f_i^{v} fugacidade do componente i na fase vapor e f_i^{L} fugacidade do componente i na fase líquida.

III.1.1 - Cálculo da fugacidade na fase vapor

A fugacidade do componente i na fase vapor, f_i , está relacionada à fração molar da fase vapor, yi, e à pressão total através do coeficiente de fugacidade, $\hat{\phi}_i$:

$$\hat{\phi}_{i}^{V} = \frac{f_{i}}{y_{i}^{V} P}$$
(III.1.2)

O coeficiente de fugacidade, $\hat{\phi}$, _ié obtido utilizando a seguinte relação termodinâmica exata (Prausnitz e colaboradores, 1986) :

$$\ln \hat{\phi}_{i}^{\mathsf{V}} = \frac{1}{\mathrm{RT}} \int_{0}^{\mathrm{P}} \left[\left(\frac{\partial \mathrm{V}}{\partial n_{i}} \right)_{\mathrm{T},\mathrm{P},\mathrm{nj}} - \frac{\mathrm{RT}}{\mathrm{P}} \right] \mathrm{dP} \qquad \text{(III.1.3)}$$

onde $\left(\frac{\partial V}{\partial n_i}\right)$

$$\Big)_{T,P,nj} = \overline{v}_i$$
, volume parcial molar do componente i

Demonstra-se na literatura (Smith e Van Ness, 1980 e Prausnitz e colaboradores, 1986), que a partir da equação (III.1. 3), chega-se a :

$$\ln \hat{\phi}_{i}^{\vee} = \int_{0}^{P} (\overline{Z}_{i} - 1) \frac{dP}{P}$$
(III.1.4)
$$\operatorname{com} \overline{Z}_{i} = \left(\frac{\partial nZ}{\partial n_{i}}\right)_{T, P, n_{j}}$$

onde Z= fator de compressibilidade da solução gasosa,

n= número total de moles na solução,

ni e nj = número de moles dos componentes i e j, respectivamente.

Para o cálculo de $\hat{\phi}_i^{v}$ através da equação (III.1.4) necessita -se de uma equação de estado. A equação virial frequentemente é utilizada por apresentar um significado físico exáto para os seus parâmetros.

Na forma de série de potências de pressão a equação virial truncada após o segundo termo é dada por :

$$Z = 1 + \frac{B P}{R T}$$
(III.1.5)

onde B é o segundo coeficiente virial, o qual está relacionado com a composição da fase vapor atráves da equação :

$$B = \sum_{i} \sum_{j} (y_i | y_j | B_{ij})$$
(III.1.6)

onde B_{ij}é o segundo coeficiente virial cruzado caracterizando as interações bimoleculares entre i e j.

Substituindo na equação (III.1.2) as equações (III.1.4), (III.1.5) e (III.1.6), chega-se a :

 $\hat{f}_{i}^{\vee} = y_{i}^{P} \exp \left[\frac{P}{RT} (B_{ii} - \delta_{ij}^{P} y_{i}^{2})\right]$ (III.1.7) onde $\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj}$ III.1.2 - Cálculo da fugacidade na fase líquida

A fugacidade do componente i na fase líquida, \hat{f}_i^L , está relacionada a fração molar da fase líquida x_i , e a fugacidade de referência através do coeficiente de atividade, γ_i :

$$\hat{f}_{i}^{L}$$
 (T, P, x_{i}) = γ_{i} (T,P, x_{i}) x_{i} f_{i}^{o} (T,P^r) (III.1.8)

Verifica-se através da equação (III.1.8) que o coeficiente de atividade, γ_i (T, P, x_i) depende da refêrencia escolhida, a fugacidade do estado padrão, $f_i^{o^L}$ (T, P^r). Neste trabalho a referência a ser utilizada é a fugacidade do componente i puro f_i^o (T, P^r), na temperatura do sistema e a uma pressão de referên-P^r = 0.

O coeficiente de atividade é obtido através da seguinte expressão vinda do formalismo da termodinâmica :

$$\left(\frac{\partial \ln \gamma_{i}}{\partial P}\right)_{T,x} = \frac{\overline{v_{i}}^{L}}{RT} \qquad (III.1.9)$$

onde $\overline{v_i}^L$ = volume parcial molar do componente i na fase liquida

Integrando a equação (III.1.9) de $P^{T} = 0$ a P, obtém-se :

$$\gamma_i(T, P, x_i) = \gamma_i(T, P^T, x_i) \exp \int_0^P \frac{\overline{v_i}^L}{RT} dP$$
 (III.1.10)

Substituindo a equação (III.1.10) na equação (III.1.8) chega-se a :

$$\hat{f}_{i}^{L}(T,P,x_{i}) = x_{i} \gamma_{i} (T,P^{r},x_{i}) f_{i}^{0}(T,P^{r}) \exp \int_{0}^{P} \frac{\overline{v_{i}}^{L}}{RT} dp$$
(III.1.11)

O termo exponencial da equação (III.1.11) é conhecido por correção de Poynting, o qual corrige a compressão do líquido para pressões maiores que a de saturação.

A fugacidade do estado padrão, f_i^0 (T,P^r), é obtida através da seguinte relação (Smith e Van Ness, 1980):

$$\left(\frac{\partial \ln f_i^L}{\partial P}\right)_T = \frac{v_i^L}{RT} \qquad \text{(III.1.12)}$$

onde vi^L = volume molar do componente i puro

Integrando a equação (III.1.12) de Pi^{sot} a $P^r = 0$, obtém-se :

$$f_i^c(T,P^r) = f_i^{sat} (T,P_i^{sat}) \exp \int_{P_i^{sat}}^0 \frac{v_i^L}{RT} dP$$
 (III.1.13)

Considerando que na saturação as fugacidades das fases líquida e vapor se igualam, fi^{sat L} = fi^{sat v}, onde fi^{sat v} = ϕ i^{sat} Pi^{sat}, e substituindo na equação (III.1.13), chega-se a :

$$f_i^c(T,P^r) = \phi_i^{sat} P_i^{sat} exp \int_{P_i^{sat}}^{0} \frac{v_i^L}{RT} dP$$
 (III.1.14)

Substituindo a equação (III.1.14) na equação (III.1.11),

obtém-se :

$$\hat{f}_{i}^{L} (T,P,x_{i}) = x_{i} \gamma_{i} (T,P,r_{i}x_{i}) \phi_{i}^{sat} P_{i}^{sat} exp \left[\int_{p_{i}^{sat}}^{0} \frac{v_{i}^{L}}{RT} dP \right] .$$

$$exp \left[\int_{0}^{P} \frac{\overline{v_{i}}^{L}}{RT} dP \right] \qquad (III.1.15)$$

Considerando que, a pressões baixas, $\phi^{i^{out}} = 1$ e que a fase líquida é incompressivel, chega-se a :

$$\ln \gamma_{i} = \ln \left(\frac{y_{i} P}{x_{i} P_{i}^{sat}}\right) + \frac{(Bii-v_{i}^{L}) (P-P_{i}^{sat})}{R T} + \frac{P \delta_{ij} y_{j}^{2}}{R T}$$
(III.1.16)

As equações (III.1.16) e (III.1) relacionam g^E com os dados experimentais de equilíbrio líquido/vapor, T (temperatura) P(pressão), x(fração molar da fase liquída), y(fração molar da fase vapor).

III.2 - Cálculo dos Coeficientes Viriais

Para o cálculo dos coeficientes viriais utilizou-se a correlação de Tsonopoulos (1974), apresentada a seguir :

$$\frac{\text{Bii Pci}}{\text{R Tci}} = f^{(0)} + \omega i f^{(i)}(\text{Tri}) + f^{(2)}(\text{Tri}) \qquad \text{(III.2.1)}$$

onde

Bii = segundo coeficiente virial do componente i,
Pci = pressão crítica do componente i,
Tci = temperatura crítica do componente i,
R = constante universal dos gases,

ωi = fator acentrico do componente i,

Tri = temperatura reduzida do componente i (T/Tci).

$$f^{(0)} = 0,1445 - \frac{0,330}{\text{Tri}} - \frac{0,1385}{\text{Tri}^2} - \frac{0,0121}{\text{Tri}^3} \qquad (III.2.2)$$

$$f^{(1)} = 0,0637 + \frac{0,331}{Tri^2} - \frac{0,423}{Tri^9} - \frac{0,008}{Tri^8}$$
(III.2.3)

$$f^{(2)} = \frac{Ai}{Tri} - \frac{Bi}{Tri}^{B}$$
(III.2.4)

A função $f^{(2)}$ é utilizada no caso de componentes polares. Os valores de Ai e Bi (Tsonopoulus, 1974), para as substâncias utilizadas neste trabalho, encontram-se no Apêndice D.

Para o cálculo dos coeficientes viriais cruzados são utilizadas as seguintes equações :

$$\frac{\text{Bii Pcij}}{\text{R Tcij}} = f^{(0)}(\text{Trij}) + \omega_{ij} f^{(1)}(\text{Trij}) + f^{(2)}(\text{Trij})$$

(III.2.5)

onde

$$Tcij = (Tci, Tcj)^{0, 5}(1 - kij)$$
(III.2.6)

$$Pcij = \frac{4 Tcij (Pci Vci/Tci + Pcj Vcj/Tcj)}{(Vci + Vcj}$$
(III.2.7)

$$\omega_{ij} = 0,5 (\omega_{i} + \omega_{j})$$
(III.2.8)
kijmpanämet po capacter (stico da interacão entre os comp

kij=parāmetro característico da interação entre os componeni e j,

Vci, Vcj = volume crítico dos componentes i e j, respectivamente. Quando os componentes do sistema são hidrocarbonetos, o valor de kij é dado por:

$$k_{ij} = 1 - \frac{8 (V_{Ci} V_{Cj})^{0.5}}{\left(V_{Ci}^{4/9} + V_{C}^{4/9}\right)^{9}}$$
(III.2.9)

Para sistemas do tipo hidrocarboneto/álcool, kij assume o valor de 0,15 (Maciel, 1985).

Para sistemas do tipo polar/não polar, $f^{(2)}(Trij)$ é dado por $f^{(2)}(Trij) = 0$. Para sistemas do tipo polar/polar $f^{(2)}(Trij)$ é dado por:

$$f^{(2)}(Trij) = \frac{Aij}{Trij^6} - \frac{Bij}{Trij^8}$$
(III.2.10)

onde Aij =0,5(Ai + Aj) e Bij =0,5(Bi + Bj)

III.3 - Cálculo dos Volumes líquidos molares

Para o cálculo dos volumes líquidos molares utilizou-se a equação proposta por Racket (Prausnitz e colaboradores, 1980) :

vi^L = (R Tci Zri^{$$0^{i}$$})/ Pci (III.3.1)
 $o_{i} = 1 + (1 - Tri)^{0,286}$ para Tri $\leq 0,75$ (III.3.2)
 $o_{i} = 1,6 + 0,00693$ /(Tri - 0,655)
para Tri > 0,75 (III.3.3)

Os valores para o fator de compressibilidade reduzido (Zri), podem ser encontrados na referência acima citada.

III.4 - Consistência Termodinâmica

A termodinâmica apresenta relações exatas entre as variá veis T(temperatura), P(pressão), x_i (fração molar do componente mais volátil na fase líquida) e y_i (fração molar do componente mais volátil na fase vapor). A determinação experimental de dados de equilíbrio líquido/vapor é feita através das medidas dessas variáveis. Apesar de só serem necessários dados de duas variáveis dentre T,P, x_i , y_i (Regra das Fases de Gibbs), para se caracte rizar um sistema binário bifásico, com a medida das quatro variáveis pode-se testar a consistência termodinâmica destes dados,verificando se as medidas de laboratório satisfazem determinada relação escolhida. Neste trabalho serão utilizados os seguintes te<u>s</u> tes de consistência: Teste da Área Global e o Teste de de Fredenslund.

III.4.1 - Teste da Área Global (Redlich e Kister, 1948)

É obtido partindo da equação de Gibbs-Duhem (Smith e Van Ness, 1980), que para sistemas binários é dada por:

$$x_1 d \ln \gamma_1 + x_2 d \ln \gamma_2 = \frac{-h^E}{RT^2} dT + \frac{v^E}{RT} dP$$
 (III.4.1)

Para dados isotérmicos :

$$\frac{v^{E}}{RT} dP - x_{i} d\ln \gamma_{i} - x_{i} d\ln \gamma_{i} = 0 \qquad \text{(III.4.2)}$$

Considerando que o volume de mistura é muito pequeno quando comparado aos outros termos, pode-se desprezar o primeiro termo da equação (III.4.2). Integrando de $x_i = 0$ a $x_i = 1$, che ga-se a:

$$\int_{0}^{1} \ln\left(\frac{\gamma_{1}}{\gamma_{2}}\right) dx_{1} = 0 \qquad (III.4.3)$$

A equação (III.4.3) fornece o teste da área global. A partir do gráfico de ln (γ_i / γ_2) em função de x_i calcula-se a consistência dos dados, que para dados isotérmicos apresenta o seguinte critério de consistência (Prausnitz, 1969) :

$$D = \left| \frac{A_1 - A_2}{A_1 + A_2} \right| < 0.02$$
 (III.4.4)

onde

A1 = área acima do eixo x_1 A2 = área abaixo do eixo x_2

III.4.2 - Teste de Fredenslund (Fredenslund e Gmehling, 1977)

O teste foi desenvolvido a partir da seguinte relação:

$$P = \sum y_i P = \sum_i \frac{x_i \gamma_i f_i^o}{\hat{\phi}_i}$$
(III.4.5)

Para um sistema binário :

$$P = \frac{x_{i} \gamma_{i} f_{i}^{0}}{\hat{\phi}_{i}} + \frac{x_{2} \gamma_{2} f_{2}^{0}}{\hat{\phi}_{2}}$$
(III.4.6)

Tendo em vista que os coeficientes de atividade estão re lacionados entre si pela equação de Gibbs-Duhem, equação (III.4.1), o Teste de Fredenslund é obtido pela integração da seguinte equação:

$$P = x_{i} P_{i}^{sat} - \frac{\phi_{i}^{sat}}{\phi_{i}} \exp \left[g + x_{2} g' + \frac{v_{i}^{L} (P - P_{i}^{L})}{R T}\right] + x_{2} P_{2}^{sat} - \frac{\phi_{2}^{sat}}{\phi_{2}} \exp \left[g + x_{i} g' + \frac{v_{2}^{L} (P - P_{i}^{L})}{R T}\right]$$
(III.4.7)

A equação (III.4.7) é resolvida para g(x) e g'(x) onde,

- $g = \frac{g^{E}}{R T}$ (III.4.8)
- $g' = \left(\frac{dg}{dx_i}\right)_{0'}$ (III.4.9)

g = 0 para $x_i e x_2$ iguais a zero, σ significa ao longo da linha de saturação, ϕ_i^{sat} = coeficiente de fugacidade do componente i puro na saturação, ϕ_i = coeficiente de fugacidade do componente i na fase vapor.

Os coeficientes de atividade são obtidos a partir das equações:

$$\ln \gamma_i = g + \chi_2 g' \qquad (III.4.10)$$

$$\ln \gamma_2 = g - x_i g' \qquad (III.4.11)$$

A fração molar da fase vapor é calculada pela seguinte equação :

$$y_i(\text{calc.}) = \frac{x_i \gamma_i f_i^c}{P \hat{\phi}_i}$$

A função g(x) é representada pelo polinômio de Legen -

dre:

$$g = \frac{g^{E}}{R T} = x_{i} (1 - x_{i}) \sum_{k=0}^{k=n} a_{k} L_{k}(x_{i})$$
 (III.4.12)

onde

$$L_{k}(x_{i}) = \left[(2k - 1) (2x_{i} - 1) L_{k-i}(x_{i}) - (k - 1) L_{k-2}(x_{i}) \right]$$

$$k$$
(III.4.13)

Lo
$$(x_i) = 1$$

Li $(x_i) = 2x_i - 1$
k = 0, 1 n
n = grau do polinômio

Os coeficientes a são obtidos através de um ajuste do tipo mínimos quadrados, onde a soma das diferenças ao quadrado en

tre Pexperimental e Pcalculado é minimizada.

.

.

Este teste adota como critério de consistência :

$$\frac{\sum_{i=1}^{n} |y_i(cal) - y_i(exp)|}{n-2} < 0.01 \quad (III.4.14)$$

\$

CAPÍTULO IV

MODELOS PARA A FASE LÍQUIDA

IV.1 - Introdução

A teoria de soluções é um asunto bastante antigo e muito estudado, porém não é possível desenvolver uma teoria geral de soluções, devido ao pequeno conhecimento do comportamento molecular das soluções, o que leva as teorias desenvolvidas a fazerem considerações simplificadoras.

Várias teorias tentam explicar a não idealidade de soluções baseadas somente nas forças intermoleculares. A teoria de soluções apresentada neste trabalho é baseada nas forças intermoleculares e na teoria química de soluções.

Neste capítulo é apresentada uma revisão bibliográfica sobre a Teoria de Solução Associada e a Teoria de Solução Associada UNIQUAC (Nagata e Kawamura, 1979), utilizada por Nath e Bender (1981,I-II)a qual foi aplicada para correlacionar os dados experimentais obtidos neste trabalho. São sugeridas modificações no modelo com o objetivo de diminuir o número de parâmetros ajustáveis. IV.2 - Teoria Química

Na teoria química admite-se que as soluções são ideais, desde que se use nas equações do modelo concentrações moleculares e não aparentes. Essa teoria atribui toda a não idealidade observada à formação de novas espécies químicas na solução.

Distinguem-se dois tipos de reações:

- Associação, que se refere à formação de agregados químicos ou polímeros consistindo de monômeros idênticos. Pode ser representada pela reação do tipo :

 $n \land \longrightarrow \land An$

onde

A = monômero e

n = grau de associação

- Solvatação, que se refere à formação de agregados químicos de duas ou mais moléculas, das quais pelo menos duas não são idênticas. Pode ser representada por :

 $n A + m B \longrightarrow AnBm$

A grande desvantagem da teoria química está na arbitrariedade em decidir que espécies químicas "verdadeiras" estão presentes na solução e na impossibilidade de obter constantes de equilíbrio sem dados experimentais da solução. IV .3 - Teoria de Solução Associada

teoria de solução associada considera A que um componente da solução existe na forma de polímeros formados por sucessivas reações através de interações moleculares. O modelo de solução associada linear considera somente a formação de políme ros lineares para o componente que se associa. Num tratamento mais simplificado, conhecido como um modelo ideal de solução associada, todas interações moleculares as com exceção das ligações de hidrogênio saõ desprezadas. Este modelo pode ser diluí das boa aproximação para soluções de solutos uma moderadamente associados. No entanto, teorias mais gerais podem levar em consideração a influência de forças de dispersão outras interações moleculares mais fracas. Muitas variações da teoria de solução associada tem sido propostas, diferindo em termos do modelo de associação escolhido ou nas equações usadas para descrever o efeito das interações não específicas; podem ser Kretschmer e Wiebe (1954), Kehiaian (1967), Renon e citados : Prausnitz (1967), Wiehe e Bagley (1967), Bertrand (1975), Nagata e Kawamura (1977), Stokes (1977), Chen e Bagley (1978), Wieczorek e Stecki (1978) e Néau e Peneloux (1979).

As teorias de associação mais amplamente aceitas são baseadas no modelo do retículo para soluções poliméricas desenvolvidas por Flory (1944). Renon e Prausnitz (1967), juntos com Wiehe e Bagley (1967), foram os primeiros a aplicar esta teoria com sucesso em soluções binárias contendo álcool alifático e hidrocarboneto saturado, como também foram os primeiros a obter, baseados no modelo de Flory (1944), equações com uma parte química e uma parte física do excesso da energia livre de Gibbs para sistemas binários contendo um componente associado e um componente inerte, e aplicaram estas equações com sucesso no equilíbrio líquido/vapor. As constantes de associação, K_A , do álcool foram determinadas baseadas no equilíbrio de fases experimental e em dados de entalpia em excesso.

Nitta e Katayama (1973), Nagata (1973), Nagata (1977) e Chen e Bagley (1978), extenderam esta teoria a soluções associadas contendo componentes ativos. Nestes sistemas, uma fraca ligação química é formada porque há uma transferência de carga entre o componente auto-associado e o componente ativo. Este efeito de solvatação é expresso em termos de uma constante de associação K_{AB} . Este modelo foi aplicado por Nagata e Kawamura (1979), que usaram a parte residual da equação UNIQUAC para representar as interações físicas.

Estes autores determinaram a constante de associação, K_A , para o componente associado (álcool), e a constante de associação K_{AB} , para as interações químicas devido a troca de carga entre o álcool e o componente ativo, bem como os parâmetros de interação física e a entalpia de ligação de hidrogênio, h_A , (entalpia de associação), através da correlação de dados de equilíbrio líquido/vapor e de entalpia excesso. No entanto, usando esse método, os diferentes autores obtiveram diferentes valores de K_A e K_{AB} .

Como consequência, a teoria de associação, muito útil qualitativamente, encontrou limitações na aplicação em projetos

de equipamentos de separação, e no equilíbrio de fases.

Um dos primeiros estudos para evitar esta inconsistência dar um significado físico às constantes de associação foi e desenvolvido por Nath e Bender (1981-I), que aplicaram o conceito do homomorfo. isto é, o componente que tem as mesmas grandezas termodinâmicas que o que se associa, mas é incapaz Nath e Bender (1981-I) demonstraram associar. de se que a grandezas do componente que se associa e diferença entre as seu homomorfo pode ser explicada e relacionada à constante de associação. Eles determinaram a constante de associação e a entalpia de associação padrão para líquidos puros auto-associados através de suas entalpias molares de vaporização e da temperatura normal de ebulição aplicando o modelo de associação de Kretschmer e Wiebe (1954).

(1983)também calculou constantes de Brandani 85 associação propondo um outro método baseado na comparação da pressão de vapor de substâncias puras que se associam com as de seus homomorfos; faz considerações sobre a impossibilidade de determinar a constante de associação e a entalpia de associação usando somente valores da entalpia de vaporização e temperatura de ebulição das substâncias puras, como foi desenvolvido por Nath e Bender (1981-I). Porém, em outro artigo, Brandani e Evangelista (1984), aplicando as constantes calculadas por Brandani (1983), na teoria de solução associada UNIQUAC, demonstraram que os parámetros de associação obtidos são comparáveis com aqueles obtidos Nath e Bender (1981-I). por

Após Nath e Bender (1981-I), Brandani (1983) e Brandani Evangelista (1984), algumas teorias surgem para tentar e aperfeiçoar a teoria de solução associada através da determinação dos parâmetros de associação utilizando dados de componentes puros, Podem ser citados entre os métodos mais recentes: o de Hofman e Nagata (1986), que seguem os trabalhos de Brandani (1983) (1984), e tentam Evangelista remover as principais inconsistências na obtenção das constantes de associação baseado conceito do homomorfo e, propondo que as moléculas de no mono-éteres alifáticos sejam considerados melhores para monômeros dos álcoois. O modelo de associação utilizado é o da teoria de solução associada UNIQUAC (Nagata e Kawamura, 1979), com certas modificações resultantes da variação não nula de volume. Os valores obtidos das constantes de associação são geralmente próximos aqueles obtidos por Brandani e Evangelista (1984).

Verifica-se em todos os trabalhos a unanimidade na conclusão de que; desde que os valores das constantes de associação determinados sejam próximos, nenhuma melhora significativa pode ser esperada quando são aplicados a correlação ou predição de dados de equilíbrio iíquido/vapor.

IV.4 - Teoria de Solução Associada (Nath e Bender, 1981, I e II)

A teoria de solução associada de Nath e Bender (1981), é apresentada em duas etapas. Na primeira, são propostos valores da constante de associação, K_A, e da entalpia de associação, h_A, para componentes puros auto-associados, calculados através de

suas entalpias molares de vaporização no ponto normal de ebulição, aplicando o modelo de Kretschmer e Wiebe (1954). Na segunda parte, são utilizadas estas constantes de associação na teoria de solução associada UNIQUAC, originada por Nagata e Kawamura (1979) para correlacionar dados de equilíbrio líquido/va por para sistemas do tipo hidrocarbonetos/álcoois, entre outros. Os resultados são comparados com aqueles utilizando a equação original UNIQUAC.

IV.4.1 - Determinação da constante de associação, K

A determinação da constante de associação, K_A, está baseada na teoria de Kretschmer e Wiebe (1954), que é um modelo contínuo de associação que considera que o álcool (A) existe na forma de polímeros lineares formado por sucessivas reações.

A teoria faz as seguintes considerações :

- A é formado por reações do tipo :

 $A_i + A_{i-1} \longrightarrow A_i$ (IV.4.1)

- A constante de associação K para a reação (IV.4.1) é independente de i.

- A variação de volume de mistura é nula; isto é, o volume molar do i-mero, vi, é dado por vi = i v, onde,

 $v_{i} = volume molar do monômero (<math>v_{i} = v_{i}$)

- A dependência da temperatura da constante de associação K_x, é tal que o calor de formação de uma ligação de
hidrogênio é independente da temperatura e do grau de associação.

Para reações do tipo (IV.4.1), a constante de equilíbrio, K, é definida como :

$$K_{A} = \frac{C_{A}^{i}}{C_{A}^{i-1} C_{A}^{i} V_{A}} = \frac{\phi_{Ai}}{\phi_{A(i-1)} \phi_{A1}} \frac{(i-1)}{i}$$
(IV.4.2)

onde

Ci = concentração molar do i-mero na solução, ϕ i = fração volumétrica do i-mero, Ci = concentração molar do monômero, ϕ i = fração volumétrica do monômero.

De acordo com a teoria de solução atérmica de Flory-Huggins (Flory, 1944), a energia livre de Gibbs de mistura de um i-mero no líquido A é dada por :

$$g^{M} = R T \sum_{i}^{\infty} x_{i} \ln \phi_{i}$$
 (IV.4.3)

O potencial químico da mistura, o qual é dado pela diferença entre o potencial químico, μ_i , do i-mero na mistura e o potencial químico, μ_i^* , de um líquido puro contendo somente i-meros, é obtido pela diferenciação de g^M , equação (IV.4.3) em relação ao número de moles de cada espécie química:

$$\mu_{i} - \mu_{i}^{*} = \left(\frac{\partial g^{M}}{\partial ni}\right)_{T,P} = R T \left[\ln \phi i + 1 - \frac{vi}{v}\right] \quad (IV.4.4)$$

onde

v = volume molar da solução associada

Analogamente a equação (IV.4.4) obtém-se :

$$\mu_{i-1} - \mu_{i-1}^{*} = R T \left[\ln \phi_{i-1} + 1 - \frac{v_{i-1}}{v} \right]$$
 (IV.4.5)
$$\mu_{i} - \mu_{i}^{*} = R T \left[\ln \phi_{i} + 1 - \frac{v_{i}}{v} \right]$$
 (IV.4.6)

A condição de equilíbrio de acordo com a reação (IV.4.1) é dada por :

$$\mu_{i-4} + \mu_{i} = \mu_{i}$$
 (IV.4.7)

Substituindo na equação (IV.4.7) as equações (IV.4.4), (IV.4.5), (IV.4.6) e (IV.4.2) obtém-se :

$$\mu_{i}^{*} - \mu_{i-1}^{*} - \mu_{i}^{*} = R T \left[1 - \ln K_{A} \right]$$
 (IV.4.8)

O lado esquerdo da equação (IV.4.8) é a energia livre de Gibbs'de associação para uma solução contendo i-mero como estado final e uma mistura de monômeros como estado inicial, sendo escrita da seguinte forma :

$$g_{A} = R T \left(1 - \ln K_{A} \right) \qquad (IV.4.9)$$

onde

$$K_{A} = \exp\left[\left(\frac{S_{A}}{R} + 1 - \frac{h_{A}}{RT}\right)\right]$$
(IV.4.10)

Para a determinação da entalpia molar de associação, h_A , e da entropia molar de associação, s_A , Nath e Bender (1981,I) utilizaram a entalpia molar de vaporização, Δh^{\vee} , no ponto normal de ebulição.

Os valores da constante de associação, K_A, para o componente que se auto-associa dos sistemas estudados neste trabalho são 33, 25, e 21 para o 2-butanol a 323,15 K, 338,15 K e 348,15 K, respectivamente.

IV.4.2 - Teoria de Solução Associada UNIQUAC

A teoria de solução associada UNIQUAC originada por Nagata e Kawamura (1979) e aplicada por Nath e Bender (1981, I), baseada nas equações desenvolvidas por Nagata (1973a,1979), tem como elementos essencias o seguinte :

A = componente que se auto-associa

B = componente inerte ou ativo

- Forma linear para os polimeros pelas sucessivas reações químicas, expressas por :

 $\begin{array}{c} A_{i} + A_{i-1} & \longrightarrow & A_{i} \\ A_{i} + B & \longrightarrow & A_{i}B \end{array} \qquad (IV.4.12) \end{array}$

- As constantes de associação K_A para a reação (IV.4.11) e K_{AB} para a reação (IV.4.12) são independentes do comprimento da cadeia i e são expressas por :

$$K_{A} = \frac{C_{A}i}{C_{A}i - i C_{A}i v_{A}} = \frac{\phi_{Ai}}{\phi_{A(i-1)} \phi_{Ai}} \cdot \frac{(i-1)}{i} \quad (IV.4.13)$$

$$K_{AB} = \frac{C_{AiB}}{C_{A}i C_{B}o v_{A}} = \frac{\phi_{AiB}}{\phi_{Ai} \phi_{OB}} \cdot \frac{i \rho}{(i+\rho)} \quad (IV.4.14)$$

-A variação do volume de mistura é desprezada, eo volume do comple xo AiB é dado por :

 $v_{A} = volume molar do componente A$ $v_{B} = volume molar do componente B$

- Os desvios do comportamento ideal na fase líquida são expressos pela soma das contribuições físicas e químicas do excesso da ener gia livre de Gibbs :

$$\mathbf{s}^{\mathbf{E}} = \mathbf{s}_{q}^{\mathbf{E}} + \mathbf{s}_{f}^{\mathbf{E}}$$
(IV.4.15)

- A dependência da temperatura da constante de associação, K $_{A}$, é dada pela equação de Van't Hoff :

$$K_{A}(T) = K_{A}(Teb) \exp \left[\frac{-h_{A}}{R} \left(\frac{1}{T} - \frac{1}{Teb}\right)\right] \quad (IV.4.16)$$

onde

Teb = temperatura no ponto normal de ebulição

IV.4.2.1 - Equações para o Modelo de Solução Associada UNIQUAC

A contribuição física do excesso da energia livre de Gibbs, g_f^E da equação (IV.4.15) devido as forças de interação é da da pela parte residual da equação UNIQUAC (Abrams e Prausnitz, 1975) :

$$\frac{g_{f}^{E}}{R T} = -q_{A}^{i} x_{A} \ln \left(\frac{\theta_{i}^{i}}{A} + \frac{\theta_{i}^{i} \tau}{B B A} \right) - q_{B}^{i} x_{B} \ln \left(\frac{\theta_{i}^{i}}{B} + \frac{\theta_{i}^{i} \tau}{A A B} \right)$$
(IV.4.17)

A contribuição química do excesso da energia livre de Gibbs, g_q^E , devido à auto-associação do componente A e à solvatação entre Ai e B, é obtida através do modelo de Flory-Huggins (Nagata, 1973,a) :

$$\frac{s_q^E}{RT} = x_A \ln \left(\frac{\phi_{A1}}{\phi_{A1}^O x_A}\right) + x_B \ln \left(\frac{\phi_{OB}}{x_B}\right) - \frac{v_m}{v_{AB}} + \frac{x_A^O x_A}{v_A^O}$$

$$x_B + \frac{x_A^O x_A}{v_A^O}$$
(IV. 4.18)

onde

$$v_m = v_A x_A + v_B x_B$$

 $v_m = volume molar de mistura$

Substituindo as equações (IV.4.17) e (IV.4.18) na equação (IV.4.15), obtém-se :

$$\frac{g^{E}}{R T} = x_{A} \ln \left(\frac{\phi_{A1}}{\phi_{A1}^{0} x_{A}}\right) + x_{B} \ln \left(\frac{\phi_{0B}}{x_{B}}\right) - \frac{v_{m}}{v_{AB}} + x_{B} + \frac{x_{A}^{0} v_{A}}{v_{AB}^{0}} - q_{A}^{1} x_{A} \ln \left(\theta_{A}^{2} + \theta_{B}^{2} \tau_{B}\right) - q_{B}^{1} x_{B} \ln \left(\theta_{B}^{2} + \theta_{A}^{2} \tau_{AB}\right)$$

(IV.4.19)

As concentrações $C_{A}^{i} \in C_{AB}^{i}$ que constam nas equações (IV.4.13) e (IV.4.14) são expressas por :

As frações volumétricas, $\phi_A e \ \phi_B$ são expressas e estão relacionadas com as frações volumétricas de cada espécie Ai de acordo com:

$$\phi_{\mathbf{A}} = \sum_{i=1}^{\infty} \phi_{\mathbf{A}i} + \sum_{i=1}^{\infty} \frac{\mathbf{n}_{\mathbf{A}i\mathbf{B}} \mathbf{v}_{\mathbf{A}i}}{\mathbf{v}_{\mathbf{A}\mathbf{B}}} = \frac{\phi_{\mathbf{A}i}}{\left(1 - K_{\mathbf{A}}\phi_{\mathbf{A}i}\right)^2} \cdot \left(1 + \frac{K_{\mathbf{A}\mathbf{B}} \phi_{\mathbf{B}}}{\rho}\right)$$

(IV.4.24)

$$\phi_{B} = \phi_{OB} + \sum_{i=1}^{\infty} \frac{n_{AiB} v_{B}}{v_{AB}} = \frac{\phi_{OB} \left[1 - \left(K_{A} - K_{AB}\right) \phi_{Ai}\right]}{\left(1 - K_{A} \phi_{Ai}\right)}$$

(IV.4.25)

onde

 $\phi_{A} + \phi_{B} = 1$ $\rho = \frac{v_{B}}{v_{A}}$

 ϕ_{A1} =fração volumétrica de A presente como monômero na mistura ,

 ϕ_{OB} = fração volumétrica do componente B que não reage, v_{AB} = volume molar da solução, n_{AiB} = fração molar da espécie química AiB.

O volume molar da solução, v_{AB} é também função de ϕ_{A1} , ϕ_{OB} K_A e K_{AB} : ∞ . ∞

$$\frac{1}{\mathbf{v}_{AB}} = \sum_{i=1}^{m} \frac{\phi_{Ai}}{\mathbf{v}_{Ai}} + \sum_{i=1}^{m} \frac{\phi_{AiB}}{\mathbf{v}_{AiB}}$$
(IV.4.26)

$$\frac{1}{v_{AB}} = \frac{\phi_{A1}}{v_{A} (1 - K_{A} \phi_{A1})} + \frac{\phi_{OB}}{v_{B}} \frac{\left[1 - (K_{A} - K_{AB}) \phi_{A1}\right]}{(1 - K_{A} \phi_{A1})}$$
(IV.4.27)

Aplicando-se a equação (IV.4.4) para A puro e considerando-se a equação (IV.4.9), obtém-se :

$$\frac{1}{\mathbf{v}_{\mathbf{A}}^{\mathbf{o}}} = \frac{\left(1 - \mathbf{K}_{\mathbf{A}} \ \phi_{\mathbf{A1}}^{\mathbf{o}}\right)}{\mathbf{v}_{\mathbf{A}}^{\mathbf{v}}}$$
(IV.4.28)

onde

 ϕ_{Ai}^0 = fração volumétrica do componente A puro presente como monômero, é dado como uma função de K_A de acordo com :

$$\phi_{A1}^{0} = \frac{\left(2 K_{A} + 1\right) - \left(1 + 4 K_{A}\right)^{1/2}}{2 K_{A}^{2}}$$
(IV.4.29)

Os coeficientes de atividade γ_A e γ_B são obtidos através das seguintes relações termodinâmicas aplicadas à equação (IV.4.19) :

$$R T \ln \gamma_{A} = g^{E} - x_{B} \left(\frac{\partial g^{E}}{\partial x_{B}} \right)_{T,P}$$
(IV.4.30)

$$R T \ln \gamma_{B} = 6^{E} - x_{A} \left(\frac{\partial g^{E}}{\partial x_{A}} \right)_{T,P} \qquad (IV.4.31)$$

onde,

$$\ln \gamma_{A} = \ln \left(\frac{\phi_{A1}}{\phi_{A1}^{\circ} x_{A}}\right) - \frac{v_{A}}{v_{AB}} + \frac{v_{A}}{v_{A}^{\circ}} - q_{A}^{i} \ln \left(\theta_{A}^{i} + \theta_{B}^{i} \tau_{BA}\right)$$
$$+ \theta_{B}^{i} q_{A}^{i} \left(\frac{\tau_{BA}}{\theta_{A}^{i} + \theta_{B}^{i} \tau_{BA}} - \frac{\tau_{AB}}{\theta_{B}^{i} + \theta_{A}^{i} \tau_{AB}}\right) \quad (IV.4.32)$$

$$\ln \gamma_{B} = \ln \frac{\varphi_{OB}}{x_{B}} + 1 - \frac{V_{B}}{y_{AB}} - q_{B}^{i} \ln \left(\theta_{A}^{i} \tau_{AB} + \theta_{B}^{i} \right) + \frac{V_{AB}}{y_{AB}}$$

$$\theta'_{A} q'_{B} \cdot \left(\frac{\tau_{AB}}{\theta'_{A} \tau_{AB} + \theta'_{B}} - \frac{\tau_{BA}}{\theta'_{A} + \theta'_{B} \tau_{BA}} \right) \quad (IV.4.33)$$

onde

 K_{AB} , τ_{BA} , τ_{BA} são parâmetros ajustáveis,

$$\tau_{AB} = \exp\left(\frac{-\Delta u_{AB}}{RT}\right)$$
 $\tau_{BA} = \exp\left(\frac{-\Delta u_{BA}}{RT}\right)$ (IV.4.34)

IV.4.2.2 - Procedimento para o calculo de γ_{A} , γ_{B} e g^E

- Calcula-se ϕ_{A1}^{0} através da equação (IV.4.29) e v_{A}^{0} através da equação (IV.4.28);

- Determina-se ϕ_{A} e ϕ_{B} at ravés das equações (IV.4.22) e (IV.4.23) ;

- Eliminando ϕ_{0B} das equações (IV.4.24) e (IV.4.25) chega-se a uma equação do terceiro grau em ϕ_{A1} , que é calculado usando o método de Newton-Rapson. A seguir calcula-se v_{AB} através da equação (IV.4.27); - Os valores de $q'_A q'_B$ são tabelados (Prausnitz e colaborado res, 1980) e θ'_A e θ'_B são calculados através das equações (E.6)

- $\gamma_{A} e \gamma_{B}$ são determinados pela resolução simultânea das equações (IV. 4.32) e (IV. 4.33), ou g^E é determinado pela resolução da equação (IV.4.19).

IV.4.3 - Modificações para o modelo de Solução Associada

IV.4.3.1.- Modelo de Solução Associada UNIQUAC com $K_{AB} = 0$

Considerando-se que os sistemas estudados são do tipo hidrocarboneto/álcool, onde o hidrocarboneto é inerte, ou seja, não deve ocorrer formação do complexo AiB, é fisicamente razoá vel supor-se que $K_{AB} = 0$.

Para $K_{AB} = 0$ as equações (IV.4.24), (IV.4.25) e (IV.4.27) transformam-se em :

$$\phi_{A} = \frac{\phi_{A1}}{\left(1 - K_{A} \phi_{A1}\right)^{2}}$$
(IV.4.35)

$$\phi_{\rm B} = \phi_{\rm OB} \qquad (IV.4.36)$$

$$\frac{1}{v_{AB}} = \frac{\phi_{A1}}{v_{A} \left(1 - K_{A} \phi_{A1}\right)} + \frac{\phi_{OB}}{v_{B}}$$
(IV.4.37)

Utilizando-se esta simplificação verifica-se que as equa ções (IV.4.32) e (IV.4.33) apresentam somente dois parâmetros ajus táveis τ_{AB} e τ_{BA} .

IV.4.3.2 - Modelo Flory - UNIFAC

Com objetivo de minimizar o número de parâmetros ajustá veis no Modelo de Solução Associada , substitui-se a parte residual da equação UNIQUAC pela parte residual da equação UNIFAC(Fredenslund e colaboradores, 1977). Com esta modificação o novo modelo não apresenta parâmetros ajustáveis.

A parte residual da equação UNIFAC , γ_i^R , devido as energias de interação, é dada pela soma das contribuições individuais de cada grupo sozinho na solução menos a soma das contribuições individuais dos componentes puros:

$$\ln \gamma_{i}^{R} = \sum_{k}^{k} \nu_{k}^{(i)} \left(\ln \Gamma_{k} - \ln \Gamma_{k}^{(i)} \right) \qquad (IV.4.38)$$

onde

 Γ_{k} = coeficiente de atividade residual do grupo k na solução,

 $\Gamma_k^{(i)}$ = coeficiente de atividade residual do grupo k na solução de referência contendo somente moléculas do tipo i,

 $v_k^{(i)}$ = número de grupos do tipo k na molécula i, k = número de diferentes grupos na solução.

 $\Gamma_k \in \Gamma_k^{(i)}$ são dados pela equação :

$$\ln \Gamma_{k} = Q_{k} \left[1 - \ln \left(\sum_{m=1}^{m} \Theta_{m} \psi_{mk} \right) - \sum_{m=1}^{m} \left(\frac{\Theta_{m} \psi_{km}}{\Sigma \Theta_{m} \psi_{mm}} \right) \right]$$

(IV.4.39)

θ_m = fração de grupo de área superficial,
X_m = fração de grupo,
x_j = composição da fase líquida,
m e n = 1, 2, N (representa todos os grupos),
a_{nm} e Q_k parâmetros de interação de grupo,
j= 1,2 M (número de componentes).

O parâmetro a_{nm} é uma medida da diferença da energia de interação entre um grupo n e um grupo m e entre dois grupos m, e é independente da temperatura, onde $a_{nm} \neq a_{mn}$. Há portanto dois parâmetros de interação de grupo para cada par de grupos.

Substituíndo a contribuição residual da equação UNIFAC nas equações (IV.4.32) e (IV.4.33), e ln γ_i^R por ln γ_i^{unifac} , obtém-se :

$$\ln \gamma_{A} = \ln \left(\frac{\phi_{Ai}}{\phi_{Ai}}\right) - \frac{v_{A}}{v_{AB}} + \frac{v_{A}}{v_{A}} + \ln \gamma_{A \text{ unifac}}$$

(IV.4.43)

36

$$\ln \gamma_{B} = \ln \frac{\phi_{OB}}{x_{B}} + 1 - \frac{v_{B}}{y_{AB}} + \ln \gamma_{B} \text{ unifac} \quad (IV.4.44)$$

As equações (IV.4.43) e (IV.4.44) apresentam uma parte combinatorial obtida pela teoria de Flory-Huggins e uma parte residual representada pela parte residual da equação UNIFAC que representam o modelo chamado neste trabalho de Modelo Flory/UNIFAC. Se forem feitas as mesmas considerações do ítem a no modelo Flory/UNIFAC, verifica-se que o modelo proposto não então y mais parâmetros ajustáveis, podendo apresenta e $\gamma_{\rm s}$ serem calculados diretamente das equações (IV.4 . 43) 9 (IV.4.44).

CAPÍTULO V

MÉTODO EXPERIMENTAL E APARELHAGEM

V.1 - Princípio do Método Experimental

O método experimental utilizado para a determinação dos dados de equilíbrio líquido/vapor é o método dinâmico de recirculação das fases líquida e vapor condensado.

O método de recirculação consiste na determinação de dados de equilíbrio de fases líquido/vapor (T, P,x, y) sob condições de regime estacionário, para o qual as variáveis no interior do equipamento não mais variam com o tempo.

V.2 - Descrição Geral da Aparelhagem (Maciel, 1985)

O equipamento utilizado neste trabalho para a determina ção experimental dos dados de equilíbrio líquido/vapor é o ebu liômetro "FISCHER", que é uma versão comercial do ebuliômetro de Stage - Muller (1961).

O esquema geral da aparelhagem consta na figura (V.1), e é descrito a seguir :

O ebuliômetro está conectado :

- a um manômetro em U com mercúrio (26), que tem a fun ção de medir a pressão absoluta do sistema e detectar variações na pressão que podem ocorrer durante a operação; - a um tanque estabilizador de pressão (23), para manter a pressão desejada no ebuliômetro e amortizar pequenas flutuações que possam ocorrer;

- a um cilíndro de nitrogênio gasoso (25), que é o flúido utilizado como transmissor de pressão;

- a uma bomba de vácuo(24), com a função de ajudar a estabelecer a pressão desejada;

- a um banho termostático (28), conectado aos dois con densadores do ebuliômetro;

- a uma unidade de controle eletrônico para aquecimento e para as válvulas magnéticas (22);

- a um indicador digital de temperatura (21).

V.2.1 - Ebuliômetro "FISCHER" (fig. V.2)

O ebuliômetro "FISCHER" é constituído de:

- um vaso de alimentação removível adaptado em (1); é utilizado como reservatório das substâncias;

- um frasco de ebulição com cartucho de aquecimento (2), onde a solução líquida ocupa o espaço anular compreendido entre a parede do fraco e o cartucho de aquecimento. O cartucho de aquecimento é constituído de uma resistência elétrica encapsulada em quartzo o que possibilita a homogeneização da temperatura em todo o frasco de ebulição;

- uma bomba Cottrell (3), que faz a ligação do frasco de ebulição à câmara de separação. Sob forma de espiral tem como função promover um íntimo contato entre as fases líquida e vapor,

30

ESQUEMA DA APARELHAGEM

.

FIGURA V - 2

EBULIÔMETRO FISCHER

41

Legenda das figuras do equipamento

- 1 Conexão do funil de alimentação
- 2 Frasco de ebulição
- 3 Bomba Cottrell
- 4 Câmara de equilíbrio
- 5 Camisa de aquecimento
- 6 Termômetro de resistência de platina
- 7 Ponto para micro remoção de amostras para sistemas parcialmente miscíveis
- 8 Condensador da fase vapor
- 9 Haste da válvula para remoção de amostra
- 10 Válvula para remoção de amostra da fase vapor condensado
- 11 Recipiente de amostra para a fase vapor condensado
- 12 Ponto para micro remoção de amostra da fase vapor condensado
- 13 Ponto para micro remoção de amostra da fase líquida
- 14 Condensador de segurança
- 15 Válvula para remoção de amostra da fase líquida
- 16 Recipiente de amostra para a fase líquida
- 17 Agitador magnético
- 18 Solenóide da válvula para remoção de amostra
- 19 Válvula de ventilação
- 20 Misturador
- 21 Painel digital para leitura de temperatura
- 22 Unidade eletrônica de controle do aquecimento e da válvula solenóide
- 23 Tanque estabilizador de pressão

- 24 Bomba de vácuo
- 25 Cilindro de nitrogênio gasoso
- 26 Manômetro com mercúrio
- 27 Termômetro do manômetro
- 28 Banho termostático
- 29 Termômetro de resistência de platina
- 30 Válvula de drenagem

permitindo a transfência de calor e massa;

- uma câmara de separação (4), onde ocorre a separação das fases em equilíbrio. Possui um termômetro de resistência de platina (6) para a leitura da temperatura de equilíbrio;

 dois condensadores (8) e (14), com a função de condensar a fase vapor e evitar evaporações indesejadas na fase líquida efluente da câmara de separação;

- um misturador (20), com a função de homogeneizar as duas fases, antes do retorno destas ao frasco de ebulição, favorecendo a ebulição contínua e constante.

V.2.1.1 - Funcionamento do Ebuliômetro

Após verificar-se se todo o equipamento esta limpo e seco e também se todas as junções e encaixes estão em ordem para evitar vazamentos, o funcionamento do ebuliômetro ocorre da seguinte forma:

 - 60 ml da solução é introduzida no frasco de ebulição através do vaso de alimentação, onde o aquecedor de imersão é inteiramente coberto pelo líquido;

- O aquecedor interno é ligado e a ebulição se inicia. A função do aquecedor interno é de facilitar a nucleação contínua das bolhas de vapor diminuindo o superaquecimento do líquido (o líquido ebulindo é sempre superaquecido, uma vez que a tensão superficial do líquido dificulta o despreendimento de pequenas bolhas de vapor);

- A mistura líquido/vapor é bombeada pela bomba Cottrell

44

até a câmara de separação. A função da bomba Cottrell é permitir que as fases se interajam mais eficientemente na troca de calor e massa, uma vez que estas não estão, ainda, em equilíbrio termodinâmico de fases;

- O equilíbrio é estabelecido quando há o choque desta mistura líquido/vapor contra o bulbo do termômetro e há sua expansão na câmara de separação. A função da câmara de separação é a total separação entre as fases líquido e vapor em equilíbrio;

- O vapor que deixa a câmara de separação é condensado totalmente antes de seguir para a câmara de amostragem. A fase líquida segue diretamente para a válvula de amostragem;

- Após as duas fases líquido e vapor condensado passarem pela seção de amostragem, elas se encontram no misturador antes de entrarem novamente no frasco de ebulição. A função do misturador é eliminar, qualquer gradiente de concentração e temperatura, favorecendo assim o estabelecimento do estado estacionário;

- As primeiras amostras podem ser retiradas após 30 minutos;

- Para obter outra condição de equilibrio substitúi-se um pequeno volume da solução do frasco de ebulição e introduz-se um volume igual do solvente puro através do vaso de alimentação. É conveninte iniciar as medidas com uma solução de baixa concentração do constituínte mais volátil e sucessivamente ir adicionando este até se obter uma curva completa.

45

V.2.1.2 - Roteiro Básico de uma Operação Isotérmica

Para uma dada composição global no frasco de ebulição e para uma temperatura de equilíbrio escolhida, a pressão aplicada ao sistema deve ser cuidadosamente ajustada, com o auxílio da válvula reguladora de pressão no cilindro de nitrogênio, da bomba de vácuo e do tanque estabilizador de pressão até a temperatura de equilíbrio estabelecida seja igual aquela escolhida. São então determinadas as composições de equilíbrio.

V.3 - Medição da Pressão

A pressão foi medida com um manômetro em U (26). A leitura foi efetuada por um catetômetro, modelo Gaertner que, com o auxílio de um nônio acoplado a parte ótica, possibilita leituras de até 0,05 mmHg.

V.4 - Medição da Temperatura

Foram utilizados dois sensores de temperatura. Um termômetro de resistência de platina (Pt - 100) e um termômetro de mercúrio comum. O primeiro, modêlo Guild Line, já calibrado é utilizado para a leitura da temperatura de equilíbrio na câmamara de separação. Este termômetro está conectado ao indicador digital de temperatura (21), com uma precisão de 0,01°C.

O termômetro de mercúrio (27) está localizado junto ao manômetro com mercúrio, com o objetivo de possibilitar a leitura

da temperatura no momento da leitura da pressão para que as correções possam ser feitas em função desta temperatura.

V.5 - Determinação da Composição

As amostras das fases líquida e vapor condensado foram analisadas através de um refratômetro modêlo ATAGO com precisão de 1x10⁻⁴, medindo-se o índice de refração.

Neste caso há necessidade do levantamento prévio de curvas de calibração do índice de refração em função da fração molar. Estas curvas são feitas a partir da análise de amostras previamente preparadas, pesadas e depois analisadas. A balança utilizada é de marca Sartorius com resolução de ixi0⁻⁴ g.

CAPÍTULO VI

TESTE DO EQUIPAMENTO

VI.1 - Introdução

O equipamento utilizado foi testado medindo-se a pressão de vapor do etanol na faixa de 13,45 a 107 kPa, a pressão de vapor da água na faixa de 15,60 a 104,54 kPa e o equilíbrio de fases líquido/vapor do sistema ciclohexano/tolueno a 323,15 K.

Os dados obtidos experimentalmente foram comparados com os dados de Maciel (1985) e Ambrose (1970) para o etanol, Ambrose (1972) para água e Maciel (1985) e Zemp (1989) para o sistema ciclohexano/tolueno.

VI.2 - Curvas de Pressão de Vapor VI.2.1 - Pressão de Vapor do Etanol

Para obtenção da curva de pressão de vapor do etanol foi utilizado etanol absoluto para análise da Merck, com teor de pureza, medido por cromatografia gasosa, de 99,8% em base molar.

O índice de refração e a temperatura normal de ebulição medidos neste trabalho e as encontradas na literatura estão no quadro a seguir :

	'' p	an and a large an
Experimental	1,3611	78,5°C
Literatura	1,3611 ^a	?8,5°C ℃

 η (20 °C) Temperatura de ebulição(760mmHg)

a - Wilhoite Zwolinski (1973)

Os dados experimentais obtidos neste trabalho constam na tabela VI.1, onde os valores da pressão já se encontram corrigidos conforme procedimento do Apêndice A.

A figura VI.1, da pressão de vapor em função da temperatura absoluta e a figura VI.2 do logaritmo da pressão de vapor em função do inverso da temperatura, ilustram os resultados experimentais e os compara com os dados da literatura.

Os dados experimentais foram ajustados utilizando a equação VI.1 de Antoine (Reid e colaboradores, 1987), através do método de mínimos quadrados :

$$\ln P = A + \frac{B}{C + T}$$
(VI.1)

As unidades de P e T são mmHg e K respectivamente e os parâmetros A, B e C são ajustáveis.

O ajuste para a equação forneceu os seguintes parâmetros :

$$A = 18,582$$

 $B = -3584,3$ K
 $C = -51,531$ K

Fig.VI.1 Curva de Pressão de Vapor de Etanol(kPa) em função da Temperatura (K)

Para a análise dos ajustes serão utilizadas as seguintes definições :

O Desvio Padrão é dado por :

$$\sigma = \left[\frac{\sum_{i=1}^{n} (P_{cal} - P_{exp})^2}{(n-3)} \right]^{1/2}$$
(VI.2)

O Desvio Médio Relativo é dado por :

$$D = \frac{\sum_{i=1}^{n} \left[\frac{|P_{cal} - P_{exp}|}{P_{exp}} \right]}{n}$$
 (VI.3)

O desvio Médio é dado por :

$$\frac{\sum_{i=1}^{n} |P_{\bullet \times p} - P_{cal}|}{n}$$
 (VI.4)

onde,

 σ em mmHg,

D em mmHg,

n = número de pontos.

Para os dados experimentais de pressão de vapor do etanol obtidos neste trabalho em relação aos calculados com os parâmetros ajustados, tem-se :

$$\sigma = 1,52 \text{ mmHg}$$

 $D = 0,00$
 $\overline{D} = 0,97 \text{ mmHg}$

Comparando os dados experimentais de Ambrose (1970) e Maciel(1985), com os valores calculados utilizando os parâmetros Obtidos neste trabalho, verificou-se os seguintes desvios :

a) Dados de Ambrose (1970) :

 $\alpha = 2,40 \text{ mmHg}$ D = 0,01 $\overline{D} = 2,12 \text{ mmHg}$

b) Dados de Maciel (1985) :

 $\sigma = 3,79 \text{ mmHg}$ D = 0,01 $\overline{D} = 2,95 \text{ mmHg}$

Verifica-se que os dados experimentais do etanol obtidos neste trabalho, apresentam uma melhor concordância com os dados de Ambrose, com um desvio padrão de 2,40 mmHg .

VI.2.2 - Pressão de Vapor da Água

Para obtenção da curva de pressão de vapor da água utilizou-se água bidestilada. A temperatura normal de ebulição (760 mmHg) obtida neste trabalho e o da literatura são :

	- A				,		
Experimental		100,0	°C	(760,06	mmHg>		antinir
Literatura	van	100,0	°C	1999 - The State of S	м ^{ан} Ма _{не} сографијација (не т. т. т. т. на боло останова на кола	(- ~ m//////////////////////////////////	4994-99-000
a a a a a a a a a a a a a a a a a a a				nn Armada Wann an an marachainn a dhaol an an dhaol an			******

Temperatura normal de ebulição (a 760 mmHg)

a - Ambrose (1972)

Os dados obtidos neste trabalho constam na tabela (VI.2), onde os valores da pressão já se apresentam corrigidos conforme procedimento do Apéndice A.

As figuras (VI.3) e (VI.4), ilustram os resultados experimentais bem como os compara com os dados de Ambrose (1972).

Da mesma forma que para o etanol, os dados experimentais da água, obtidos neste trabalho foram ajustados utilizando a equação (VI.1). O ajuste forneceu os seguintes parámetros:

> A = 18,436 B = -3900,3 K C = -42,702 K

Para os dados de pressão de vapor da água obtidos neste trabalho em relação aos calculados com os parâmetros ajustados ,tem-se os seguintes desvios :

> $\sigma = 1,66 \text{ mmHg}$ D = 0,00 \overline{D} = 1,13 mmHg

Fig.VI.3 Curva de Pressão de Vapor da Água(kPa) em função da Temperatura (K)

Comparando os dados experimentais de Ambrose (1972), com os valores calculados utilizando os parāmetros obtidos neste trabalho , verificou-se os seguintes desvios :

 $\sigma = 0,25 \text{ mmHg}$ D = 0,00 $\overline{D} = 0,14 \text{ mmHg}$

Verifica-se uma boa concordâcia entre os dados de pressão de vapor da água obtidos neste trabalho e os dados de Ambrose (1972).

VI.3 - Sistema Ciclohexano/Tolueno a 323,15 K

Os reagentes utilizados para obtenção dos dados de equilíbrio líquido/vapor para o sistema ciclohexano(B)/tolueno(A), seus fornecedores e o grau de pureza constam na tabela (D.1).

As grandezas físicas das substâncias puras determinadas experimentalmente e as da literatura estão relacionadas nas tabelas (D.2) e (D.3).

O procedimento para determinação da composição é apresentado no Apéndice g. Os dados de indice de refração, $\eta_{\rm p}$, a 20°C em função da fração molar para obtenção da curva de calibração constam na tabela (VI.3). O polinômio de ajuste é do terceiro grau :

$$\eta_{\rm p} = A + B \times + C \times^2 + D \times^3_4$$
 (VI.5)

O ajuste forneceu as seguintes constantes :

$$A = 1,495$$
$$B = -6,912 \times 10^{-2}$$
$$C = -1,175 \times 10^{-2}$$
$$D = 1,212 \times 10^{-2}$$

com um desvio padrão de 0,008 e um desvio médio relativo de 0,010.

A tabela VI.4 apresenta os dados experimentais de equilíbrio líquido/vapor, com as pressões já corrigidas de acordo com o procedimento do Apéndice A. Na figura VI.5 estão representados os dados experimentais, onde também são comparados com os dados de Maciel (1985) e Zemp (1989). Verifica-se uma boa concordância, tanto com os dados de Maciel quanto de Zemp. Através de uma análise gráfica, obtém-se um desvio absoluto médio de 0,006 (fração molar da fase vapor) e de 0,33 kPa, entre os dados deste trabalho e os de Maciel; um desvio absoluto médio de 0,014 (fração molar da fase vapor) e de 0,5 kPa entre os dados deste trabalho e os de Zemp.

Os dados dos componentes puros e os coeficientes viriais para a determinação do coeficiente de atividade experimental, γ_i , através da equação (III.1.16) e do excesso da energia livre de Gibbs experimental, g^E , através da equação (III.1) constam nas tabelas D.4 a D.6. A tabela VI.5 apresenta os valores de γ_i e g^E experimentais. Na figura VI.6 estão representados os va lores de g^E experimentais e são comparados com os dados de Ma ciel (1985) e Zemp (1989).

Os valores de g[®] experimentais para quantidades

equimolares dos dois componentes estão representados no quadro a seguir :

	s ^r (J/mol)	para $x = 0,3$	
Experimental (int	erpolado)	264	
Lenoir e Sakata (1978)		266	
Maciel (1985)		260	
Zemp (1989)		290	

A análise da consistência termodinâmica dos dados forneceu para o Teste da Área Global um desvio de 0,01 e para o Teste de Fredeslund um desvio de 0,0088 para y₁ e de 0,0192 para P. De acordo com os critérios estabelecidos pelos testes os dados podem ser considerados consistentes.

VI.4 - Conclusão sobre o teste do equipamento

Verificou-se através do levantamento das curvas de pressão de vapor e dos dados de equilíbrio de fases líquido/vapor o bom desempenho da aparelhagem em geral, conforme os desvios descritos anteriormente .

VI.5 - Análise das Incertezas e suas Propagações

No Apéndice C são apresentadas as propagações das incertezas no levantamento das curvas de pressão de vapor, nas medidas dos dados de equilíbrio líquido/vapor (T, P, x, y), no cálculo do coeficiente de atividade, γ_i , e no cálculo do excesso da energia livre de Gibbs, g^E.

No levantamento das curvas de pressão de vapor verifica-se que a leitura da temperatura é o termo que mais contribui sobre a incerteza.

O cálculo das incertezas nas medidas de T, P, x_i , y_i , no cálculo de γ_i e no cálculo de g^E é desenvolvido considerando as seguintes regiões : inicial próxima de $x_i = 0$, intermediária a $x_i = 0,5$ e final próxima a $x_i = 1$.

Verifica-se que quando o cálculo das incertezas é desenvolvido na região próxima de $x_1 = 1$ as incertezas são bem maiores, o que vem a confirmar a dificuldade das determinações experimentais nas regiões extremas das curvas de equilíbrio.

No quadro a seguir estão relacionadas as incertezas calculadas no Apêndice C:

genegalen en kann for generalen en e	Propagação das Incertezas					
	$x_1 = 0,0465$		$x_1 = 0,50$		$x_1 = 0,9243$	
	Inc.	Inc. máx.	Inc.	Inc. máx.	Inc.	Inc. máx.
X1	+/- 0.001	+/- 0,002	+/- 0,001	+/- 0,002	+/- 0,001	+/- 0,002
<u> </u>	+/- 0,001	+/- 0,002	+/- 0,001	+/- 0,002	+/- 0,002	+/- 0,002
Ϋ́.	'+/- 0,060	+/- 0,070	+/- 0,003	+/- 0,007	+/- 0,003	+/- 0,004
72	+/- 0,002	+/- 0,005	+/- 0,005	+/- 0.010	+/- 0,080	+/- 0,100
$\ln(\gamma_1)$	+/- 0,020	+/- 0.060	+/- 0.002	+/- 0,007	+/- 0.002	+/- 0.004
$\ln (\gamma_2)$	+/- 0,002	+/- 0,005	+/- 0,004	+/- 0,010	+/- 0,080	+/- 0,100
g^E (J/mol)	+/-6	+ / - 22	+/- 6	+/-23	+/- 17	+/- 33

CAPÍTULO VII

EQUILÍBRIO LÍQUIDO/VAPOR DOS SISTEMAS

CICLOHEXANO(B)/2-BUTANOL(A) E N-HEXANO(B)/2-BUTANOL(A)

VII.1 - Reagentes utilizados

Os reagentes utlizados, seus fornecedores e o grau de pureza estão relacionados na tabela D.1.

As grandezas físicas das substâncias puras determinadas experimentamente e as da literatura estão relacionadas nas tabelas D.2 e D.3.

VII.2 - Determinação das composições

O procedimento para determinação da composição é apresentado no Apêndice B. Os dados de índice de refração, η_p , a 20°C em função da fração molar para obtenção das curvas de calibração constam nas tabelas VII.1 e VII.2.

Os polinômios de ajuste são do quinto grau :

 $\eta_{\rm D} = A + B x_{\rm i} + C x_{\rm i}^2 + D x_{\rm i}^3 + E x_{\rm i}^4 + F x_{\rm 2}^5$
O ajuste forneceu as seguintes constantes :

-Sistema ciclohexano(B)/2-butanol(A) :

$$A = 1,396$$

$$B = 2,686 \times 10^{-2}$$

$$C = -5,092 \times 10^{-2}$$

$$D = 1,773 \times 10^{-1}$$

$$E = -2,200 \times 10^{-1}$$

$$F = 9,681 \times 10^{-2}$$

com um desvio padrão de 0,016 e um desvio médio relativo de 0,039.

-Sistema n-hexano(B)/2-butanol(A) :

$$A = 1,396$$

$$B = -2,314 \times 10^{-2}$$

$$C = -4,928 \times 10^{-2}$$

$$D = 1,412 \times 10^{-1}$$

$$E = -1,547 \times 10^{-1}$$

$$F = 6,482 \times 10^{-2}$$

com um desvio padrão de 0,027 e um desvio médio relativo de 0,089.

VII.3 - Determinações Experimentais

As tabelas VII.3 a VII.8 apresentam os dados originais de equilíbrio líquido/vapor, com as pressões já corrigidas de acordo com o procedimento do Apêndice A.

As figuras VII.1 e VII.2 representam curvas típicas

 $(P - x - y)_{T}$ dos sistemas ciclohexano (B)/ 2-butanol(A) e n-hexano(B)/2-butanol(A), respectivamente.

Os dados dos componentes puros e os coeficientes viriais necessários para a determinação do coeficiente de atividade experimental, γ_i , através da equação (III.1.16) e do excesso da energia livre de Gibbs experimental, g^E , através da equação (III.1) constam nas tabelas D.4 a D.6.

As tabelas VII.9 a VII.14 apresentam os valores de γ_i e \boldsymbol{g}^E experimentais.

As figuras VII.3 e VII.4 representam a variação do excesso da energia livre de Gibbs com a temperatura para os sistemas ciclohexano(B)/2-butanol(A) e n-hexano(B)/2-butanol(A), respectivamente.

A influência da cadeia do hidrocarboneto cíclico (ciclohexano) e alifático (n-hexano) sobre o excesso da energia livre de Gibbs, g^E, está representada nas figuras VII.5 a VII.7.

A consistência termodinâmica dos dados foi testada por dois métodos, o Teste Global da Àrea e o Teste de Fredenslund.

Considerando o quadro exposto a seguir verifica-se que os dados experimentais, de acordo com o critério estabelecido pelo Teste Global da Area, podem ser considerados consistentes com exceção dos dados para o sistema n-hexano/2-butanol a 338,15 K. Verifica-se que os dados experimentais apresentam-se fora da faixa para o critério estabelecido pelo Teste de Fredenslund.

Consistência Termodinâmica

Sistemas	Teste da Àrea	Teste de Fredenslund
Ciclohexano(B)/ 2-butanol(A)		
		DP = 0.0046
323,15 K	0,011	Dy = 0,023
229 45 V	0.017	DP = 0,0051
000,10 K	0,011	Dy = 0,045
348,15 K	0,013	DP = 0,012
-		Dy = 0,047
n-hexano(B)/		
2-butanol(A)		
222 15 K	0.011	DP = 0,037
020,10 K	~,~	Dy = 0,027
338.15 K	0.08	DP = 0,032
	- ,	Dy = 0,041
348,15 K	0,019	DP = 0,0089
-		Dy = 0,038
		

•

,

0,80

1,00

30

20

0,00

0,20

ŧ

CAPÍTULO VIII

CORRELAÇÃO DOS DADOS E DISCUSSÃO

VIII.1 - Correlação dos Dados

A correlação dos dados foi desenvolvida aplicando-se o o pacote estatístico SAS (Statistical Analysis Sistems). Foi utilizado o procedimento NLIN (não linear) chamado DUD (Ralston e Jennrich, 1978), que consiste no algoritmo Gauss-Newton para mínimos quadrados que dispensa o uso de derivadas dos parâmetros. O computador utilizado para execução do ajuste foi o VAX modelo 785.

Os ajustes foram aplicados ao modelo de solução associada UNIQUAC para K_{AB} = O, equação (IV.4.19), chamado neste trabalho de modelo Flory/UNIQUAC e a equação UNIQUAC apresentada no apendice E. A função objetivo utilizada neste trabalho para determinação dos parâmetros é :

$$F = \sum_{i} \left(g^{E} \exp - g^{E} \operatorname{cal} \right)^{2}$$

O modelo Flory/UNIFAC descrito no capítulo IV, o qual não necessita de ajuste, é calculado a través das equações (IV.4.43) e (IV.4.44). Os grupos e os parâmetros de interação de grupo constam na tabela D.7.

VIII.1.1 - Resultados

As figuras VIII.1 a VIII.9 representam o comportamento dos modelos Flory/UNIQUAC e Flory/UNIFAC e o com pararam com a equação UNIQUAC, através dos coeficientes de atividade.

Os parâmetros obtidos através dos ajustes e os respectivos desvios médios relativos estão relacionados na tabela VIII.1.

eE do modelo de obtidos através valores 0s quantidades Flory/UNIQUAC, UNIQUAC os experimentais com e equimolares dos dois componentes para os sistemas estudados estão relacionados na tabela VIII.2.

As figuras VIII.10 e VIII.11 representam curvas típicas dos ajustes para o modelo Flory/UNIQUAC e equação UNIQUAC.

VIII.2 - Discussão dos Resultados

VIII.2.1 - Resultados Experimentais

Os sistemas estudados apresentam desvios positivos em relação a Lei de Raoult, ou seja, $g^E > 0$. Portanto, os valores dos coeficientes de atividade são maiores que a unidade (salvo em algums pontos, provavelmente em decorrência de alguns desvios nos dados experimentais); o que significa que as forças intermoleculares diminuem quando os componentes formam a solução.

O excesso da energia livre de Gibbs, g^E , para o sistema ciclohexano(B)/2-butanol(A) cresce com o aumento da temperatura.

Para o sistema n-hexano(B)/2-butanol(A), g^{E} diminui quando a temperatura passa de 323,15 K para 338,15 K e aumenta quando a temperatura passa de 338,15 K para 348,15 K. Concordando com as determinações feitas por Maciel (1985), que g^{E} não obedece a um comportamento sistemático na faixa estudada.

Sayegh e Ratcliff (1976), verificaram que a substituição do n-hexano por isomeros ramificados em sistemas com n-pentanol provoca normalmente a diminuição de g^E.

Foi verificado neste trabalho que a substituição do n-hexano pelo isomero cíclico, ciclohexano, em sistema com 2-butanol diminui o valor de g^E para a temperatura de 323,15 K, porém aumenta o valor de g^E para as temperaturas de 338,15 K e 348,15 K.

Maciel (1985) verificou que os álcoois primários possuem maiores valores de g^E que os álcoois secundários. Comparando os valores de g^E em quantidades equimolares dos componentes para o sistema n-hexano/1-butanol (Maciel,1985), e para o sistema n-hexano/2-butanol deste trabalho, confirma-se a análise feita por Maciel, com uma exceção para a temperatura 323,15 K.

VIII.2.2 - Resultados obtidos através dos modelos

Verifica-se através de uma análise gráfica que o modelo Flory/UNIQUAC descreve bem o comportamento dos sistemas estudados. Foi observado também que o modelo Flory/UNIQUAC supera a equação UNIQUAC principalmente na descrição do comportamento do coeficiente de atividade nas regiões de alta concentração do álcool, reproduzindo bem os extremos apresentados.

O modelo Flory/UNIFAC representou regularmente o comportamento do sistema ciclohexano(B)/2-butanol(A) para regiões onde $x_A < 0,4$; porém não descreveu o comportamento do sistema para regiões de alta concentração do álcool.

Em todos os sistemas e temperaturas estudadas, o modelo Flory/UNIQUAC e a equação UNIQUAC representaram muito bem o comportamento do excesso da energia livre de Gibbs, g^E, calculados através dos dados experimentais; porém verifica-se que o modelo Flory/UNIQUAC apresentou menores desvios médios relativos, conforme os dados da tabela VIII.1.

Para quantidades equimolares dos dois componentes, verifica-se que o comportamento experimental de g^E foi análogo aos valores calculados através do modelo Flory/UNIQUAC e da equação UNIQUAC, conforme tabela VIII.2.

	FLORY/UNIQUAC		UNIQUAC			
SISTEMA	Δu_{AB}	Δu_{BA}	D	Δu_{AB}	Δu_{BA}	D
	(J/mol)	(J/mol)	*	(J/mol)	(J/mol)	-
Ciclohexano(B)/2-Butanol(A)						
323,15 K	4704,82	-1860,32	0,11	-1427,81	7404,66	0,11
338,15 K	10715,90	-2277,74	0,07	-1275,65	7415,52	0,17
348,15 K	11851,62	-2249,88	0,08	97,37	3858,56	0,20
n-Hexano(B)/2-Butanol(A)						
323,15 K	10166,54	-1675,50	0,03	41,35	5134,52	0,10
338,15 K	11435,31	-3265,09	0,10	-2458,21	13418,37	0,16
348,15	12355,62	-2763,48	0,13	-265,43	3813,34	0.12

Tabela VIII.1

SISTEMA	g^E (J/mol) para x=0.5				
	Experimental	FLORY/UNIQUAC	UNIQUAC		
Ciclohexano(B)/2-Butanol(A)					
323,15 K	1010	990	1040		
338,15 K	1110	1060	1150		
348,15 K	1200	1160	1220		
n-Hexano(B)/2-Butanol(A)					
323,15 K	1390	1320	1380		
338,15 K	800	730	790		
348,15 K	1045	1040	1020		

4

.

Tabela VIII.2

۴.

CAPÍTULO IX

CONCLUSSES E SUGESTOES

Os altos valores de g^E experimentais e calculados através dos modelos, estão coerentes com a suposição do ítem IV.4.3, que o hidrocarboneto não forma complexo AiB, com o álcool, ou seja, não ocorrem efeitos específicos de solvatação, caso contrário os sistemas apresentariam desvios negativos em relação à lei de Raoult.

Através da análise gráfica do comportamento do coeficiente de atividade foi verificado que o modelo de solução associada UNIQUAC decreve melhor o comportamento de γ_i do que a equação UNIQUAC, na região de alta concentração do álcool, possivelmente devido ao fato da equação UNIQUAC ser desenvolvida baseada somente na teoria física.

Podem ser sugeridos para trabalhos futuros, novos estudos, com os isomeros do 2-butanol, com a ampliação da faixa de temperatura, com a aplicação da teoria de solução associada UNIQUAC a outros dados existentes na literatura e com a aplicação do método da maximaverossimelhança (Prausnitz ø colaboradores, 1980), para ajustar as equações do modelo de solução associada UNIQUAC.

REFERÊNCIAS BIBLIOGRÁFICAS

- Abrams, D.S. and Prausnitz, J.M., 1975. Statistical thermodynamics of liquid mixtures : a new expression for the excess Gibbs energy of partly or completely miscible systems. Am. Inst. Chem. Eng. J., 21 : 116 - 128.

- Ambrose, D. and Sprake, C.H.S., 1970. Thermodynamic properties of organic oxygen compounds. XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols. J. Chem. Thermodynamics, 2 : 631 - 645.

- Ambrose, D. and Lawrenson, I. J., 1972. The vapour pressure of water. J. Chem. Thermodynamics, 4 : 755 - 761.

- Bertrand, G.L., 1975. Thermochemical investigation of hydrogen bonding : an improvement of the ideal solution approximation. J. Phys. Chem., 79 : 48 - 51.

Berro,C., Rogalski, M. and Péneloux A., 1982. Excess Gibbs
Energies and Excess Volumes of 1-Butanol - n- Hexane and 2-Methyl
1 - Propanol - n-Hexane Binary Systems. J. Chem. Eng. Data, 27: 352 - 355.

- Berro, C. and Péneloux A., 1984. Excess Gibbs Energies and Excess Volumes of 1-Butanol - n-Heptane and 2-Methyl-1-propanol n-Heptane Binary Systems. J. Chem. Eng. Data, 29 : 206 - 210. - Boublik. T, Friend, V., Hála E., 1984. The vapour pressures of pure substances. Elsevier Scientific Publishing Company, $2^{\frac{\alpha}{2}}$ ed.

- Brandani, V., 1983. A continuos linear association model for determining the enthalpy of hydrogen-bond formation and the equilibrium constant for pure hydrogen-bonded liquids. Fluid Phase Equilibria, 12 : 87 - 104.

Brandani, V. and Evangelista, F., 1984. The UNIQUAC associated
 solution theory : vapor liquid equilibria of a binary system
 containing one associating and one inert or active component.
 Fluid Phase Equilibria, 17 : 281 - 302.

- Brown, I., Fock, W. and Smith F., 1969. The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane. J. Chem. Thermodynamics, 1 : 273 - 291.

- Chen, S.A. and Bagley, E. B., 1978 a. Thermodynamics of associated solutions. I. Alcohol - inerte solvent solutions. Chem. Eng. Sci., 33 : 153 - 160.

- Chen, S.A. and Bagley, E.B., 1978 b.Thermodynamics of associated solutions. II. Alcohol-active solvent solutions. Chem. Eng. Sci., 33 : 161 - 168.

- Fredenslund, A., 1975. Thermodynamic Consistency of High -Pressures Vapor - Liquid Equilibrium Data, paper present at the Research Seminar Vapor - Líquid Equilibria in Multicomponent Mixtures, Jablonna, Poland.

- Fredenslund, A., Gmehling, J. and Rasmussen, P., 1977. Vapor liquid equilibria using UNIFAC. Elsevier Scientific Publishing Company.

- Flory, P. J., 1944. Thermodynamics of heterogeneous polymers and their solutions. J. Chem. Phys., 12 : 425 - 438.

- Handbook of Chemistry and Physics - 58-th ed. (1977, 1978).

- Hofman, T. and Nagata, I., 1986. Determination of association constants for alcohols based on ethers and homomorphs. Fluid Phase Equilibria, 25 : 113 - 128.

-Hwang, S.C. and Robinson, R.L.Jr., 1977. Vapor-Liquid Equilibria at 25°C for Nine Alcohol - Hydrocarbon Binary Systems. J. of Chem. and Eng. Data, 22, 3 : 319 - 325.

- Kehiaian, H., 1967. Athermal associated binary mixtures with one associated component. Bull. Acad. Polon. Sci, Ser. Sir. Chim, 15 : 367 - 372.

- Kretschmer, C.B. and Wiebe, R., 1954. Thermodynamics of alcohol - hydrocarbon mixtures. J. Chem. Phys., 22 : 1697 - 1701. - Ksiazczak, A. and Buchowski, H., 1984. Prediction of thermodynamic properties of associated systems on the basis of properties of pure liquids. II. Excess Gibbs energy and vapour pressure. Fluid Phase Equilibria, 16 : 361-367.

- Lenoir, J. M. and Sakata M., 1978. The correlation of vapour liquid equilibria used to determine tray efficiencies. Ind. Eng. Chem. Fundam., 17,2.

 Maciel, M.R.W., 1985. Determinação do excesso da energia livre de Gibbs de sistemas do tipo n-hexano/álcool alifático na faixa de 323,15 a 348,15 K e de 30 a 130 kPa. Tese de Mestrado, UNICAMP.

 Mullens, J., Hanssens, J. and Huyskens, P., 1971. Effet de l'allongement de la chaíne aliphatique sur l'autossociation des alcohols primaires, secondaires et tertiaires. J. Chim. Phys.,68: 1417 - 1422.

- Nagata, I., 1973 a. Thermodynamics of alcohol - hydrocarbon mixtures. Z. Phys. Chem. (Leipzig), 252 : 305 - 311.

- Nagata, I., 1973 b. Thermodynamics of ternary alcohol hydrocarbon mixtures. Z. Phys. Chem. (Leipzig), 254 : 273 - 288.

- Nagata, I., 1977. Thermodynamics of associated solutions : new expressions for the excess Gibbs free energy and excess enthalpy

of mixing of alcohol - solvent systems. Fluid Phase Equilibria, 1: 93 - 111.

- Nagata, I. and Kawamura, Y., 1979. Thermodynamics of alcohol unassociated active component liquid mixtures. Chem. Eng. Sci., 34 :601 - 611.

- Nath, A. and Bender, E., 1981. On the thermodynamics of associated solutions. I. An analytical method for determining the enthalpy and the entropy of association and equilibrium constant for pure liquid substances. Fluid Phase Equilibria, 7 : 275 -287.

- Nath, A. and Bender, E., 1981. On the thermodynamics of associated solutions. II. Vapor - liquid equilibria of binary systems with one associating componente. Fluid Phase Equilibria, 7 : 289 - 307.

- Néau E. and Péneloux, A., 1979. Prediction of vapor - liquid equilibria in systems containing aliphatic alcohols and alkanes. Inst. Chem. Eng., Symp. Ser., 56 (1) ; 2- 17.

- Nitta, I. and Katayama, T., 1973. A study on the thermodynamic properties of associated solutions by linear association models. J. Chem. Eng. Jpn., 6 : 1 - 9.

- Prausnitz, J.M., 1969. Molecular Thermodynamics of Fluid Phase

Equilibria. Prentice Hall, Englewood Cliffs, NJ.

- Prausnitz, J.M., Lichtenthaler, R.N., and Azevedo, E.G., 1986. Molecular Thermodynamics of Fluid - Phase Equilibria, 2^{α} ed. Prentice Hall, Inc.

- Prausnitz, J.M., Anderson, T.F., Grens, E.A., Eckert, C.A., Hsieh, R. and O'Connel, J.P., 1980. Computer Calculation for Multicomponent Vapor - Liquid and Liquid - Liquid Equilibria. Prentice Hall, Englewood Cliffs, N.J.

- Ralston, M. L. and Jennrich, R. I., 1978. Dud, A derivative -Free Algorithm for Nonlinear Least Squares. Technometrics, 20,1 : 7 14.

- Ramalho, R.S. and Delmas J., 1968. Isothermal and Isobaric Vapor - Liquid Equilibrium Data and Excess Free Energies by the Total Pressure Method. Systems : 2,2,4 -trimethylpentane toluene, cyclohexane - 1 - Butanol and Ethanol - n - heptane. J. of Chem. and Eng. Data, 13, 2 :161.

- Redlich O., Kister A.T. and Turnquist C.E., 1949. Chem. Engng. Progr. Symposium Series, 2 : 49.

- Reid, R.C., Prausnitz, J.M., Poling, B.E., 1987. The Properties of Gases and Liquids, Mc Graw Hill, 4^{α} ed.

- Renon, H. and Prausnitz, J.M., 1967. On the thermodynamic of

alcohol - hydrocarbon solutions. Chem. Eng. Sci., 22: 299 - 306.

- Sayegh, S.G. and Ratcliff G.A., 1976. Excess Gibbs Energies of Binary Systems of Isopentanol and n-Pentanol with Hexane Isomers at 25°C : Measurement and Prediction by Analytical Group Solution Model. J. of Chem. and Eng. Data, 21, 1 : 71 - 74.

- Stage, H., Muller, E., Gemmeker, L., 1961. Neue Umlaufapparatur zur Vermessung Von Dampf-Flüssigkeits - Phasen - Gleigeurchten, Chemiker-Ztg. Chem. Apparatur/85, 11.

- Smith, J.M., Van Ness, H.C., 1980. Introdução à Termodinâmica da Engenharia Química, Guanabara Dois.

- Stokes, R.H., 1977. Interpretation of the thermodynamic, spectroscopic and dielectric properties of solutions of ethanol in cyclohexane in terms of association. J. Chem. Soc., Faraday Trans., 1, 73 : 1140 - 1148.

- Timmermans, J., 1965. Physico - Chemical constants of pure organic compounds, vol. II.

- Tsonopoulos, C., 1974. An empirical correlation of second virial coefficients. AlchE Journal, 20,2 : 263 - 267.

-Wieczorek, S.A. and Stecki, J., 1978. Vapor pressures and thermodynamic properties of hexan-1-ol + n-hexane between 298,23 and 342,82 K. J. Chem. Thermodyn., 10 : 177 - 186.

- Wiehe, I.A. and Bagley, E.B., 1967.Thermodynamic properties of solutions of alcohols in inert solvents. Ind. Eng. Chem. Fundam., 6 : 209 - 216.

- Wilhoit, R.C. and Zwolinski, B.J., 1973. Physical and thermodynamic properties of aliphatic alcohols. J. Phys. Chem. Ref. Data 2 : Supl. 1, 23 - 27.

- Zemp, R.J., 1989. Desenvolvimento de um Ebuliômetro com recirculação de ambas as fases para o estudo do equilíbrio líquido-vapor de sistemas salinos. Tese de Mestrado, UNICAMP. TABELAS

.

*

.

¥
P (kPa)	T (K)	P (kPa)	T (K)
13,45	308,05	38,45	329,15
$13,\!87$	308,75	39,95	329,95
14,15	309,15	41,81	330,85
14,83	309,95	$43,\!66$	331,85
15,83	310,65	46,03	332,95
16,51	311,95	48,47	334,15
18,05	313,65	52,23	335,75
19,20	314,85	57,82	338,05
20,60	316,35	60,75	339,15
21,83	317,35	65,13	340,75
22,74	318,35	70,75	342,65
24,47	319,65	76,08	344,45
26,08	320,85	81,66	346,25
27,63	322,05	86,53	347,75
28,81	322,85	92,53	349,25
30,15	323,95	97,95	350,65
31,40	324,95	101,06	351,45
33,22	325,85	101,27	351,65
34,63	326,85	104,42	352,25
35,77	327,55	107,54	353,05
37,46	328,45		H

Tabela VI.1: Dados de Pressão de Vapor e de Temperatura de Ebulição do Etanol

P (kPa)	T (K)	P (kPa)	T (K)
15,60	328,15	58,06	358,25
18,89	331,95	64,38	360,85
20,89	334,35	69,56	362,95
23,59	336,95	75,73	365.15
28,36	340,95	81,01	366,95
32,06	343,65	93,36	370,85
35,16	345,95	98,02	372,05
39,39	348,65	99,86	372,85
44,07	351,25	101,30	373,15
49,30	354,05	101,89	373,25
53,46	356,15	104,54	374,05

Tabela VI.2: Dados de Pressão de Vapor e de Temperatura de Ebulição da Água

x _B	$\eta_D(20^\circ C)$
0	1,4958
0,0462	1,4918
0,1469	1,4847
0,2137	1,4800
0,3387	1,4717
0,5221	1,4576
0,6108	1,4516
0,8191	1,4375
0,8766	1,4335
0,9559	1,4297
1,0000	1,4265

Tabela VI.3: Dados de Índice de Refração em função da fração molar do Ciclohexano para o sistema Ciclohexano(B)/Tolueno(A)

x_B	ув	P (kPa)
0	0	12,43
0,046	0,159	13,94
0,089	0,271	15,46
0,104	0.312	16,05
0,132	0,339	16,46
0,160	0,408	17,52
0,285	0,589	21,47
0,339	0,631	22,72
0,367	0,646	23,09
0,532	0,764	27,39
0,603	0,810	28,70
0,675	0,842	30,24
0,734	0,874	31,50
0,779	0,891	32,44
0,826	0,924	33,30
0.891	0,941	34,41
0,924	0,976	35,16
1,000	1,000	36,51

Tabela VI.4: Dados de Equilíbrio Líquido-Vapor para o sistema Ciclohexano(B)/Tolueno(A) a 323,15 K

)

ŧ

Т _В	Ϋ́B	ŶА	g^E (J/mol)
0	-	52	0
0,046	1,347	0,988	6
0,089	1,314	0,996	55
0,104	1,352	0,991	62
0,132	1,186	1,008	79
0,160	1,249	0,995	84
0,285	1,233	0,997	155
0,339	1,172	1,025	188
0,367	1,127	1,046	194
0,532	1,085	1,125	265
0,603	1,063	1,118	218
0,675	1,038	1,203	229
0,734	1,031	1,221	203
0,779	1,018	1,320	202
0,826	1,023	1,195	134
0,891	0,997	1,527	117
0,924	1,018	0,913	26
1,000	-	-	0

A

,

Tabela VI.5: Dados de Coeficientes de Atividade e Excesso da Energia Livre de Gibbs para o sistema Ciclohexano(B)/Tolueno(A) a 323,15 K

х _в	$\eta_D(20^\circ C)$
0	1,3964
0,1337	1,3994
0,1840	1,4004
0,2298	1,4014
0,2681	1,4024
0,3947	1,4053
0,4314	1,4063
0,4591	1,4075
0,5296	1,4094
0,5630	1,4105
0,6010	1,4115
0.6372	1,4125
0,8514	1,4195
0,9219	$1,\!4225$
0,9497	1,4235
1,0000	1,4265

Tabela VII.1: Dados de Índice de Refração em função da fração molar do Ciclohexano para o sistema Ciclohexano(B)/2-Butanol(A)

\boldsymbol{x}_B	$\eta_D(20^\circ C)$
0	1,3964
0,0401	1,3954
0,0812	1,3943
0,1087	1,3934
0,1378	1,3924
0,1795	1,3913
0,2115	1,3903
0,3504	1,3863
0,3891	1,3853
0,5470	1,3813
0,6992	1,3783
0,7462	1,3773
0,8205	1,3763
0,9047	1,3753
1,0000	1,3752

Tabela VII.2: Dados de Índice de Refração em função da fração molar do n-Hexano para o sistema n-Hexano(B)/2-Butanol(A)

9

τB	Ŷв	P (kPa)
0	0	11,06
0,056	0,244	15,33
0,103	0,404	18,83
0,198	0,645	26,98
0,244	0,678	28,79
0,287	0,712	30,91
0,328	0,744	33,40
0,367	0,755	34,09
0,404	0,775	35,49
0,441	0,785	35,91
0,510	0,806	37,13
0,545	0,817	37,75
0,578	0,835	38,12
0,712	0,862	38,79
0,889	0,889	39,49
0,964	0,914	39,30
0,989	0,939	37,82
1,000	1,000	36,51

Tabela VII.3: Dados de Equilíbrio Líquido-Vapor para o sistema Ciclohexano(B)/2-Butanol(A) a 323,15 K

.

x_B	¥в	P (kPa)
0	0	23,77
0,093	0,244	34,76
0,149	0,405	41,90
0.198	0.510	48,61
0,328	0,678	60,32
0,367	0,712	63,81
0,404	0,744	64,94
0,476	0,775	66,49
0,578	0,806	67,60
0,744	0,835	68,66
0,806	0862	69,07
0,889	0,889	69,08
0,914	0,905	68,65
0,939	0,914	68,57
0,964	0,939	67,72
1,000	1,000	61.75

Tabela VII.4: Dados de Equilíbrio Líquido-Vapor para o sistema Ciclohexano(B)/2-Butanol(A) a 338,15 K

٠

,

x_B	ŶВ	P (kPa)
0	0	37,77
0,056	0,151	50,26
0,103	0,287	60,45
0,198	0,476	76.77
0,220	0,512	79,27
0,287	0,612	86,29
0,328	0,645	88,94
0,404	0,678	91.92
0,476	0,712	93,83
0,510	0,744	94,82
0,578	0,775	95,97
0,712	0,806	98,23
0,835	0,835	98,59
0,914	0,862	98,13
0,939	0,889	97,49
0,964	0,914	94,05
1,000	1,000	85,26

*

-1

7

Tabela VII.5: Dados de Equilíbrio Líquido-Vapor para o sistema Ciclohexano(B)/2-Butanol(A) a 348,15 K

хв	ŸВ	P (kPa)
0	0	11,12
0,061	0,520	26,38
0,106	0,620	32,04
0,164	0,680	37.97
0,198	0,716	41,60
0,265	0,759	47,06
0,336	0,782	50,75
0,410	0,823	53,63
0,449	0,832	54,46
0,533	0,851	55,62
0,674	0,869	56,63
0.728	0,880	57,15
0,790	0,892	57,29
0,870	0,900	57,72
0,915	0,913	57,89
1,000	1,000	54,90

Tabela VII.6: Dados de Equilíbrio Líquido-Vapor para o sistema n-Hexano(B)/2-Butanol(A) a 323,15 K

-

,

* a

\boldsymbol{x}_B	ŶВ	P (kPa)
0	0	23,92
0,017	0,165	29,61
0,045	0,369	38,62
0,079	0,546	47,79
0,139	0,730	61,83
0,254	0,823	76,78
0,400	0,854	85,33
0,489	0,860	89,04
0,503	0,861	89,56
0,530	0,863	90,13
0,550	0,869	92,05
0,719	0,884	94,95
0,778	0,889	95,30
0,800	0,900	95,84
0,870	0,905	95,57
1,000	1,000	92,16

Tabela VII.7: Dados de Equilíbrio Líquido-Vapor para o sistema Ciclohexano(B)/2-Butanol(A) a 338,15 K

,

x_B	ŶВ	P(kPa)
0	0	37,98
0,024	0,198	51,11
0,061	0,373	62,97
0.130	0.552	84.35
0,164	0,620	94,06
0,227	0,671	104,01
0,317	0,719	113,35
0,373	0,750	118,60
0,449	0,800	123,84
0,533	0,830	126,66
0,600	0,848	128,46
0,680	0,880	129,08
0,820	0,899	128,67
0,850	0,920	128,02
0,930	0,950	126,71
1,000	1,000	124,58

.

·······

Tabela VII.8: Dados de Equilíbrio Líquido-Vapor para o sistema n-Hexano(B)/2-Butanol(A) a 348,15 K

. Э

.

ĴЗВ	ŶВ	Ϋ́A	g^{E} (J/mol)
0	-		0
0,056	1,855	1,107	351
0,103	2,063	1,124	482
0,198	2,422	1,071	618
0,244	2,209	1,098	709
0,287	2,109	1,122	796
0,328	2,082	1,142	886
0,367	1,927	1,183	933
0,404	1,869	1,199	969
0,441	1,755	1,238	987
0,510	1,607	1,322	1017
0,545	1,552	1,362	1021
0,578	1,507	1,341	969
0,712	1,286	1,667	877
0,889	1,080	3,556	562
0,964	1,045	8,613	322
0,989	1,005	18,621	41
1,000	-	~	0

Tabela VII.9: Dados de Coeficientes de Atividade e Excesso da Energia Livre de Gibbs para o sistema Ciclohexano(B)/2-Butanol(A) a 323,15 K

٤

x_B	Ϋ́B	71	g^E (J/mol)
0	-	*	0
0,093	1,519	1,209	593
0,149	1,877	1,220	739
0,198	2,051	1,234	874
0,328	2,027	1,199	994
0,367	2,007	1,208	1055
0,404	1,936	1,161	1000
0,476	1,754	1,186	1003
0,578	1,523	1,298	993
0,744	1,245	1,848	900
0,806	1,194	2,049	793
0,889	1,115	2,895	604
0,914	1,098	3,182	520
0,939	1,078	4,059	438
0,964	1,065	4,804	329
1.000	**	-	0

Tabela VII.10: Dados de Coeficientes de Atividade e Excesso da Energia Livre de Gibbs para o sistema Ciclohexano(B)/2-Butanol(A) a 338,15 K

x_B	Ϋ́B	ŶA	g^{E} (J/mol)
0			0
0,056	1,637	1,188	551
0,103	2,034	1,255	801
0,198	2,187	1,307	1070
0,220	2,184	1,291	1074
0,287	2,168	1,223	1058
0,328	2,059	1,222	1076
0,404	1,812	1,293	1138
0,476	1,646	1,346	1137
0,510	1,619	1,296	1079
0,578	1,505	1,337	1039
0,712	1,299	1,735	998
0,835	1,151	2,589	794
0,914	1,080	4,139	557
0,939	1,077	4,678	474
0.964	1,043	5,880	302
1,000	*		0

Tabela VII.11: Dados de Coeficientes de Atividade e Excesso da Energia Livre de Gibbs para o sistema Ciclohexano(B)/2-Butanol(A) a 348,15K

Ĵр	ŶΒ	Ϋ́A	g^{E} (J/mol)
0	18	-	0
0,061	4,186	1,201	697
0,106	3,477	1,210	813
0,164	2,905	1,290	1042
0,198	2,758	1,297	1100
0,265	2,468	1,368	1262
0,336	2,162	1,475	1389
0,410	1,964	1,427	1307
0,449	1,838	1,475	1310
0,533	1,618	1,576	1260
0,674	1,329	2,023	1132
0,728	1,257	2,243	1038
0,790	1,177	2,623	890
0,870	1,086	3,945	672
0,915	1,050	5,284	500
1,000	-	-	0

Tabela VII.12: Dados de Coeficientes de Atividade e Excesso da Energia Livre de Gibbs para o sistema n-Hexano(B)/2-Butanol(A) a 323,15 K

x_B	Ϋ́B	Ϋ́A	g^E (J/mol)
0	68		0
0,017	3,315	1,047	184
0.079	3,707	0,975	225
0.139	3.591	0,903	252
0,400	1,985	0,859	515
0,489	1,704	1,008	744
0,503	1,668	1,032	767
0,530	1,596	1,085	804
0,550	1,579	1,108	836
0,719	1,265	1,623	858
0,778	1,179	1,974	785
0,800	1,168	1,984	734
0,870	1,077	2,893	570
1,000	-	-	0

Tabela VII.13: Dados de Coeficientes de Atividade e Excesso da Energia Livre de Gibbs para o sistema n-Hexano(B)/2-Butanol(A) a 338,15 K

хB	Ϋ́B	Ϋ́A	g^{E} (J/mol)
0		tin.	0
0,024	3,484	1,099	353
0,061	3.215	1.095	453
0.130	2,946	1,124	701
0,164	2,912	1,105	749
0,227	2,506	1,142	901
0,317	2,087	1,199	1034
0,373	1,928	1,219	1068
0,449	1,773	1,164	986
0,533	1,584	1,195	950
0,600	1,457	1,267	928
0,680	1,339	1,260	789
0,820	1,132	1,871	621
0,850	1,111	1,786	511
0,930	1,038	2,376	276
1.000			0

Tabela VII.14: Dados de Coeficientes de Atividade e Excesso da Energia Livre de Gibbs para o sistema n-Hexano(B)/2-Butanol(A) a 348,15K

APENDICE A

CORREÇÃO NA LEITURA DA PRESSÃO

Os efeitos principais que afetam as leituras em um manômetro em U e que devem ser corrigidos são função da densidade do mercúrio, da aceleração local da gravidade, do efeito de capilaridade nos tubos e da temperatura.

A equação que relaciona estas correções é dada por (Maciel, 1985) :

$$P = \frac{1}{(1 + 1,818 \times 10^{-4} t_{m})} \cdot \frac{\text{glocal}}{\text{gpadrão}} (P_{L}^{+} C_{c}) \quad (A.1)$$

onde,

gtocal = aceleração da gravidade local, cm/s²
gpadrão = aceleração da gravidade padrão, cm/s² P_L = pressão lida mmHg t_m = temperatura do mercúrio, °C G_c = fator de correção do efeito capilar, mmHg

O valor da aceleração da gravidade local, glocal, pode ser calculado a partir da latitude (φ) e altura acima do nivel do mar (H) em metros :

$$glocal = 978,039 \left[1+5,294\times10^{-3}, \text{sen}^2 \phi - 7\times10^{-6}, \text{sen}^2(2\phi) \right]$$

- 3,086×10⁻⁴ H (A.2)

Para a cidade de Campinas : H= 693 m $\phi = 52^{\circ}53^{\circ}20^{\circ}$ glocal = 981,1116016 cm/s² A aceleração da gravidade padrão é dada por : gpadrão = 978,039 [1 + 5,294x10⁻³ sen² ϕ - 7x10⁻⁴ sen²(2 ϕ)] (A.3)

 $g_{padrão} = 981,3254614 \text{ cm/s}^2$

Para o caso de manômetros com mercúrio puro, construídos de vidro em cujos ramos contém vácuo (A) e nitrogênio gasoso (B), a correção capilar, fornecida pela física elementar, é dada por :

$$C_{c} = \frac{2 \cos \theta_{M}}{\Psi_{m}} \cdot \left(\frac{\tau_{A-M}}{r_{A}} - \frac{\tau_{B-M}}{r_{B}} \right) \quad (A.4)$$

onde

 θ_{M} = Angulo de contato entre o mercúrio e o vidro θ_{M} = 140°C τ_{A-M} , τ_{B-M} = coeficiente de tensão superficial do mercúrio em relação ao vácuo (A) e nitrogênio gasoso (B). Valem 470 e 480 dynas/cm, respectivamente.

 r_{A} , r_{B} = raio dos tubos que contém A e B, valem 0,1969 in.

Substituindo os valores de glocal e gpadrão e a equação (A.4) na equação (A.1), obtém-se :

$$P = \frac{0,999782}{(1 + 1,818 \times 10^{-4} t_{m})} \left[P_{L}^{+} \frac{0,01186132}{(0,491154/(1 + 1,818 \times 10^{-4} t_{m}))} \right]$$
(A.5)

APENDICE B

DETERMINAÇÃO DA COMPOSIÇÃO

Através das medidas de índice de refração (η_p) foram determinadas as composições da fase líquida e fase vapor. Necessita-se inicialmente da determinação das curvas de calibração índice de refração (η_p) em função da fração molar (x) do componente mais volátil.

A obtenção destas curvas é feita a partir da análise de amostras previamente preparadas de composição conhecida.

Preparação das amostras (Maciel, 1985)

Pesa-se uma certa quantidade do componente 1 (m₁) e do componente 2 (m₂) e sua composição é determinada através da seguinte equação :

$$x_{i} = \frac{1}{\frac{m_{i}}{1 + \frac{2}{m_{i}} - \frac{M_{i}}{M_{2}}}}$$
(B.1)

onde

M₁ = massa molar do componente 1 M₂ = massa molar do componente 2

As curvas de calibração são obtidas ao longo do intervalo total de fração molar, $x_i = 0$ a $x_i = 1$, a 20°C, e são do tipo polinomial :

$$P(x_i) = \sum_{i=0}^{n} A_i x_i^{i}$$
(B.2)

onde n é o grau do polinômio que melhor se ajusta aos dados obtidos através da análise de amostras previamente preparadas. É utilizado o método de mínimos quadrados para o ajuste polinomial.

As frações molares da fase líquida e vapor condensado são determinadas utilizando a equação de ajuste (B.2) através do método de Newton - Raphson.

APÉNDICE C

INCERTEZAS E SUAS PROPAGAÇõES

1 - Propagação das Incertezas no levantamento de curvas de Pressão de Vapor

Os dados utilizados como exemplo para o cálculo são da curva de pressão de vapor do etanol obtida neste trabalho.

As incertezas nos valores experimentais da leitura da pressão ΔP_L , da temperatura no termometro de resistência de platina ΔT e do termômetro de mercúrio Δt_m , são acumuladas na pressão P :

$$P = P (T, P_{L}, t_{m})$$

Cada uma das incertezas será considerada como sendo a metade da menor divisão da escala utilizada :

 $\Delta T = \pm 0,05 \ ^{\circ}C$ $\Delta t_{m} = \pm 0,5 \ ^{\circ}C$ $\Delta P_{L} = \pm 0,05 \ \text{mmHg} = 0,0066 \ \text{kPa}$ A incerteza e a incerteza máxima no valor de

A incerteza e a incerteza máxima no valor de uma grandeza são dadas por (norma DIN 1319, 1972) :

$$\Delta \mathbf{Y} = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial \mathbf{F}}{\partial \mathbf{X}_{i}}, \Delta \mathbf{X}_{i}\right)^{2}}$$
(C.1)

119

$$\Delta Y_{max} = \sum_{i=1}^{H} \left(\left| \frac{\partial F}{\partial X_i} \right| \Delta X_i \right)$$
 (C.2)

onde $Y = F(X_1, X_2, X_3, \dots, X_n)$

Para o caso da curva de pressão de vapor :

$$\Delta P = \sqrt{\left(\frac{\partial P}{\partial T} \cdot \Delta T\right)^2} + \left(\frac{\partial P}{\partial t_m} \cdot \Delta t_m\right)^2 + \left(\frac{\partial P}{\partial P_L} \cdot \Delta P_L\right)^2 \qquad (C.3)$$

$$\Delta P_{max} = \left|\frac{\partial P}{\partial T}\right| \Delta T + \left|\frac{\partial P}{\partial t_m}\right| \Delta t_m + \left|\frac{\partial P}{\partial P_L}\right| \Delta P_L \qquad (C.4)$$

- derivada $\frac{\partial P}{\partial T}$

É obtida derivando a equação de Antoine em relação a T, utilizando os parâmetros ajustados. Visto que esta derivada varia ao longo da curva, foi utilizado um valor médio da derivada, calculada em três pontos, por toda a faixa de pressão e temperatura.

$$\frac{\partial P}{\partial T} = -\frac{B}{(C + T)^2} \cdot \exp \left[A + \frac{B}{C + T}\right]$$
$$\frac{\partial P}{\partial T} = 17,26 \text{ mmHg/}^{\circ}C = 2,30 \text{ kPa/K}$$

- derivada $\frac{\partial P}{\partial t}$

Obtida através da equação (A.5), que aplica as correções

a pressão lida. São utilizados os valores médios de P = 352,29 mmHg e t = 29,87 °C.

$$\frac{\partial P}{\partial t_{m}} = -\frac{\left(P_{L} + 0.02\right) \times 1.000454617 \times 1.818 \times 10^{-4}}{\left(1 + 1.818 \times 10^{-4} t_{m}\right)^{2}}$$
$$\frac{\partial P}{\partial t_{m}} = -0.00845 \text{ kPa/K}$$

- derivada $\frac{\partial P}{\partial P_{L}}$

Obtida também através da equação (A.5)

$$\frac{\partial P}{\partial P}_{L} = \frac{1,00045617}{1+1,818\times10^{-4}} t_{m}$$
$$\frac{\partial P}{\partial P}_{L} = 0,99505$$

Substituindo os valores das derivadas nas equações (C.3) e (C.4), obtém-se :

 $\Delta P = 0,11 \text{ kPa}$ $P_{vapor} = (P \pm 0,11 \text{ kPa})$ $\Delta P_{max} = 0,13 \text{ kPa}$ $P_{vapor} = (P \pm 0,13 \text{ kPa})$

C.2 - Propagação das Incertezas no levantamento das curvas de equilíbrio líquido/vapor

As incertezas nos dados de equilíbrio líquido/vapor são

acumuladas nos valores das composições $x_1 e y_1$. Estas são função das incertezas nas medidas da pressão, temperatura, do índice de refração e na determinação das massas ($m_1 e m_2$), necessárias para elaboração da curva de calibração. Os dados utilizados como exemplo para o cálculo são os das curvas de equilíbrio líquido/vapor do sistema ciclohexano(1)/tolueno(2) a 323,15 K deste trabalho, e 1,0133 Bar de Zemp (1989).

$$x_i = x_i$$
 (T, P, m_i , m_z , η_D)

As incertezas no valor de x são obtidas aplicando as equações (C.1) e (C.2) , onde :

$$\Delta T = \pm 0,05 \ ^{\circ}C$$

 $\Delta m_{1} = \pm 0,00005 \ g$
 $\Delta m_{2} = \pm 0,00005 \ g$
 $\Delta \eta_{p} = \pm 0,0001$

As derivadas parciais obtidas através das curvas de equilíbrio líquido/vapor, são calculadas numericamente considerando o valor médio em três pontos da curva, como valor final.

1

C.2.1 - Cálculo de AP

$$P = P (t_m, P_L)$$
$$\Delta t_m = \pm 0,05 °C$$
$$\Delta P_L = \pm 0,0066 kPa$$

- As derivadas $\frac{\partial P}{\partial t_m} = \frac{\partial P}{\partial P_L}$, são obtidas através da equação (A.5) com os valores médios $t_m = 25,77$ °C e $P_L = 24,98$ kPa :

$$\frac{\partial P}{\partial t_m} = -0,0045 \text{ kPa/K}$$

$$\frac{\partial P}{\partial P} = 0,9958$$

onde

- derivada $\frac{\partial x_1}{\partial T}$

Obtida através da curva $T-x_1$, considerando os dados isobáricos de Zemp (1989).

$$\frac{\partial x_1}{\partial T} = 0,00412 \text{ K}^{-1}$$

- derivada $\frac{\partial x_1}{\partial P}$

Obtida através da curva P^-x_1 .

$$\frac{\partial x_1}{\partial P} = 0,0383 \text{ kPa}^{-1}$$

- As derivadas $\frac{\partial x_1}{\partial m_1} = \frac{\partial x_1}{\partial m_2}$ são obtidos da seguinte forma

$$\frac{\partial x_1}{\partial m_1} = \frac{\partial x_1}{\partial m_1} = \frac{\partial n_1}{\partial m_1} = \frac{x_2}{n_1}$$

$$\frac{\partial m_1}{\partial m_1} = \frac{\partial m_1}{n_1} = \frac{\partial m_1}{n_1}$$

$$\frac{\partial x_1}{\partial m_2} = \frac{\partial x_1}{\partial m_2}, \frac{\partial n_2}{\partial m_2} = -\frac{x_1}{n_T} \frac{\partial n_2}{PM_2}$$

onde

 $m_1 = m_2 = massas dos componentes em g$ $n_1 = n_2 = número de moles dos componentes. (<math>n_T = n_1 + n_2$) $PM_1 = PM_2 = massas molares dos componentes em g/mol$

 n_{T} = tomado como sendo a média dos números de moles totais, proveniente da preparação de amostras, para a construção da curva de calibração. n_r = 0,0083 Para o valor médio $x_1 = x_2 = 0.5$:

$$\frac{\partial x_1}{\partial m_1} = 0,7158 \text{ g}^{-1}$$

$$\frac{\partial x_1}{\partial m_2} = -0,6538 \text{ g}^{-1}$$

- derivada $\frac{\partial x_1}{\partial \eta_p}$

Obtida através da equação que representa a curva de calibração .

$$\frac{\partial x}{\partial \eta} = -13,9237$$

Então

$$\Delta x_{i} = 0,001$$

$$x_{i} = (x_{i} \pm 0,001)$$

$$\Delta x_{i} \max = 0,002$$

$$x_{i} = (x_{i} \pm 0,002)$$

C.2.2 - Incerteza na medida de y_1

$$y_i = y_i (T, P, m_i, m_2, \eta_D)$$

As incertezas na medida de y são obtidas aplicando as equações (C.1) e (C.2).

- derivada $\frac{\partial y_1}{\partial T}$

Obtida através da curva T-y_i, considerando os dados isobáricos de Zemp (1989).

$$\frac{\partial y_1}{\partial T} = -0,00409 \text{ K}^{-1}$$

$$- \text{ derivada } \frac{\partial y_1}{\partial P}$$

*

Obtida através da curva P-y

$$\frac{\partial y_{i}}{\partial P} = 0,0358 \text{ kPa}^{-1}$$

- As derivadas $\frac{\partial y_1}{\partial m_1} = \frac{\partial y_1}{\partial m_2}$ são obtidas para $y_1 = 0,7351$

que corresponde a $x_1 = 0,5$ na curva de equilíbrio líquido/vapor.

$$\frac{\partial y_1}{\partial m_1} = 0,3792 \text{ g}^{-1}$$

$$\frac{\partial y_{i}}{\partial m_{2}} = -0,9612 \text{ g}^{-1}$$

$$- \text{ derivada } \frac{\partial y_{i}}{\partial m_{p}}$$

Obtida através da equação que representa a curva de calibração, para y $_{i}$ = 0,7351.

$$\frac{\partial y_1}{\partial \eta_p} = -14,9723$$

Então :

$$\Delta y_i = 0,001$$

 $y_i = (y_i \pm 0,001)$
 $\Delta y_i = 0,002$
 $y_i = (y_i \pm 0,002)$

C.2.3 -Cálculo das incertezas nas medidas de x_i e y_i considerando pontos próximos aos extremos $x_i = 0$ e $x_i = 1$

$$\begin{vmatrix} x_{i} = 0,046 \\ y_{i} = 0,159 \end{vmatrix} \qquad \begin{vmatrix} x_{i} = 0,924 \\ y_{i} = 0,9763 \end{vmatrix}$$

- As derivadas $\frac{\partial x_1}{\partial T}$, $\frac{\partial x_1}{\partial P}$, $\frac{\partial y_1}{\partial T}$ e $\frac{\partial y_1}{\partial P}$ mantém os mesmos valores, pois foram obtidas numericamente em três pontos das curvas $P-x_1$, $P-y_1$, $T-x_1$ e $T-y_1$.

a) Cálculo para $x_i = 0,046$

$$\frac{\partial x_{1}}{\partial m_{1}} = 1,365 \text{ g}^{-1}$$

$$\frac{\partial x_{1}}{\partial m_{2}} = -0,0608 \text{ g}^{-1}$$

$$\frac{\partial x_{1}}{\partial m_{2}} = -14,2511$$

$$\frac{\partial \gamma_{D}}{\partial m_{D}}$$

Então :

$$\Delta x_{i} = 0,001$$

$$x_{i} = (x_{i} \pm 0,001)$$

$$\Delta x_{i} = (x_{i} \pm 0,002)$$

$$x_{i} = (x_{i} \pm 0,002)$$

b) Cálculo para $x_i = 0,924$

$$\frac{\partial x_{i}}{\partial m_{i}} = 0,10837 \text{ g}^{-1}$$

$$\frac{\partial x_{i}}{\partial m_{2}} = -1,2086 \text{ g}^{-1}$$

$$\frac{\partial x_{i}}{\partial m_{2}} = -16,7224$$
Então :
$$\Delta x_{i} = 0,001$$

*

$$x_{i} = (x_{i} \pm 0,001)$$

 $\Delta x_{i} = 0,002$
 $x_{i} = (x_{i} \pm 0,002)$

c) Cálculo para $y_i = 0,159$

$$\frac{\partial y_{1}}{\partial m_{1}} = 1,2031 \text{ g}^{-1}$$

$$\frac{\partial y_{1}}{\partial m_{2}} = -0,2087 \text{ g}^{-1}$$

$$\frac{\partial y_{1}}{\partial m_{2}} = -13,8927$$

Então :

$$\Delta y_{i} = 0,001$$

$$y_{i} = (y_{i} \pm 0,001)$$

$$\Delta y_{i} m \Delta x = 0,002$$

$$y_{i} = (y_{i} \pm 0,002)$$

d) Cálculo para $y_i = 0,976$

$$\frac{\partial y_{1}}{\partial m_{i}} = 0,0339 \text{ g}^{-1}$$

$$\frac{\partial y_{1}}{\partial m_{2}} = -1,2766 \text{ g}^{-1}$$

$$\frac{\partial y_{1}}{\partial m_{2}} = -17,4064$$

$$\frac{\partial y_{1}}{\partial m_{p}} = -17,4064$$

4

Então : $\Delta y_i = 0,002$ $y_i = (y_i \pm 0,002)$ $\Delta y_i máx = 0,002$ $y_i = (y_i \pm 0,002)$

,

C.3 - Propagação das incertezas no cálculo do coeficiente de atividade (γ_i)

O quadro abaixo apresenta os dados correspondentes aos três pontos da curva de equilíbrio líquido/vapor :

	$x_{i} = 0,046$	$x_{i} = 0,5$	$x_{i} = 0,924$
×z	0,953	0,5	0,076
¥ 1	0,159	0,735	0,976
Уz	0,840	0,265	0,024
P	0,137 atm	0,259 atm	0,347 atm
٢,	1,3472	1,0659	1,0181
7 ₂	0,9885	1,0950	0,9132

C.3. 1 - Cálculo considerando só o ponto médio $x_1 = 0,5$

a) Incerteza no cálculo de γ .

$$\gamma_{i} = \gamma_{i} \langle T, P, x_{i}, y_{i} \rangle$$

As incertezas no cálculo de γ_1 são obtidas aplicando as equações (C.1) e (C.2). As derivadas são obtidas através da equação (III.1.16) ,

 $= \operatorname{derivada} \frac{\partial \gamma_{i}}{\partial T}$ $= \frac{\partial \gamma_{i}}{\partial T} = \gamma_{i} \left[\frac{-\left(B_{i1} - v_{i}^{L}\right)\left(P - P_{i}^{\mathrm{sat}}\right)}{R T^{2}} - \frac{P y_{2}^{2} \delta_{i2}}{R T^{2}} \right]$ $= \frac{\partial \gamma_{i}}{\partial T} = -2,2785 \times 10^{-5} K^{-1}$ $= \operatorname{derivada} \frac{\partial \gamma_{i}}{\partial P}$ $= \frac{\partial \gamma_{i}}{\partial P} = \gamma_{i} \left[\frac{1}{P} + \frac{\left(B_{i1} - v_{i}^{L}\right)}{R T} + \frac{y_{2}^{2} \delta_{i2}}{R T} \right]$

$$\frac{\partial \gamma_1}{\partial P} = 0,03997 \text{ kPa}^{-1}$$
$= \operatorname{derivada} \frac{\partial \gamma_{i}}{\partial x_{i}} :$ $\frac{\partial \gamma_{i}}{\partial x_{i}} = -\frac{\gamma_{i}}{x_{i}}$ $\frac{\partial \gamma_{i}}{\partial x_{i}} = -2,13176$ $\frac{\partial \gamma_{i}}{\partial x_{i}} = -2,13176$ $\frac{\partial \gamma_{i}}{\partial y_{i}} :$ $\frac{\partial \gamma_{i}}{\partial y_{i}} = \gamma_{i} \left[\frac{1}{y_{i}} - \frac{2 P y_{2} \delta_{i2}}{R T} \right]$ $\frac{\partial \gamma_{i}}{\partial y_{i}} = 1,44244$

Onde ,

 $\Delta \gamma_{i} = 0,003$ $\gamma_{i} = \langle \gamma_{i} \pm 0,003 \rangle$ $\Delta \gamma_{i} = 0,007$ $\gamma_{i} = \langle \gamma_{i} \pm 0,007 \rangle$

b) Incerteza no cálculo de γ_2

\$

$$\gamma_{2} = \gamma_{2} \langle T, P, x_{1}, y_{2} \rangle$$

As incertezas no cálculo de γ_2 são obtidas aplicando as equações (C.1) e (C.2).As derivadas são obtidas atravésda equação (III.1.16).

- derivada
$$\frac{\partial \gamma_2}{\partial T}$$

 $\frac{\partial \gamma_2}{\partial T} = \gamma_2 \left[\frac{-(B_{22} - v_2^L)(P - P_2^{sat})}{R T^2} - \frac{P y_1^2 \delta_{12}}{R T^2} \right]$

$$\frac{\partial \gamma_2}{\partial T} = 1,3366 \times 10^{-5} \text{ K}^{-1}$$

$$= \operatorname{derivada} \frac{\partial \gamma_{z}}{\partial P}$$

$$= \frac{\partial \gamma_{z}}{\partial P} = \gamma_{z} \left[\frac{1}{P} + \frac{\left(B_{zz} - v_{z}^{L}\right)}{RT} + \frac{y_{1}^{2} \delta_{1z}}{RT} \right]$$

$$= \frac{\partial \gamma_{z}}{\partial P} = 0,0701 \text{ kPa}^{-1}$$

$$= \operatorname{derivada} \frac{\partial \gamma_{z}}{\partial x_{1}}$$

$$= \frac{\partial \gamma_{z}}{\partial x_{1}} = \frac{\gamma_{z}}{x_{z}}$$

$$= \frac{\partial \gamma_{z}}{\partial x_{1}} = 2,19$$

- derivada
$$\frac{\partial \gamma_2}{\partial y_1}$$

 $\frac{\partial \gamma_2}{\partial y_1} = \gamma_2 \left[\frac{-1}{y_2} + \frac{2 P y_1 \delta_{12}}{R T} \right]$
 $\frac{\partial \gamma_2}{\partial y_1} = -4,1122$

/

onde,

$$\Delta \gamma_2 = 0,005$$

$$\gamma_2 = (\gamma_2 \pm 0,005)$$

$$\Delta \gamma_2 m \Delta x = 0,01$$

$$\gamma_2 = (\gamma_2 \pm 0,01)$$

C.3.2 - Cálculo considerando os pontos extremos próximos a $x_i = 0$ e $x_i = 1$

a) Incerteza no cálculo de γ_i para $x_i = 0,046$

*

$$\frac{\partial \gamma_{1}}{\partial T} = -7,5788 \times 10^{-5} \text{ K}^{-1}$$

$$\frac{\partial \gamma_{1}}{\partial P} = 0,0963 \text{ kPa}^{-1}$$

$$\frac{\partial \gamma_{1}}{\partial Y_{1}} = -28,97$$

$$\frac{\partial \gamma_{1}}{\partial X_{1}} = 8,4252$$

$$\Delta \gamma_{i} = 0,06$$

$$\gamma_{i} = (\gamma_{i} \pm 0,06)$$

$$\Delta \gamma_{i}^{m \pm x} = 0,07$$

$$\gamma_{i} = (\gamma_{i} \pm 0,07)$$

b) Incerteza no cálculo de γ_i para $x_i = 0,924$

$$\frac{\partial \gamma_{1}}{\partial T} = -2,5115 \times 10^{-6} \text{ K}^{-1}$$

$$\frac{\partial \gamma_{1}}{\partial P} = 0,02836 \text{ kPa}^{-1}$$

$$\frac{\partial \gamma_{1}}{\partial P} = -1,10148$$

$$\frac{\partial \gamma_{1}}{\partial x_{1}} = 1,0419$$

*

$$\Delta \gamma_{i} = 0,003$$

$$\gamma_{i} = (\gamma_{i} \pm 0,003)$$

$$\Delta \gamma_{i} m \Delta x = 0,004$$

$$\gamma_{i} = (\gamma_{i} \pm 0,004)$$

c) Incerteza no cálculo de χ para o ponto x = 0,046

.

1

$$\frac{\partial \gamma_2}{\partial T} = 3,189 \times 10^{-6} \text{ K}^{-1}$$

$$\frac{\partial \gamma_{2}}{\partial P} = 0,0701 \text{ kPa}^{-1}$$

$$\frac{\partial \gamma_{2}}{\partial x_{1}} = 1,0367$$

$$\frac{\partial \gamma_{2}}{\partial y_{1}} = -1,174$$

onde,

$$\Delta \gamma_2 = 0,002$$

$$\gamma_{2} = (\gamma_{2} \pm 0,002)$$

$$\Delta \gamma_2 m \Delta x = 0,005$$

 $\gamma_2 = (\gamma_2 \pm 0,005)$

d) Incerteza no cálculo de γ_2 para $x_1 = 0.924$

$$\frac{\partial \gamma_{2}}{\partial T} = 3,6309 \times 10^{-6} \text{ K}^{-1}$$

$$\frac{\partial \gamma_{2}}{\partial P} = 0,0257 \text{ kPa}^{-1}$$

$$\frac{\partial \gamma_{2}}{\partial Y} = 12,06$$

$$\frac{\partial \gamma_{2}}{\partial y} = -38,4997$$

onde,

$$\Delta \gamma_{2} = 0,08$$

$$\gamma_{2} = (\gamma_{2} \pm 0,08)$$

$$\Delta \gamma_{2} m \Delta x = 0,1$$

$$\gamma_{2} = (\gamma_{2} \pm 0,1)$$

C.4 - Propagação das incertezas no cálculo do excesso da energia livre de Gibbs, g^E

$$g^{E} = g^{E}$$
 (T, x, $\ln \gamma_{i}$, $\ln \gamma_{2}$)

As incertezas no cálculo de g^E são obtidas aplicando as equações (C.1) e (C.2). As derivadas são obtidas através das equações (III.1) e (III.1.16).

.

C.4.1 - Cálculo considerando só o ponto médio $x_1 = 0,5$

C.4.1.1 - Cálculo de $\Delta \ln \gamma_{\star}$

$$\ln \gamma_i = \ln \gamma_i \quad (T, P, x_i, y_i)$$

.

- derivada $\frac{\partial \ln \gamma_{1}}{\partial T}$ $\frac{\partial \ln \gamma_{1}}{\partial T} = -\left[\frac{\left(B_{11} - v_{1}^{L}\right)\left(P - P_{1}^{eat}\right)}{R T^{2}} + \frac{P y_{2}^{2} \delta_{12}}{R T^{2}}\right]$ $\frac{\partial \ln \gamma_{1}}{\partial T} = -2,137 \times 10^{-6} K^{-1}$ $- derivada \frac{\partial \ln \gamma_{1}}{\partial P}$ $\frac{\partial \ln \gamma_{1}}{\partial P} = \left[\frac{1}{P} + \frac{\left(B_{11} - v_{1}^{L}\right)}{R T} + \frac{y_{2}^{2} \delta_{12}}{R T}\right]$ $\frac{\partial \ln \gamma_{2}}{\partial P} = 0,037 \ \text{kPa}^{-1}$

$$\Delta \ln \gamma_{i} = 0,002$$
$$\Delta \ln \gamma_{i} \max = 0,007$$

C.4.1.2 - Cálculo $\Delta \ln \gamma_z$

$$\ln \gamma_2 = \ln \gamma_2 \quad (T, P, x_i, y_i)$$

$$\frac{\partial \ln \gamma_{2}}{\partial T} :$$

$$\frac{\partial \ln \gamma_{2}}{\partial T} = -\left[\frac{\left(B_{22} - v_{2}^{L}\right)\left(P - P_{2}^{sat}\right)}{R T^{2}} + \frac{P y_{1}^{2} \delta_{12}}{R T^{2}}\right]$$

$$\frac{\partial \ln \gamma_{2}}{\partial T} = 1,2206 \times 10^{-5} K$$

- derivada
$$\frac{\partial \ln \gamma_2}{\partial P}$$

 $\frac{\partial \ln \gamma_2}{\partial P} = \frac{1}{P} + \frac{\left(B_{22} - v_2^L\right)}{R T} + \frac{y_1^2 \delta_{12}}{R T}$
 $\frac{\partial \ln \gamma_2}{\partial P} = 0,0375 \text{ kPa}^{-1}$

- derivada
$$\frac{\partial \ln \gamma_2}{\partial x_1}$$

 $\frac{\partial \ln \gamma_2}{\partial x_1} = \frac{1}{x_2}$
 $\frac{\partial \ln \gamma_2}{\partial x_1} = 2,0$
 $\frac{\partial \ln \gamma_2}{\partial x_1} = 2,0$
- derivada $\frac{\partial \ln \gamma_2}{\partial y_1}$
 $\frac{\partial \ln \gamma_2}{\partial y_1} = \frac{1}{y_2} + \frac{2 P y_1 \delta_{12}}{R T}$

$$\frac{\partial \ln r_z}{\partial y_1} = 3,7946$$

$$\Delta \ln \gamma_{z} = 0,004$$

 $\Delta \ln \gamma_{z}$ máx = 0,01

 $- \operatorname{derivada} \frac{\partial g^{E}}{\partial T} = R \left[x_{i} \ln \left(\frac{y_{i}}{x_{i}} \frac{P}{P_{i}^{\operatorname{sat}}} \right) + x_{2} \ln \left(\frac{y_{2}}{x_{2}} \frac{P}{P_{2}^{\operatorname{sat}}} \right) \right] \\ - \frac{\partial g^{E}}{\partial T} = 6,9816 \operatorname{cm}^{3}.\operatorname{atm/K} \\ - \operatorname{derivada} \frac{\partial g^{E}}{\partial x_{i}} \\ - \frac{\partial g^{E}}{\partial x_{i}} = R T \left[\ln \left(\frac{y_{i}}{x_{i}} \frac{P}{P_{i}^{\operatorname{sat}}} \right) + \frac{\left(B_{11} - v_{1}^{L} \right) \left(P - P_{1}^{\operatorname{sat}} \right)}{R T} + \frac{P y_{2} \delta_{12}}{R T} - \frac{P y_{2} \delta_{2}}{R T} \right] \right]$

$$\ln \left(\frac{y_{2}^{P}}{x_{2}^{P} p_{2}^{eat}}\right) = \frac{\left(\frac{B_{22}^{P} - y_{2}^{P}\right)\left(P - P_{2}^{eat}\right)}{R T} = \frac{P y_{1}^{P} \delta_{12}}{R T}$$

$$\frac{\partial g_{1}}{\partial x_{1}} = -1233,1078 \text{ cm}^{3}.\text{atm}$$

- derivada $\frac{\partial g^{E}}{\partial \ln \gamma_{1}}$ $\frac{\partial g^{E}}{\partial \ln \gamma_{1}} = R T x_{1}$ $\frac{\partial g^{E}}{\partial \ln \gamma_{1}} = 13257,22875 \text{ cm}^{3}.\text{atm}$ $- \text{ derivada} \frac{\partial g^{E}}{\partial \ln \gamma_{2}}$ $\frac{\partial g^{E}}{\partial \ln \gamma_{2}} = R T x_{2}$ $\frac{\partial g^{E}}{\partial \ln \gamma_{2}} = 13257,22875 \text{ cm}^{3}.\text{atm}$

onde,

 $\Delta g^{E} = 59,302 \text{ cm}^{3}.\text{atm} = 6 \text{ J/mol}$ $g^{E} = (g^{E} \pm 6)$ $\Delta g^{E} \text{máx} = 228,19 \text{ cm}^{3}.\text{atm} = 23 \text{ J/mol}$ $g^{E} = (g^{E} \pm 23)$

C.4.2 -Incerteza no cálculo de g^E considerando os pontos extremos próximos a $x_1 = 0$ e $x_1 = 1$

 $C.4.2.1 - Cálculo para x_{i} = 0,046$

a) Cálculo de $\Delta \ln \gamma_1$ e $\Delta \ln \gamma_2$

$$\frac{\partial \ln \gamma_{i}}{\partial P} = 0,0715 \text{ kPa}^{-1}$$
$$\frac{\partial \ln \gamma_{i}}{\partial T} = -5,626 \times 10^{-5} \text{ K}^{-1}$$

$$\frac{\partial \ln \gamma_{1}}{\partial x_{1}} = -21,50$$

$$\frac{\partial \ln \gamma_{1}}{\partial x_{1}} = 6,2538$$

$$\frac{\partial \gamma_{1}}{\partial y_{1}} = -21,50$$

$$\Delta \ln \gamma_{i} = 0,02$$
$$\Delta \ln \gamma_{i} \max = 0,06$$

$$\frac{\partial \ln \gamma_{z}}{\partial P} = 0,0709 \text{ kPa}^{-1}$$

$$\frac{\partial \ln \gamma_{z}}{\partial T} = 3,227 \times 10^{-6}$$

$$\frac{\partial \ln \gamma_{z}}{\partial T} = 0.000$$

$$\frac{\partial x_{1}}{\partial x_{1}} = 1,0488$$
$$\frac{\partial \ln \gamma_{2}}{\partial y_{1}} = 1,1922$$

Onde,

 $\Delta \ln \gamma = 0,002$ $\Delta \ln \gamma \max_{2} = 0,005$

*

$$\frac{\partial g^{E}}{\partial T} = 1,8218 \text{ cm}^{3}.\text{atm/K}$$

$$\frac{\partial g^{E}}{\partial x} = 7972,54$$

.

ŕ

$$\frac{\partial g^{E}}{\partial \ln \gamma_{1}} = 1232,922 \text{ cm}^{3}.\text{atm}$$

$$\frac{\partial \log^{E}}{\partial \log^{E}} = 25281,535 \text{ cm}^{3}.\text{atm}$$

$$\Delta g^{E} = 56,82 \text{ cm}^{3} \text{.atm} = 6 \text{ J/mol}$$

$$g^{E} = (g^{E} \pm 6)$$

$$\Delta g^{E} \text{máx} = 216,34 \text{ cm}^{3} \text{.atm} = 22 \text{ J/mol}$$

$$g^{E} = (g^{E} \pm 22)$$

a) Cálculo de $\Delta \ln \gamma_i$ e $\Delta \ln \gamma_2$

$$\frac{\partial \ln \gamma}{\partial P} = 0,0278 \text{ kPa}^{-1}$$

$$\frac{\partial \ln \gamma_{i}}{\partial T} = -2,4668 \times 10^{-6}$$

$$\frac{\partial \ln \gamma_{i}}{\partial x_{i}} = -1,08189$$

$$\frac{\partial \ln \gamma_1}{\partial y_1} = 1,0234$$

Ondø,

$$\Delta \ln \gamma_{1} = 0,002$$

 $\Delta \ln \gamma_{1} \max = 0,004$

$$\frac{\partial \ln \gamma_{z}}{\partial P} = 0,028 \text{ kPa}^{-1}$$
$$\frac{\partial \ln \gamma_{z}}{\partial T} = 3,976 \times 10^{-6}$$
$$\frac{\partial \ln \gamma_{z}}{\partial X_{1}} = 13,21$$
$$\frac{\partial \ln \gamma_{z}}{\partial Y_{1}} = 42,229$$

 $\Delta \ln \gamma_2 = 0.08$ $\Delta \ln \gamma_2 \max = 0.11$

$$\frac{\partial g^{E}}{\partial T} = 5,3746 \text{ cm}^{3}.\text{ atm/K}$$

$$\frac{\partial g^{E}}{\partial x_{1}} = 3341,776 \text{ cm}^{3}.\text{ atm}$$

$$\frac{\partial g^{E}}{\partial x_{1}} = 24507,313 \text{ cm}^{3}.\text{ atm}$$

$$\frac{\partial g^{E}}{\partial 1n\gamma_{1}} = 2007,1444 \text{ cm}^{3}.\text{ atm}$$

onde,

$$\Delta g^{E} = 167,92 \text{ cm}^{3} \text{.atm} = 17 \text{ J/mol}$$

$$g^{E} = (g^{E} \pm 17)$$

$$\Delta g^{E} \text{máx} = 325,52 \text{ cm}^{3} \text{.atm} = 33 \text{ J/mol}$$

$$g^{E} = (g^{E} \pm 33)$$

•

.

APENDICE D

.

1

.

Reagente	Fornecedor	Grau de Pureza
Ciclohexano	Ecibra	99,5%
Tolueno	MERCK	. 99,5%
n-Hexano	Grupo Química	99,0%
2-Butanol	Riedel-de Haën	99,0%
2-Butanol	AnaLaR	99,0%

Tabela D.1

Reagente	Temperatura d	e ebulição (°C)	$\eta_D a 20^\circ C$	
	experimental	literatura	experimental	literatura
Ciclohexano	80,68	80,65 1	1,4265	$1,4263^{-2}$
Tolueno	110,40	110,65 1	1,4958	1,4961 3
n-Hexano	68,61	68,75 ¹	1,3752	1,3751 8
2-Butanol (Riedel)	99.10	99,55 ¹	1,3964	1.3954 3
2-Butanol (AnaLaR)	98,70	99,55 ¹	1,3964	1,3954 3

Tabela D.2

¹Reid & Colaboradores (1984) ²Timmermans (1965) ³CRC - 58th ed. (1977, 1978)

T (K)	Reagente	Pressão de Vapor (kPa)		
		experimental	literatura	
323,15	Tolueno	12,43	12,28 1	
	Ciclohexano	36,51	36,23 1	
	n-Hexano	54,90	54,04 ¹	
	2-Butanol (Hiedel)	11,06	11,05 2	
	2-Butanol (AnaLaR)	11,12	11,05 ²	
338,15	Ciclohexano	61.75	49.38 ¹	
	n-Hexano	92,16	89,96 1	
	2-Butanol (Riedel)	23,77;	23,71 2	
	2-Butanol (AnaLaR)	23,92	23,71 2	
348,15	Ciclohexano	85,26	83,72 1	
	n-Hexano	124,58	122,84 1	
	2-Butanol (Riedel)	37,77	37,54 2	
	2-Butanol (AnaLaR)	37,99	37,54 2	

Tabela D.3

¹Boublik & Colaboradores (1984) ²Wilhoit & Zwolinski (1973)

	Tolueno	Ciclohexano	n-Hexano	2-Butanol
$T_{c}(K)$	591,8	553,5	507,5	536,1
P _c (atm)	40,6	40,2	29,3	41,4
V_c (cm ³ /atm)	316	308	370	269
W	0,263	0,212	0,299	0,577
Ze	0,263	0,273	0,264	0,252
A-polar	-		-	0,0878
B-polar	•	-	-	0,0487
ZRA	0,2646	0,2729	0,2635	0,2565

Tabela D.4

Sistema	BAA	B _{BB}	B _{AB}	δ_{AB}
	$\rm cm^3/mol$	cm ³ /mol	cm ³ /mol	cm ³ /mol
Ciclohexano(B)/2-Butanol(A)				
323,15 K	-1457,03	-2820,81	-1000,12	2277,59
338,15 K	-1276,86	-2113,02	-879,891	1630,10
348,15 K	-1177,52	-1776,30	-812,006	1329,81
n-Hexano(B)/2-Butanol(A)				
323,15 K	-1563,23	-2820,81	-1023,57	2336,91
338,15 K	-1373,45	-2113,02	-900,657	1685,15
348,15 K	-1267,51	-1776,30	-830,931	1381,95

Tabela D.5

	Volume Molar (cm ³ /mol)				
	323,15 K 338,15 K 348,15 K				
Ciclohexano	112,187	114,369	115,909		
n-Hexano	137,952	141,292	143,687		
2-Butanol	95, 832	97,923	99,4078		
Tolueno	109,533		1997		

Tabela D.6

Grupo Prin	cipal Sub-Gru	po Nº	Rk	Q _k
CH ₃	CH ₃	1	0,9011	0,848
$(n^{Q} 1)$	CH ₂	2	0,6744	0,540
ССОН	СНОНС	H ₃ 15	1,8780	1,600
$(n^{Q} 5)$	СНОНС	H ₂ 16	1,6513	1,352

N₽	Grupo	1	5
	Principal	CH ₂	ССОН
1	CH ₂	0	737,5
5	ССОН	-87,93	0

Tabela D.7 Parâmetros de Interação de Grupo (Fredenslund & Colaboradores, 1977)

APENDICE E

.

EQUAÇÃO UNIQUAC

$$g^{E} = g^{E}_{comb} + g^{E}_{ros} \qquad (E.1)$$

$$\frac{g^{E}_{comb}}{RT} = x_{A} \ln \frac{\Phi_{A}}{x_{A}} + x_{B} \ln \frac{\Phi_{B}}{x_{B}} + \left(\frac{Z}{2}\right) \qquad (E.2)$$

$$\left[q_{A} x_{A} \ln \frac{\Phi_{A}}{\Phi_{A}} + q_{B} x_{B} \ln \frac{\Phi_{B}}{\Phi_{B}}\right] \qquad (E.2)$$

$$\frac{g^{E}_{ros}}{RT} = -q_{A}' x_{A} \ln \left(\theta_{A}' + \theta_{B}' \tau_{BA}\right) - q_{B}' x_{B} \qquad (E.2)$$

$$\ln \left(\theta_{B}' + \theta_{A}' \tau_{AB}\right) \qquad (E.3)$$

$$\Phi_{A} = \frac{x_{A} T_{A}}{x_{A} q_{A} + x_{B} q_{B}} \qquad \Phi_{B} = \frac{x_{B} q_{B}'}{x_{A} q_{A} + x_{B} q_{B}} \qquad (E.5)$$

$$\theta_{A}' = \frac{x_{A} q_{A}'}{x_{A} q_{A}' + x_{B} q_{B}'} \qquad \theta_{B}' = \frac{x_{B} q_{B}'}{x_{A} q_{A}' + x_{B} q_{B}'} \qquad (E.6)$$

150