Este exemples corresponde à realeção pinal de Tere defendide por CELIO AUGUSTO COMES DE SOUZA, e aporeda pela Comissão Julgadora em 25/4/1986.

Afdrod

TRANSFERÊNCIA DE CALOR COM MUDANÇA DE FASE EM PROCESSOS DE BORBULHAMENTO UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA DE CAMPINAS DEPARTAMENTO DE ENGENHARIA QUÍMICA

TRANSFERÊNCIA DE CALOR COM MUDANÇA DE FASE EM PROCESSOS DE BORBULHAMENTO

Autor : Célio Augusto Gomes de Souza Orientador : Alberto Luiz de Andrade

> Tese submetida à Comissão de Pós-Gr<u>a</u> duação da Faculdade de Engenharia de Campinas-UNICAMP- como parte dos requisitos necessários para obtenção do Grau de "MESTRE EM ENGENHARIA QUÍMICA"

Campinas - SP - Brasil

Abril de 1986

UNICAMP BIBLIOTECA CENTRAL

À minha mãe Reneé, pela fé e incentivo. À minha esposa Socorro, pelo amor e com preensão, e a meus filhos Alyne e Alan, pelos seus carinhos.

AGRADECIMENTOS

Ao Professor Doutor Alberto Luiz de Andrade, pela sua dedicada orientação e incentivo ao desenvolvimento deste trabalho.

Ao Professor Doutor João Alexandre F.R. Pereira, p<u>e</u> lo apoio e valiosas sugestões com relação ao equipamento ut<u>i</u> lizado.

Ao Francisco Tomaz II. Verri, pelo ótimo trabalho f<u>o</u> tográfico contido neste trabalho.

Ao Wilton Furquim, pelo auxílio na elaboração dos esquemas e gráficos que compõem o trabalho.

À Margarida Seixas Maia e Odette Roppello, pelo excelente serviço de datilografia.

Ao Departamento de Engenharia Química da FEC/UNICAMP, pelo uso de suas instalações.

Ao Departamento de Operações e Processos Químicos da UFPA, pelo apoio.

A Coordenação de Aperfeiçoamento de Pessoal de nível Superior - CAPES, pela bolsa concedida.

Ao Carlos Felipe Gomes de Souza, pelo incentivo e amizade.

Aos Professores, Colegas e Funcionários do Departa mento de Engenharia Química da FEC/UNICAMP.

RESUMO

No desenvolvimento deste trabalho, é analisado o fenômeno de transferência de calor com mudança de fase em um pro cesso de borbulhamento, obtido quando bolhas de gás aquecido , passam através de uma quantidade de líquido. Um equipamento é utilizado para a obtenção experimental das taxas de evapora ção de uma quantidade de líquido, sendo realizados ensaios com temperaturas do gás de alimentação na faixa de 70 a 285°C. É analisado um modelo difusivo transiente, onde as equações resultantes para os cálculos dos coeficientes e fluxos de trans ferência de calor e massa levam em conta os efeitos na superfí cie da bolha. As equações do modelo são apresentadas de uma forma explícita permitindo a determinação direta das taxas de transferência de calor e massa na evaporação de um líquido, efe tuando-se a comparação desses resultados com os valores experi mentais. Os resultados obtidos com a aplicação de um modelo si multâneo e de um modelo com o superaquecimento, mostram que para maiores temperaturas do gás e para maiores tempos de resi dência, ambos os modelos reproduzem satisfatoriamente as condi ções de operação.

Com a finalidade de se verificar o desempenho do equi pamento em relação ao tempo necessário para este alcançar o re gime permanente, é feita uma previsão da temperatura de equilí brio do líquido, levando-se em conta os efeitos simultâneos , como também o efeito de superaquecimento, sendo esses valores confrontados com os resultados experimentais.

ABSTRACT

Heat transfer fenomena with phase change is analysed in a bubbling process, where heated gas bubbles pass through a liquid. The experimental evaporation rate is measured with an equipment which operates with gas feed temperatures in the range of 70 to 285°C. A diffusive transient model is presented in which the simultaneous transfer effects and surface bubble superheating are taken into account to calculate heat and mass transfer coefficients and flow rates. The modeling equations are presented in the explicit form thus permitting the direct calculations of heat and mass transfer rates during the evaporation of a liquid and the testing the predicted values with experimental results. A comparison between the simultaneous and the superheating models showed that at higher gas temperatures and higher residence times, both models reproduce satisfactorily the operational conditions.

In order to verify the equipment performance to obtain the bubbling time needed for the attainment of steady state, the liquid equilibrium temperature was theoretically calculated taking into a account the simultaneous and the superheating effects, being these results compared with the experimental values.

1v

SUMARIO

RESUMO	Página iii
ABSTRACT	ίv
<u>CAPÍTULO I - INTRODUÇÃO</u>	1
I.1 - ASPECTOS GERAIS E OBJETIVOS	2
CAPÍTULO II - REVISÃO DA LITERATURA	5
II.1 - INTRODUÇÃO	6
11.2 - HIDRODINÂMICA DAS BOLHAS	8
11.3 - TRANSFERÊNCIA DE CALOR E MASSA EM BOLHAS OU GOTAS	14
II.3.1 - <u>Considerações Gerais</u>	14
II.3.2 - <u>Coeficientes de Transferência da Fase Contínua</u>	15
II.3.3 - <u>Coeficientes de Transferência da Fase Dispersa</u>	19
II.3.4 - <u>Coeficientes de Transferência Simultâneos</u>	21
CAPÍTULO III - FUNDAMENTOS TEÓRICOS: MODELO UTILIZADO	26
III.1 - INTRODUÇÃO	27
III.2 - OS COEFICIENTES DE TRANSFERÊNCIA E OS FLUXOS DE	
CALOR E MASSA SIMULTÂNEOS	27
111.3 - OS COEFICIENTES DE TRANSFERÊNCIA E O EFEITO	
DE SUPERAQUECIMENTO	33
III.4 - O PERFIL INTERNO E A TEMPERATURA DA SUPERFÍCIE	
DA BOLHA	40
CAPÍTULO IV - EQUIPAMENTO E COLETA DE DADOS EXPERIMENTAIS	45
IV.1 - DESCRIÇÃO DA APARELHAGEM EXPERIMENTAL	46
IV.2 - OBTENÇÃO DAS MEDIDAS EXPERIMENTAIS	55
IV.2.1 - <u>Tabelas dos Dados Experimentais</u>	66

....

	Pãgina
CAPÍTULO V - ANÁLISE DOS RESULTADOS E CONCLUSÕES	95
V.1 - INTRODUÇÃO	96
V.2 - DETERMINAÇÃO DA TEMPERATURA MEDIA INTERNA , E	
DA TEMPERATURA MÉDIA DA SUPERFÍCIE DA BOLHA	99
V.3 - OS COEFICIENTES DE TRANSFERÊNCIA DE CALOR E MASSA	102
V.4 - AS TAXAS DE TRANSFERÊNCIA DE CALOR E MASSA	105
V.5 - PREVISÃO DA TEMPERATURA DE EQUILÍBRIO DO LÍQUIDO	109
NOMENCLATURA	151
ANEXO A	155

REFERÊNCIAS BIBLIOGRÁFICAS

.

vi

166

.

CAPÍTULO I - INTRODUÇÃO

1.1. ASPECTOS GERAIS E OBJETIVOS

Em muitos processos industriais de borbulhamento, o contato de uma fase gasosa e uma fase líquida, é feita pela dis persão do gás no líquido. Nestes processos, onde a troca de ca lor e massa são essenciais, torna-se imprescindível o conhecimento dos fenômenos de transporte das duas fases.

Esses processos, envolvem operações, tais como: evapo ração, destilação, extração, etc. Equipamentos para essas ope rações, demandam altos custos, que vão desde a sua fase de pro jeto, até sua operação. Há então a necessidade de que o proj<u>e</u> to, baseie-se principalmente em parâmetros confiáveis.

Para os processos que envolvem evaporação, a literatu ra apresenta as vantagens do evaporador de contato direto, em relação aos evaporadores que utilizam superfícies metálicas . Dentre estas vantagens podemos citar, uma maior simplicidade na construção do equipamento, e também a substituição da super fície metálica por uma interface gás-líquido.

Além da importância dos parâmetros para o projeto de equipamentos, onde ocorrem a transferência de calor e massa, deve-se destacar que esses parâmetros podem ser determinados através de um modelo que caracterize o fenômeno envolvido no processo, o qual envolve soluções analíticas para sua descrição, baseadas nas equações de energia e massa, e seu aprimor<u>a</u> mento depende da existência de dados experimentais que permitam uma comparação com os resultados da teoria.

O conhecimento da análise simultânea da transferência de calor e massa, que ocorre na evaporação, deve ser caracter<u>i</u> zado, para uma melhor descrição dos fenômenos envolvidos, pois

permitirá, que os coeficientes de transferência expressem os efeitos das diferenças de temperaturas e de concentrações que ocorrem simultaneamente no mesmo campo.

Em muitos processos de borbulhamento, a temperatura do gás é superior a temperatura do líquido. Este efeito chamado de superaquecimento da bolha, deve ser levado em conta, para uma melhor caracterização do fenômeno, nesse caso as taxas de evaporação englobarão não só calor sensível, como também calor latente.

Neste trabalho foi estudado um processo de borbulhamento, o qual envolve o sistema ar-água, sendo o ar a fase di<u>s</u> persa e a água a fase contínua.

Com o objetivo de analisar as transferências de calor e massa simultâneos, bem como o efeito do superaquecimento no processo, visando a determinação das taxas de evaporação da f<u>a</u> se contínua, foi utilizado um modelo que reproduzisse esses f<u>e</u> nômenos no processo de evaporação.

As soluções do modelo de ANDRADE (1) não permitiam a determinação direta da taxa de transferência, uma vez que essa variável não se encontrava de uma forma explícita nas equações, sendo então os cálculos realizados através de um método aproxi mado que requeria um valor arbitrado para um dos parâmetros da equação. No nosso trabalho essa variável foi explicitada, e através de cálculos numéricos símples, foi feita sua determin<u>a</u> ção de uma forma direta, e além disso, foi possível realizar uma análise mais detalhada do modelo desenvolvido, permitindo identificar-se o efeito do superaquecimento.

As taxas calculadas pelo modelo são comparadas com as

taxas determinadas experimentalmente obtida por meio de um equ<u>i</u> pamento que consta basicamente, de uma unidade de aquecimento do gás, e de uma unidade, chamada borbulhador, onde se processa o contato direto da fase líquida e o gás aquecido.

Foram obtidas experimentalmente as quantidades de líquido evaporado em diversas condições de operação. As faixas de operação, para a temperatura do gás de entrada no borbulhador, foram: 70, 100, 150, 180, 225, 285 graus centígrados, se<u>n</u> do realizadas diversas corridas, variando-se as alturas iniciais de borbulhamento em intervalos de tempos definidos.

Com o objetivo de analisar o desempenho de equipamen tos, do tipo de evaporadores diretos, foram também obtidas equa ções que permitiam a previsão da temperatura de equilíbrio do líquido, sendo comparadas com as temperaturas experimentais.

Estas equações, mesmo dadas em função de valores médios, são importantes para avaliar, quando o processo de borb<u>u</u> lhamento neste tipo de equipamento entra em regime permanente, ou seja, determina a temperatura de equilíbrio que a fase líquida deve atingir, após o período transiente de operação, co<u>r</u> respondente à partida do equipamento.

CAPÍTULO II - REVISÃO DA LITERATURA

11.1 - INTRODUÇÃO

A transferência de calor e massa em processos de borbulhamento, é de comum ocorrência em muitas operações na Eng<u>e</u> nharia Química, tals como: evaporação, absorção, extração, de<u>s</u> tilação, trocadores de calor de contato direto, etc.. Segundo GAL-OR, KLINZING E TAVLARIDES(2), o comportamento intrínseco de todas essas diferentes operações, seguem, de uma maneira <u>ge</u> ral, os mesmos princípios básicos.

O modelo físico é geralmente, constituído de duas fases distintas: a fase contínua, que é o meio que contém as b<u>o</u> lhas ou gotas, e que constitui a fase dispersa.

Um vasto número de investigações teóricas e experimentais, tem sido direcionadas para casos envolvendo bolha e gota simples, ou um aglomerado delas, movendo-se em diferentes meios. A complexidade dos fenômenos envolvidos nos processos de contato gás-líquido ou líquido-líquido, faz comque haja um gran de interesse nesta área, procurando-se sua caracterização atr<u>a</u> vés da criação de novos modelos, visando estabelecer parâmetros tanto da fase contínua, como da fase dispersa.

Nessas operações, o fenômeno ocorre em uma superfície comum, chamada interface. Sob o ponto de vista industrial,uma grande área interfacial por unidade de volume é necessária, pa ra que a transferência desejada, seja obtida rapidamente em equipamento de tamanho finito.

Um equipamento de projeto simples, e que permite gran des áreas interfaciais gás-líquido, é o evaporador de contato direto, o qual tem recentemente estimulado as investigações nes sa área, como por exemplo nos projetos de dessalinização da água. Este tipo de evaporador, torna-se bastante superior em relação aos processos convencionais que utilizam superfícies metálicas. SIDEMAN(3), cita três fatores importantes para o uso desse tipo de equipamento:

- 1) Projeto simples e de custo barato
- Baixa manutenção, devido a falta ou redução de incrustação.
- 3) Aumento das taxas de transferência.

Aspectos relevantes, quanto aos mecanismos a serem em pregados para descrever a transferência de calor de contato direto, utilizando a dispersão de bolhas ou gotas em um meio contínuo, devem ser bem caracterizados.

Determinações precisas dos coeficientes de transferên cia, tanto da fase dispersa como da fase contínua, devem ser feitas, pois as estimativas das taxas de transferência são fun ções desses parâmetros. O tempo de contato entre as duas fases, é um outro parâmetro que deve ser incluído nos cálculos desses coeficientes, mesmo quando o processo é permanente.

O movimento das bolhas ou gotas, deve ser caracteriza do, pois através desse estudo é que tem-se conhecimento da variação ou não de sua esfericidade. A ocorrência da variação na sua forma, implicará em uma maior dificuldade, para estabe lecer as equações de movimento, bem como das equações de energia e massa, envolvidas no processo.

A literatura mostra uma grande quantidade de trabalhos realizados, para um melhor entendimento desses fenômenos. Apesar de grandes esforços ainda não se tem uma compreensão de todos os fatores que governam o processo de contato gãs-líqui do e a transferência de calor e massa para as bolhas.

11.2 - HIDRODINÂMICA DAS BOLHAS

Para um estudo de processos de borbulhamento, envolven do fenômenos de transferência de calor e massa, e de quantidade de movimento, deve ter-se o conhecimento da hidrodinâmica das bolhas.

As formas, dimensões, velocidade de ascensão, perfís de velocidade e a força de arraste que possibilita estimar o coeficiente de arraste, são fatores importantes para o entendi mento do movimento das bolhas em um meio contínuo, os quais for necerão parâmetros de projeto para equipamentos que envolvam este tipo de fenômeno.

Devido ao complexo comportamento do movimento das bolhas em um meio contínuo, estudos tem sido feitos para a bolha isolada, visando uma melhor descrição do seu comportamento e características. Mesmo assim, há diferentes resultados e conclusões em diversos trabalhos nesta área.

O estudo das formas das bolhas, movendo-se em um meio líquido é importante, já que o coeficiente de arraste nas bolhas dependerá da sua forma durante o movimento. A forma da bolha, movendo-se em diferentes líquidos, mostrou ser dependen te do balanço entre a pressão hidrodinâmica nela exercida, devido a velocidade relativa da bolha no campo líquido, e as for ças de superfície que tendem a fazer a bolha esférica.

Formas de bolhas movimentando-se sob diversas condições de escoamento, foram estudadas por vários pesquisadores. As observações de DATTA, NAPIER e NEWITT(4)e LEVICH(5), mostra ram que para diâmetros pequenos, a bolha tem a forma esférica, enquanto que para número de Reynolds elevados, revelam uma di<u>s</u> torção desse formato.

A dimensão da bolha, é dependente entre outras, das propriedades físicas do gás e do líquido, do diâmetro do orifí cio, a qual é gerada, da tensão interfacial gás-líquido e da taxa volumétrica do escoamento do gás, através do orifício.

Encontra-se na literatura diversos modelos e métodos experimentais tais como: fotografia, técnicas de raio-x e dispositivos óticos e eletrônicos, que possibilitam a determina ção das dimensões das bolhas. O grande obstáculo nessas estimativas, reside nas dificuldades em se interpretarem os resul tados obtidos, devido o complexo comportamento do movimento das bolhas.

KUMAR e KULOOR(6), DAVIDSON e HARRISON(7), apresentam modelos e estabelecem equações para a estimativa do volume da bolha. Eles comparam seus modelos com os de outros autores, e concluem que muitas dessas investigações são geralmente contr<u>a</u> ditórias, devido a maior ou menor quantidade de variáveis que são levadas em consideração na descrição do fenômeno.

Recentemente, MARTIN e CHANDLER(8), realizaram medidas das dimensões e velocidade de ascensão de bolhas de ar em água, e em soluções diluídas de polímeros, usando um equipame<u>n</u> to ótico-eletrônico.

LEVICII(5), apresenta observações, quanto ao regime do movimento da bolha, que varia consideravelmente com o número de Reynolds, definido por:

$$Re = \frac{Ua}{v} , \qquad (II.1)$$

sendo U, a velocidade da bolha em movimento, a é o raio da bolha e v a viscosidade cinemática da fase contínua.

LEVICH(5), concluiu que bolhas com diâmetros menores que 0,01 cm, ascendem como esferas sólidas. Para diâmetros maiores que 0,01 cm (Re > 1), a velocidade de ascensão desvia da lei de Stokes.

Suas experiências, utilizando bolhas de ar ascendendo em água, mostraram que em Re, em tôrno de 700, corresponde à bolhas com diâmetros de 0,2 a 0,3 cm, ocorrendo uma mudança ní tida na natureza do movimento, e iniciando uma deformação. na forma de pratos elipsoidais, cujo eixo menor está na direção do seu movimento. Ainda nesta fase elas começam a vibrar e as cendem seguindo um percurso em espiral, ao invés de uma linha reta. A velocidade é independente do seu diâmetro na faixa de 0,2 a 1,5 cm, sendo seu valor entre 28 a 30 cm/s. Para diâme tros maiores, as bolhas ascendem em velocidades acêrca de 35 a 40 cm/s, e tendem a subdividirem-se em bolhas menores.

LEVICH(5) apresenta uma classificação, quanto ao tam<u>a</u> nho das bolhas em função do número de Reynolds. Para a faixa de Re de 1 a 800, são ditas moderadas, sendo que sua forma pode ser considerada esférica, para Re \geq 800, são consideradas grandes e perdem a sua esfericidade.

Na determinação da força de arraste atuando em um meio infinito sobre uma esfera, fluida, deve-se levar em cons<u>i</u> deração as distribuições de velocidades de ambas as fases. HABERMAN e MORTON(9), apresentam uma revisão da literatura, e calculam experimentalmente, coeficientes de arraste e dimensões de bolhas de ar ascendendo livremente em vários líquidos.

Os primeiros estudos teóricos, aplicados para pequenas bolhas de gãs, que ascendem lentamente em um meio infinito, isto é, à baixos números de Reynolds, tem um comportamento se melhante ao de esferas rígidas. Nestas condições, e para flui dos newtonianos, STOKES(10), determinou a força de arraste. pa ra uma esfera movimentando-se em um meio infinito, dada por :

$$F_{\rm D} = 6 \pi \mu_{\rm L} a v_{\rm co} \tag{II.2}$$

onde μ_L é a viscosidade dinâmica do meio líquido, a o raio da bolha e v_{∞} , a velocidade de ascensão. A equação (II.2), é conhecida como a Lei de Stokes.

Assim, no regime de Stokes, o coeficiente de arraste é dado por :

$$C_{\rm D} = \frac{24}{\rm Re}$$
, (II.3)

válido para Re < 1.

HADAMARD(11) e RYBCZYNSKI(12), analizaram o movimento de esferas fluidas, na região de Stokes (Re<1), e encontraram independentemente a solução da equação do movimento, tendo ch<u>e</u> gado à seguinte equação para a força de arraste :

$$F_{\rm D} = 6 \pi \mu_{\rm L} a v_{\infty} \frac{2 \mu_{\rm L} + 3\mu_{\rm g}}{3 \mu_{\rm L} + 3\mu_{\rm g}}$$
(II.4)

onde μ_g é a viscosidade dinâmica do fluido no interior da esfera fluida. Eles consideraram que na interface esfera fluida-

líquido, as tensões de cisalhamento e as velocidades tangenciais são iguais.

O coeficiente de arraste para este caso, é dado por:

$$C_{\rm D} = \frac{24}{\rm Re} - \frac{2\mu_{\rm L} + 3\mu_{\rm g}}{3\mu_{\rm L} + 3\mu_{\rm g}}$$
(II.5)

Para o caso de bolhas, onde $\mu_L >> \mu_g,$ o coeficiente de arraste, torna-se igual a :

$$C_{\rm D} = \frac{16}{\rm Re} \tag{II.6}$$

BOUSSINESQ(13), incluiu a variação nas tensões inter faciais. Esta variação foi atribuída aos efeitos de tensões superfíciais e ao movimento da bolha. A força de arraste \vec{e} da da por :

$$F_{\rm D} = 6 \pi \mu_{\rm L} a v_{\infty} \frac{\mu_{\rm s}^{+} a (2 \mu_{\rm L}^{+} 3 \mu_{\rm g})}{\mu_{\rm s}^{+} 3 a (\mu_{\rm L}^{+} - \mu_{\rm g})}$$
(II.7)

onde μ_s é o coeficiente de viscosidade superfícial. Este parâ metro está associado com o efeito de retardamento, devido a presença de materiais ativos na superfície da bolha. Segundo PAI(14) e LEVICH(5), grandes quantidades de impurezas na super fície da bolha, causam esse efeito, e a circulação no seu interior tende a cessar, comportando-se como uma esfera rígida. Para pequenos valores de a e grandes μ_s , a equação (II.7), apr<u>o</u> xima-se da solução de Stokes. O outro limite é a solução de Hadarmard e Rybczynski.

A equação do coeficiente de arraste, na região de Stokes, para este caso é então :

$$C_{\rm D} = \frac{24}{\text{Re}} \frac{\mu_{\rm s} + a (2 \mu_{\rm L}^{+3} \mu_{\rm g})}{\mu_{\rm s} + 5 a (\mu_{\rm L}^{+} \mu_{\rm g})}$$
(II.8)

HARPER E MOORE (15), apresentaram um modelo para o movi mento da bolha ou gota em um meio fluido para elevados números de Reynolds. O modelo é caracterizado por um escoamento poten cial externo, longe da interface gás-líquido, pela existência de uma camada limite próxima à superfície e por uma zona de des locamento dessa camada. Devido a tensão cisalhante aplicada na interface pelo fluido ambiente, foi observado que o fluido no interior da bolha circula, sendo conhecido esse movimento, como vórtices de Hill(16).

LEVICH(5), determinou o campo de velocidade dado pela solução do escoamento irrotacional. Baseado na existência da camada limite, e considerando que a tensão tangencial na inter face bolha-líquido, é muito pequena, tem-se a expressão para o coeficiente de arraste :

$$C_{\rm D} = \frac{48}{\rm Re} \tag{II.9}$$

onde Re é o número de Reynolds baseado no diâmetro da bolha.

MOORE(17), analisou o movimento de bolhas de ar em 1<u>í</u> quidos viscosos, para altos números de Reynolds. Seus estudos levaram em conta uma distribuição das tensões viscosas normais na superfície da bolha em um escoamento irrotacional. A equação para o coeficiente de atrito é dada por :

$$C_{\rm D} = \frac{32}{\rm Re}$$
(II.10)

CHAO(18) determinou um coeficiente de atrito,utilizan do o modelo de MOORE(18), mas levando em conta a existência da tensão tangencial na superfície. O coeficiente é da forma:

$$C_{\rm D} = \frac{32}{\rm Re} \left(1 + 2 \frac{\mu_{\rm g}}{\mu_{\rm L}} - 0, 514 \frac{1 + 4\mu_{\rm g}/\mu_{\rm L}}{\rm Re^{1/2}}\right)$$
(11.11)

VALENTIN(19) apresenta o modelo de LOCHIEL(20) o qual modíficou o modelo proposto por CHAO(18), obtendo a seguinte expressão para o coeficiente de atrito:

$$C_{\rm D} = \frac{48}{\rm Re} \left[1 + \frac{\mu_{\rm g}}{\mu_{\rm L}} - (0,314/{\rm Re}^{1/2})(4/3 + \frac{2-\mu_{\rm g}}{\mu_{\rm L}}) \right]$$
(II.12)

que é semelhante a uma equação derivada por MOORE (21).

II.3 - <u>TRANSFERÊNCIA DE CALOR E MASSA EM BOLHAS OU GOTAS</u> II.3.1 - <u>Considerações Geraís</u>

Uma vasta literatura, encontra-se disponível para os processos que envolvem uma fase dispersa (bolhas ou gotas) , contidas em um meio contínuo. Como o nosso objetivo é o de es tudar parâmetros de projetos de evaporadores diretos, visando as taxas de evaporação, é oportuno nos determos em alguns dos aspectos mais importantes da transferência de calor e massa em bolhas.

Um procedimento usual para o estudo dos mecanismos de transferência para a fase dispersa, é através de três modelos físicos : O estagnado, o completamente misturado e-o circulante, os quais são referidos por SIDEMAN(3). a) Modelo estagnado: considera o comportamento interno, semelhante a um corpo rígido, ou seja a transferência de calor se processa por condução;

 b) Modelo completamente misturado : é admitido a ausência de gradiente térmico no seu interior;

c) Modelo circulante: caracteriza-se pela existência de um perfil de velocidade interno.

Cada modelo possue suas próprias equações resultantes das condições de contorno, e das propriedades físicas das duas fases, que são utilizadas para a descrição do fenômeno a ser estudado, visando a comparação dos resultados experimentais com os valores teóricos calculados pelo modelo.

A previsão das taxas de transferência de calor e mas sa, devem envolver a resistência térmica da fase contínua e a da fase dispersa ou as duas combinadas, isto dependerá do mod<u>e</u> lo a ser utilizado no processo.

11.3.2 - Coeficientes de Transferência da Fase Contínua

A predição dos coeficientes de transferência de calor e massa, para a fase contínua, é apresentada na literatura, por uma grande quantidade de trabalhos teóricos e experimentais, e para os mais diversos tipos de processos. Apesar da grande diversificação dos modelos propostos para a sua determinação , estes são derivados do conceito da teoria da camada limite, p<u>a</u> ra o cálculo do número de Nusselt e Sherwood, de correlações empíricas, obtidas de resultados experimentais, e de equações baseadas na análise de similaridade. Para uma bolha ou gota rígida em regime estacionário, LANGMUIR(22) em 1918, previu analiticamente um número de Nusselt, igual a 2, para a convecção natural, sendo dada por:

$$Nu_{c} = \frac{h_{c} D}{k_{c}} = 2$$
(II.13)

onde, h_c é o coeficiente de transferência de calor, D o diâmetro da bolha ou gota e k_c , a condutividade térmica. O índice c refere-se a fase contínua.

Os numerosos trabalhos, para estimar os coeficientes de transferência de calor e massa, de um modo geral, consideram um perfil de velocidade, na camada limite e o meio contínuo. Para o escoamento laminar, as soluções exatas da camada limite são obtidas, para baixos números de Reynolds (Re<1)e aplica-se somente na parte frontal da bolha, até a região de separação . Suposições são feitas para estender a derivação para a bolha inteira, e as relações obtidas são ajustadas através de dados experimentais. As limitações das soluções analíticas, bem como as suas aplicações para gotas esféricas e não esféricas, fo ram demonstradas por LOCHIEL e CALDERBANK(23), no estudo de transferência de massa para corpos simétricos em relação ao seu eixo.

As correlações para a transferência de calor, quando é aplicado o conceito de camada limite, de um modo geral, tem as seguintes formas:

Para $\text{Re}_{c} < 1$ e $\text{Pe}_{c} < 1$:

 $Nu_c = Polinômio (Pe_c)$ (II.14)

onde, $Pe_c = (RePr)_c$.

Normalmente, a equação (II.14), toma a seguinte forma, para valores de Re $_{\rm C}$ > 1.

$$Nu_{c} = A_{1} + A_{2} (Re_{c})^{m} (Pr_{c})^{n}$$
 (II.15)

onde :

$$m = n = 1/3$$
, para Pe_ >> 1 e Re_ > 1.

 \mathbf{e}

$$m = 1/2; n = 1/3, para Pe_c >> 1 e 1 < Re_c < 10^5.$$

Como mostrado por SIDEMAN(3) e SIDEMAN e SHABTAI(24) as constantes A_1, A_2 , m e n, foram determinadas por muitos auto res e obtidas através de diferentes métodos. Geralmente a cons tante A_1 é igual a 2, que é o valor limite para que ocorra a difusão para o meio contínuo. Quanto a constante A_2 , seu valor varia na faixa de 0,4 a 1,0, sendo esse valor dependente do modelo físico e da técnica empregada nas soluções das equações.

Estudos para estimar coeficientes de transferência de calor e massa da fase contínua, para aglomerados de bolhas, <u>go</u> tas e partículas esféricas, são bastante complexos pois requerem análise simultânea de um grande número de variáveis, bem como das características do movimento.

RUCKENSTEIN(25), estudando o movimento de bolhas ou gotas, em um meio fluido, aplicou o conceito de camada limite, e obteve equações por método numérico para a determinação dos coeficientes de transferência de massa da fase contínua, envo<u>l</u> vendo bolhas e gotas. Ele considerou dois casos: a) grupos de bolhas movendo-se a baixos números de Reynolds (Re << 1), on de a fase contínua contém substâncias ativas; b) grupo de bo-Has para Re >> 1, movendo-se em uma fase contínua pura. Sen do que no caso (b), o tempo de contato entre o fluido e a bolha foi estimado, usando a teoría de penetração de Higbie.

WASLO e GAL-OR(26), analisaram o mesmo problema porém aplicaram o conceito da camada limite, dada por LEVICH(5). Po<u>s</u> teriormente YARON e GAL-OR(27), apresentam correlações semelhantes, utilizando um método integral para a resolução das equações na camada limite.

O conhecimento do regime transiente para a transferên cia de calor e massa, associada com o movimento da bolha ou go ta é importante para uma grande variedade de processos industriais. Uma descrição matemática desse processo é bastante di fícil e complexa, devido o fenômeno ser dependente da variável tempo.

CHAO(28), analisou a resposta do comportamento transi ente para a camada limite térmica ou de concentração, tanto da fase externa como da fase interna de uma gota, movendo-se com velocidade constante e circulação interna completamente desen volvida em um meio infinito, sob condições de grandes números de Reynolds e Peclet. Foi considerado o escoamento externo irro tacional, e o campo de velocidade interno dado pelos vortices de Hill(16). As equações de energia e massa, foram resolvidas, usando o método de similaridade. O resultado mostra que a camada limite desenvolvida é independente das propriedades dos fluidos, mas é governada por um parâmetro dado por: Ut/a, onde U é a velocidade de deslocamento da gota, t o tempo e a o raio da gota, sendo concluído que a transição cessará quando 🧠 este parâmetro atingir a unidade.

As mesmas restrições são válidas, para os estudos d<u>e</u> senvolvidos por CHAO e CHEN(29), KONOPLIV e SPARROW(30), sendo que os procedimentos matemáticos adotados por esses autores f<u>o</u> ram diferentes.

BRAUER(31,32), analisou a transferência de massa em regime transiente através da interface de uma partícula esféri ca, usando métodos numéricos. As partículas podem ser bolhas, gotas e esferas sólidas. Foi admitido escoamento laminar para o fluido externo sendo que as equações apresentadas por HADA-MARD(11) e RYBCZYNSKI(12), para o campo de velocidade. foram utilizadas para a determinação do campo de concentração. Núme ros de Sherwood foram calculados para a fase dispersa e fase contínua. Utilizando as soluções numéricas, obtidas das equações diferenciais do modelo, foram estimadas a resistência da fase contínua e a da fase dispersa, bem como a resistência com binada das fases.

11.3.3 - Coeficientes de Transferência da Fase Dispersa

Como já foi dito anteriormente, os coeficientes de transferência de calor para a fase dispersa, de um modo geral, são estimados a partir dos modelos : Completamente misturado , circulante e estagnado.

Para o modelo completamente misturado, é considerado que a resistência da fase interna é desprezível. Para a taxa de calor transferido para a bolha, dada por :

 $\frac{d Q}{d t} = A h_c (T_c - T_d)$ (II:16)

onde :

$$d Q = (V C_p \rho T)_d$$
(II.17)

E integrando a equação (II.16), em relação ao tempo de contato, teremos:

$$E_{T} = \frac{T_{o} - T_{i}}{T_{c} - T_{i}} = 1 - \exp\left[-\frac{(A_{v} - A_{v})}{(V - C_{p})^{\rho}} + \frac{h_{c} \tau}{d}\right]$$
(II.18)

onde E_T , representa uma efetividade de transferência, $T_o \in T_i$, são as temperaturas final e inicial da bolha no meio contínuo e T_c , a temperatura do meio contínuo, A,V, $C_p \in \rho$, são a área superficial, o volume da bolha, o calor específico e a massa específica da fase dispersa, respectivamente, h_c o coeficiente de transferência de calor convectivo da fase contínua, e τ o tempo de contato entre a bolha e o meio fluido. O índice d,r<u>e</u> fere-se ã fase dispersa.

KRONIG e BRINK(33), consideraram o modelo circulante, e utilizaram a função corrente de HADAMARD(11), para estimar a efetividade de transferência, sendo a resistência externa nula. A expressão obtida é da forma :

$$E_{T} = 1 - \frac{3}{8} \sum_{n=1}^{\infty} A_{n}^{2} \exp\left[-\frac{\lambda_{n} 16 \alpha_{d} \tau}{a^{2}}\right]$$
(II.19)

onde α_d é a difusividade da fase dispersate a, o raio da bolha ou gota. A equação (II.19) é aplicada para Re < 1.

CALDERBANK e KORCHINSKI(34), apresentaram uma equação empírica, derivada da equação (II.19), válida para a faixa de 1 < Re < 200.

Para o modelo estagnado, este vem sor a aplicação da teoria da transferência de calor por condução, sendo consider<u>a</u> do o comportamento interno, semelhante a de uma esfera sólida. A eficiência de transferência, dada por JAKOB(35), onde derivou o perfil de temperatura a partir da equação da condução e considerou uma resistência do filme exterior, é dada por:

$$E_{T} = 1 - 6 \sum_{n=1}^{\infty} A_{n} \exp \left[-\frac{\lambda_{n}^{2} \alpha_{d} t}{a^{2}} \right]$$
 (II.20)

Os valores dos parâmetros $A_n e \lambda_n$, das equações (II.19) e (II.20), estão tabelados no trabalho de SIDEMAN(3), e são função do grupo admensional $h_c D/K_d$, onde D é o diâmetro da bolha ou gota e k_d a condutividade da fase dispersa.

Todas as equações para os modelos, consideram a temp<u>e</u> ratura da fase contínua T_c , constante.

II.3.4 - Coeficientes de Transferência Simultâneos

A transferência simultânea de calor e massa, está associada à várias operações industriais. Neste tipo de fenômeno, ocorrem gradientes térmicos e mássicos, atuando no mesmo campo, e consequentemente, há a variação das propriedades físi cas das fases envolvidas, tornando a caracterização desse fen<u>ô</u> meno bastante complexa.

Estudos de transferência de calor e massa, tem sido feitos para _{OS CHSOS} de evaporação e condensação de bolhas ou <u>go</u> tas em um meio fluido, onde geralmente, está associado com uma mudança de fase.

SIDEMAN e TAITEL(36), analisando o fenômeno, para o caso da evaporação, desenvolveram uma expressão analítica para o número de Nusselt médio, resolvendo a equação da energia, e considerando que a gota esférica de raio constante move-se em um escoamento potencial ao seu redor. A expressão é da forma:

$$Nu_{c} = \left(\frac{3\cos\beta - \cos^{3}\beta + 2}{\pi}\right)^{0,5} Pe_{c}^{0,5}$$
(II.21)

onde Nu_c = $h_c D/k_c e Pe_c = D U/\xi_c$

Sendo, h_c o coeficiente de transferência de calor, D o diâmetro da gota, k_c a condutividade térmica, U a velocidade de de<u>s</u> locamento, ξ_c a difusividade térmica e β o ângulo de abertura, correspondente à fase vapor. Quando $\beta = 0$, a equação (II.21), reduz-se a solução de BOUSSINESQ(37), sem mudança de fase.

Eles consideraram somente a resistência térmica da f<u>a</u> se contínua. O modelo proposto levou em consideração a existência de duas fases no interior da gota. Uma fase líquida,l<u>o</u> calizada na região inferior da gota e uma fase vapor na região superior, tendo sido comprovadas através de estudos fotográficos.

SELECKI e GRADON(38), realizaram um estudo teórico e experimental do movimento da evaporação da gota em um líquido imíscivel, utilizando o modelo sugerido por SIDEMAN e TAI-TEL(36). A equação foi resolvida numericamente e os seus re sultados experimentais foram comparados com os de SIDEMAN e TAITEL(36), mostrando-se bastante satisfatórios.

MOKHTARZADEH e EL-SHIRBINI(39), apresentaram uma aná-

lise teórica da evaporação de gotas de pentano e but<u>a</u> no em uma coluna com água destilada estagnada. Eles observaram que para diferentes temperaturas iniciais, tamanhos de bo lha iniciais, e velocidades iniciais, a relação de SIDEMAN e TAITEL(36), não dá bons resultados quando comparados com o seu modelo.

SMITH, ROHSENOW e KAZIMI(40), desenvolveram um modelo para o cálculo do coeficiente de transferência calor volumétr<u>i</u> co para um conjunto de gotas. Admitem somente a resistência da fase contínua. A análise leva em conta dois estágios: o primeiro considera que uma gota não sofre influência das outras ; portanto, o comportamento é de gota isolada, e o segundo est<u>á</u> gio são levados em conta os efeitos do conjunto das gotas.

O coeficiente de transferência de calor volumétrico é determinado em função do coeficiente de transferência de calor para gota isolada, pela expressão :

$$Nu_c = 2 Re_c^2 Pr_c^{1/3}$$
 (11.22)

sendo as propriedades físicas referidas a fase contínua. As constantes Z e z, são determinadas experimentalmente.

Os resultados teóricos do coeficiente de transferência de calor volumétrico, mostraram estar em ajuste quando com parados com os valores obtidos experimentalmente.

BATTYA, RAGHAVAN e SEETHARAMU(41), apresentaram um estudo dos parâmetros adimensionais, envolvidos no processo de evaporação de uma gota em um líquido imiscível. A relação expressa em número de Nusselt, foi derivada da solução obtida por MOKHTARZADEH e EL-SHIRBINI(39), sendo dada por:

$$0,5 -0,35$$

Nu = 0,64 Pe Ja (II.23)

onde Ja = $(\rho C_p)_1 (T_c - T_d) / (\rho_v L)$ e Pe_c = 2 Ua/ ξ_c

sendo $\rho \in C_p$, a massa específica e o calor específico da fase líquida, respectivamente, $(T_c - T_d)$ a diferença de temperatura da fase contínua e dispersa, ρ_v a massa específica do vapor, L o calor latente de vaporização, U a velocidade de ascensão da b<u>o</u> lha, a o raio da bolha e ξ_c a difusividade térmica da fase co<u>n</u> tínua.

Os resultados do modelo, mostraram-se satisfatórios , quando comparados com os dados experimentais de outros autores.

ISENBERG e SIDEMAN(42), analisaram a condensação de bolhas em líquidos imiscíveis. O processo no interior da bolha é que os vapores voláteis condensam sobre o fino filme su perior, sendo assumido ser continuamente drenado para a região inferior da bolha, onde o condensado é acumulado.

Eles consideraram um escoamento potencial ao redor da bolha, e introduziram um fator de correção para a velocidade, de modo a levar em consideração os efeitos viscosos, sendo a equação da energia resultante resolvida numericamente. Seus resultados obtidos teoricamente e experimentalmente, são compa rados e apresentam-se satisfatórios, quando faz-se a variação da taxa de colapso em função do número de Peclet e do número de Jakob, sendo Pe = 2 Ua/ ξ e Ja = $\rho C_p \Delta T/\rho_v L$, onde U é a velocidade de ascensão da bolha, a o seu raio, ξ a difusividade térmica, ρ a massa específica, C_p o calor específico da fase líquida, ρ_v a massa específica do vapor, ΔT a diferença de te<u>m</u> peratura entre as fases e L o calor latente de vaporização.

JACOBS e MAJOR(43), apresentaram o efeito de gases não condensáveis na condensação de bolhas em um líquido imiscível, através de uma análise integral da camada limite. Os perfís de concentração dos gases não condensáveis são determi nados, pela resolução da equação da difusão transiente. Foi observado que os resultados do modelo são satisfatórios quando comparados com os da literatura, mas só para diâmetros de bolhas que variam de 1 mm a 3 mm.

Um modelo matemático para a predição das taxas de transferência de calor e massa em um processo de condensação , ao longo da superfície de uma gota movendo-se em seu próprio vapor, foi desenvolvida por CHUNG e CHANG(44). No modelo foram consideradas as regiões de escoamento proposto por HARPER e MOORE(15).

A solução das equações da camada limite foram obtidas, utilizando um método integral, similar ao de Kärman--Pohlhausen, sendo que a taxa controladora do mecanismo se pro cessará na região do núcleo térmico da gota, pois foi assumido que as linhas de correntes do núcleo são todas isotérmicas, e o fenômeno ocorre por difusão.

Os resultados preditos pelo modelo estão em concordâ<u>n</u> cia com os obtidos experimentalmente, para uma faixa de diâmetro de gotas variando de 0,5 mm a 1,5 mm. CAPÍTULO III - FUNDAMENTOS TEÓRICOS: MODELO UTILIZADO

III.I. INTRODUÇÃO

Neste capítulo são apresentados os fundamentos teóri cos do modelo por nos utilizado e proposto por ANDRADE (1), vi sando o cálculo das taxas de transferência de calor e massa, em processos de borbulhamento, envolvendo evaporação com uma mudança de fase.

O modelo leva em conta os efeitos da transferência si multânea de calor e massa, e também o efeito do superaquecimen to em uma bolha formada pelo borbulhamento de um gás em uma fa se contínua líquida.

São determinados os coeficientes de transferência de calor e massa para os casos simultâneos, e também os coeficien tes que englobem o efeito do superaquecimento. Esse efeito tam bém é explicitado nas equações obtidas para o perfil de temperatura interno e para a temperatura interfacial à bolha, util<u>i</u> zando um modelo transiente.

A influência dessas variáveis nas taxas de transferên cia de calor e massa serão analisadas, confrontando-se os estu dos feitos com o auxílio de um equipamento experimental, o qual foi construído para essa finalidade.

III.2. OS COEFICIENTES DE TRANSFERÊNCIA E OS FLUXOS DE CALOR E MASSA SIMULTÂNEOS

ANDRADE (1), considerou um campo de pressão e um compo de temperatura internos à bolha, tal que p = p (r,t) e T = T (r,t), onde na interface, essas variáveis são funções do tempo. E relacionou valores médios para os coeficientes de transferência, os gradientes de temperatura e de pressão na interface, através de:

$$-K_{g} \frac{d\bar{T}}{dr} \bigg|_{s} = \bar{h} (\bar{T}_{m} - \bar{T}_{s})$$
(III.1)

e

$$- \delta_{g} \frac{d\bar{p}}{dr} \bigg|_{s} = \bar{b} (\bar{p}_{m} - \bar{p}_{s})$$
 (III.2)

onde K_g , δ_g , \bar{h} e \bar{b} são, a condutividade térmica, o coeficiente de difusão, o coeficiente de transferência de calor, e o coef<u>i</u> ciente de transferência de massa, para a fase dispersa, respe<u>c</u> tivamente.

Os valores médios das temperaturas e pressões são definídos no volume e no tempo, por:

$$\bar{p} = \frac{1}{\tau} \int_{0}^{\tau} p(r,t) dt; \quad \bar{p}_{m} = \frac{1}{V} \int_{V} \bar{p} dV; \quad \bar{p}_{s} = \frac{1}{\tau} \int_{0}^{\tau} p_{s}(t) dt$$

e

$$\bar{T} = \frac{1}{\tau} \int_{0}^{\tau} T(r,t) dt; \quad \bar{T}_{m} = \frac{1}{V} \int_{V}^{\tau} \bar{T} dV; \quad \bar{T}_{s} = \frac{1}{\tau} \int_{0}^{\tau} T_{s}(t) dt$$
(III.4)

onde τ é o tempo de residência das bolhas e V o volume. Os <u>in</u> dices s e g, referem-se às condições na interface e na fase di<u>s</u> persa, respectivamente.

Considerando que o gás no interior da bolha, comport<u>a</u>-se como um gás ideal, tem-se:

(III.3)
$$\bar{p} = \bar{C}R[T]$$
(111.5)

onde $p \in a$ pressão parcial média temporal, $\bar{C} \in a$ concentração média temporal, R a constante dos gases, e [T] uma temperatura de referência.

De maneira análoga, para os valores médios, tem-se:

$$\bar{p}_{m} = \bar{C}_{m} R \bar{T}_{m}$$
(III.6)

$$\bar{p}_{s} = \bar{C}_{s} R \bar{T}_{s}$$
(III.7)

Substituindo as equações (III.5), (III.6) e (III.7), na equação (III.2), obtém-se:

$$-\delta_{g} \frac{d\bar{C}}{dr} \bigg|_{s} = \frac{\bar{b}}{[T]} (\bar{C}_{m} \bar{T}_{m} - \bar{C}_{s} \bar{T}_{s})$$
(III.8)

Com a finalidade de determinar o fluxo de massa na in terface, quando são levados em conta, os efeitos de transferên cia de calor e massa simultâneos, foram utilizadas relações de fluxos, considerando que no interior da bolha, tem-se um compo nente 1, e que ocorre a difusão desse componente, através de outro componente 2, estagnado e insolúvel na fase contínua.

De acordo aínda com o desenvolvimento mostrado em (1), os fluxos de massa na interface são dados na forma:

$$W_{1} = u_{s} \tilde{C}_{1,s} + \delta_{g} \frac{d\bar{C}_{1}}{dr} \bigg|_{s}$$
(III.9)

$$W_2 = -u_s \tilde{C}_{2,s} - \delta_{\rho} \frac{d \tilde{C}_2}{dr} \bigg|_s = 0$$
 (III.10)

O termo convectivo $u_s C_{1,s}$ ocorre por causa do arras te provocado pelo componente 2 na mesma direção em que se ver<u>i</u> fica a difusão. Havendo um gradiente de pressão para o componente estagnado, ocorrerá também uma transferência difusiva, po rém, se esse componente é insolúvel na fase líquida, certamente ocorrerá uma transferência convectiva, com velocidade u, na direção oposta, de modo a compensar esse fluxo difusivo, resul tando em um fluxo de massa nulo para o componente 2. Portanto o transporte convectivo que se estabelece é o responsável pelo arraste do componente 1.

Somando as equações (III.9) e (III.10) membro a membro, substituindo as concentrações em termos de pressões parciais médias. definidas a partir da equação (III.5), e consid<u>e</u> rando a pressão total constante, resulta um fluxo de massa na interface, dado pela relação:

$$W_{1} \left(1 - \frac{\bar{p}_{s}}{p}\right) = \delta_{g} \left. \frac{d\bar{C}_{1}}{dr} \right|_{s}$$
(III.11)

onde, p é a pressão total no interior da bolha considerada constante.

'Tendo em vista a relação (III.8), e considerando equ<u>a</u> ção (III.11), obtém-se para o fluxo de massa na interface:

e

$$W_{1} = \frac{b}{[T_{m}](1 - \frac{\bar{p}_{s}}{p})} (\bar{C}_{s} \bar{T}_{s} - \bar{C}_{m} \bar{T}_{m})$$
(III.12)

Um análise na equação (III.12), identifica um coeficiente de transferência de massa simultâneo, $b_{\xi,\delta}$, definido por:

$$b_{\xi,\delta} = \frac{\bar{b}}{1 - \bar{p}_{s}/p}$$
(III.13)

De um modo análogo ao fluxo de massa, o fluxo de calor resultante na interface, será constituído de um termo con vectivo e de um termo difusivo, sendo dado por:

$$q = \rho C_{p} \frac{W_{1} \bar{p}_{s}}{\bar{C}_{s} p} (\bar{T}_{m} - \bar{T}_{s}) - K_{g} \frac{d\bar{T}}{dr} \Big|_{s}$$
(III.14)

O fluxo de calor na interface é obtido, substituindo W_1 , dado na equação (III.12) e o termo - $K_g \left. \frac{d\tilde{T}}{dr} \right|_s$, dado pela equação (III.1), sendo:

$$q = \left[\frac{\rho \ \bar{C}_{p} \ \bar{p}_{s} \ \bar{b}}{[T] \ (p - \bar{p}_{s})} \ (\bar{C}_{s} \ \bar{T}_{s} - \bar{C}_{m} \ \bar{T}_{m}) + \bar{h} \right] \ (\bar{T}_{m} - \bar{T}_{s})$$
(III.15)

Analisando a equação (III.15), o fluxo de calor em um processo simultâneo, será calculado, por um coeficiente de transferência de calor obtido da solução do problema térmico, e por um coeficiente de transferência de massa obtido da solu ção do problema mássico.

De modo análogo ao fluxo de massa, identifica-se na equação de fluxo de calor, um coeficiente de transferência simultâneo, h_{E,6}, dado por:

$$h_{\xi,\delta} = \frac{\rho C_{p} \bar{p}_{s} \bar{b}}{[T_{T}] (p - \bar{p}_{s}) \bar{C}_{s}} (\bar{C}_{s} \bar{T}_{s} - \bar{C}_{m} \bar{T}_{m}) + \bar{h} \quad (III.16)$$

O primeiro termo do segundo membro da equação (III.15), mostra explicitamente o efeito simultâneo da transferência de massa na transferência de calor.

Supondo que:

$$\bar{C}_{s}\bar{T}_{s} = \bar{C}_{m}\bar{T}_{m} \qquad (III-17)$$

A equação (III.15), reduz-se para:

$$q = \bar{h} (\bar{T}_{m} - \bar{T}_{s})$$
(III.18)

isto indica que a evaporação não ocorre, e a equação (III.18), vem ser a relação para o fenômeno isolado da transferência de calor.

III.3. OS COEFICIENTES DE TRANSFERÊNCIA E OS FLUXOS DE CALOR E MASSA ENVOLVENDO O EFEITO DE SUPERAQUECIMENTO

Quando a temperatura da bolha é superior a temperatura de ebulição do líquido, diz-se então, que a bolha possui um superaquecimento. Neste caso, a transferência entre a bolha e o meio contínuo envolverá não só calor sensível, como também calor latente.

A equação (III.14), que expressa o fluxo de calor na interface, não leva em consideração o calor latente de evapora ção da fase contínua. Hã então a necessidade de se levar em conta no processo de evaporação direta, um fluxo de calor na interface, que englobe também uma quantidade de calor devido ao calor latente, pois à medida que aumenta a diferença da tem peratura da bolha e a temperatura onde se processa a evaporação maior será essa quantidade.

Com a finalidade de incluir este efeito de superaqu<u>e</u> cimento, de modo a analisar a sua influência em relação as taxas de transferência de calor e massa envolvidas no processo . ANDRADE (1), considerou uma quantidade de líquido evaporado $W_{\rm 1L}$ na interface, expressa por unidade de tempo e unidade de área, devido ao calor latente, sendo relacionado um fluxo de calor $q_{\rm 1}$, dado por:

$$q_{L} = W_{1L} L \qquad (III.19)$$

onde L é o calor latente de evaporação.

Sendo uma quantidade de energia, Q_s , disponível na b<u>o</u> lha devido ao efeito do superaquecimento, dada em função de uma diferença de temperatura, $(\overline{T}_m - \overline{T}_{eb})$, onde \overline{T}_m é uma temperatura média, calculada no volume e em relação ao tempo de residência da bolha, τ , e T_{eb} a temperatura em que ocorre a evaporação, a relação é dada por:

$$Q_{s} = \rho V_{b} C_{p} (\bar{T}_{m} - T_{eb})$$
 (III.20)

onde ρ e C_p são a densidade e o calor específico da fase dispersa respectivamente, e V_b o volume da bolha.

Como a evaporação ocorre na interface, a temperatura T_{eb} , aproxima-se da temperatura da superfície da bolha. ANDRA DE (1), verificou, que a temperatura da superfície é praticamente igual à temperatura da fase contínua T_L , sendo essa igual dade decorrente do fato de não se considerar uma resistência térmica entre a superfície e a fase contínua. Assim faremos nos nossos cálculos que $T_{eb} = T_L$.

Considerando que durante a evaporação a área A_b da su perfície da bolha permanece constante, e relacionando Q_s a um fluxo instantâneo, q_s (t), teremos:

$$Q_{s} = A_{b} \int_{0}^{\tau} q_{s}(t) dt \qquad (III.21)$$

e considerando esse fluxo q_s (t), também como constante, obter<u>e</u> mos:

$$q_{s} = \frac{Q_{s}}{\tau A_{b}}$$
(III.22)

Se o superaquecimento é o fator que determina a evapo ração de uma certa quantidade de líquido, teremos da equação (III.19), que:

 $q_s = q_L \tag{III.23}$

Portanto, o fluxo de massa na interface, será expresso por:

$$W_{1L} = \frac{\rho V_{b} C_{p}}{\tau A_{b} L} (\bar{T}_{m} - T_{L})$$
(EII.24)

O mecanismo para o fluxo de massa total na interface, \bar{W}_1 , é semelhante ao mostrado no ítem anterior, sendo dado por:

$$\tilde{W}_{1} = u_{s} \tilde{C}_{1,s} + s_{g} \frac{d \tilde{C}_{1}}{dr} \bigg|_{s} + W_{1L}$$
 (III.25)

Observa-se na equação (III.25), a inclusão do termo W_{1L} , que representa a contribuição do fluxo de massa devido ao calor latente.

Para o componente estagnado a equação (III.10), não sofre alteração. Assim, seguindo o mesmo procedimento anterior, obtém-se:

$$(\tilde{W}_{1} - W_{1L}) (1 - \frac{p_{s}}{p}) = \delta_{g} \frac{d C_{1}}{dr} \bigg|_{s}$$
(III.26)

Igualando as equações (III.8) e (III.26), e substituindo W_{1L} , pela equação (III.24), teremos o fluxo de massa t<u>o</u> tal na interface, dado por:

$$\bar{W}_{1} = \left[\frac{\bar{b}}{1 - \bar{p}_{s}/p} + \frac{\rho V_{b} C_{p}}{\tau A_{b} L} \frac{(\bar{T}_{m} - T_{L}) [T]}{(\bar{C}_{s} \bar{T}_{s} - \bar{C}_{m} \bar{T}_{m}}\right] \frac{(\bar{C}_{s} \bar{T}_{s} - \bar{C}_{m} \bar{T}_{m})}{[T]}$$
(III.27)

Podemos verificar que o segundo termo dos colchetes da equação (III.27), evidencia a influência do superaquecimento . Nesta mesma equação, identificamos aínda o coeficiente de trans ferência de massa simultâneo, dado por:

$$\bar{b}_{\xi,\delta} = \frac{\bar{b}}{1 - \bar{p}_{s}/p} + \frac{\rho V_{b} C_{p}}{\tau A_{b} L} \frac{(\bar{T}_{m} - \bar{T}_{L}) [\bar{T}]}{(\bar{C}_{s} \bar{T}_{s} - \bar{C}_{m} \bar{T}_{m})}$$
(III.28)

Idêntico ao fluxo de massa, o fluxo de calor na inter face, levará em conta um fluxo de calor, q_L , dado pela equação (III.19), de maneira que:

$$\overline{q} = \rho C_{p} \frac{(W_{1} - W_{1L}) \overline{p}_{s}}{\overline{C}_{s} p} - K_{g} \frac{d\overline{T}}{dr} \Big|_{s} + q_{L}$$
(111.29)

Substituindo \overline{W}_1 e W_{1L} pelas equações (III.27) e (III.24), respectivamente, e o segundo termo pela equação (III.1), bem como o termo q_L, obteremos o fluxo de calor total na interface, resultando:

$$\tilde{q} = \begin{bmatrix} \rho & C_{p} & \bar{b} & \bar{p}_{s} \\ \hline T \end{bmatrix} (p - \bar{p}_{s}) \tilde{C}_{s} (\tilde{C}_{s} & \tilde{T}_{s} - \tilde{C}_{m} & \tilde{T}_{m}) + \tilde{h} + \frac{\rho & V_{b} & C_{p}}{\tau & A_{b}} & \frac{(\tilde{T}_{m} - T_{L})}{(\tilde{T}_{m} - \tilde{T}_{s})} \end{bmatrix} (\tilde{T}_{m} - \tilde{T}_{s})$$
(III.30)

O terceiro termo dos colchetes da equação (III.30), também mostra a influência do superaquecimento. Identificando também o coeficiente de transferência de calor simultâneo, dado por:

$$\tilde{\mathbf{h}}_{\xi,\delta} = \frac{\rho \ \mathbf{C}_{\mathbf{p}} \ \mathbf{b} \ \mathbf{\bar{p}}_{\mathbf{s}}}{[\mathbf{T}] (\mathbf{p} - \mathbf{\bar{p}}_{\mathbf{s}}) \mathbf{\bar{C}}_{\mathbf{s}}} (\mathbf{\bar{C}}_{\mathbf{s}} \ \mathbf{\bar{T}}_{\mathbf{s}} - \mathbf{\bar{C}}_{\mathbf{m}} \ \mathbf{\bar{T}}_{\mathbf{m}}) + \mathbf{\bar{h}} + \frac{\rho \ \mathbf{V}_{\mathbf{b}} \ \mathbf{C}_{\mathbf{p}}}{\tau \ \mathbf{A}_{\mathbf{b}}} \frac{(\mathbf{\bar{T}}_{\mathbf{m}} - \mathbf{T}_{\mathbf{L}})}{(\mathbf{\bar{T}}_{\mathbf{m}} - \mathbf{\bar{T}}_{\mathbf{s}})}$$
(III.31)

De acordo com a equação (III.27) e (III.28) o fluxo de massa \tilde{W}_1 , que inclui o efeito do superaquecimento, será ca<u>1</u> culado por:

$$\tilde{W}_{1} = \tilde{b}_{\xi,\delta} \frac{(\tilde{C}_{s} \tilde{T}_{s} - \tilde{C}_{m} \tilde{T}_{m})}{[T]}$$
(III.32)

Enquanto que para o fluxo de calor, tomando-se a equa ção (III.30) e (III.31), a expressão será :

$$\tilde{q} = \tilde{h}_{\xi,\delta} (\tilde{T}_{m} - T_{s})$$
 (111.33)

A temperatura [T] de referência, será considerada co mo sendo igual a \overline{T}_m que representa uma temperatura média espa cial temporal para o interior da bolha. Observa-se que para o cálculo de transferência simultânea para a fase dispersa b_{ξ,δ}, necessita-se conhecer o coeficiente de transferência de massa \overline{b} , o qual foi definido para a fase dispersa e expresso pela equação (III.2). Quando se faz $[T] = \overline{T}_m$, o coeficiente \overline{b} se identifica com um coeficiente de massa \overline{b}_g , que foi obtido por ANDRADE (1) a partir do perfil de concentração interno à bolha para o caso isotérmico de transferência de massa, sendo da do por:

$$\tilde{b}_{g} = \frac{\delta_{g} \pi^{2}}{3 a} \left\{ \sum_{n=1}^{\infty} \frac{\lambda_{m}}{\alpha_{m}^{n^{2}} - \beta_{m}} (1 - e^{-\beta_{m}\tau}) + \sum_{n=1}^{\infty} \frac{1}{\alpha_{m}^{n^{2}}} \right\}$$

$$(1 - \frac{\lambda_{m} \beta_{m}}{\alpha_{m}^{n^{2}} - \beta_{m}}) (1 - e^{-\alpha_{m}^{n^{2}}\tau}) \left\} / \left\{ \frac{1}{1 + \lambda_{m}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \right\}$$

$$\frac{1}{\beta_{m} - \alpha_{m} n^{2}} = \frac{1}{n^{2}} (1 - e^{-\alpha_{m} n^{2} \tau}) + (1 + \lambda_{m}) (e^{-\beta_{m} \tau} - 1) +$$

+
$$\sum_{n=1}^{\infty} \frac{1}{\alpha_{m}^{n^{4}}} (1 - e^{-\alpha_{m}^{n^{2}}\tau})$$
 (III.34)

onde δ_{g} , é o coeficiente de difusão na fase dispersa, a o raio da bolha e τ o tempo de residência da bolha

O valor de λ_{m} , é igual a:

$$\lambda_{\rm m} = \frac{2 \delta_{\rm g}}{b_{\rm L} a} \tag{III.35}$$

sendo b_L o coeficiente de transferência de massa convectivo para a fase contínua.

Os parâmetros $\alpha_m \in \beta_m$ são expressos por:

$$\alpha_{\rm m} = \delta_{\rm g} \frac{\pi^2}{a^2} ; \quad \beta_{\rm m} = \frac{\alpha_{\rm m}}{(1 + \lambda_{\rm m})}$$
(III.36)

Quanto ao coeficiente \bar{h} , que aparece na expressão de $h_{\xi,\delta}$, este identifica-se com um coeficiente de transferência

de calor \tilde{h}_g , o qual foi determinado por ANDRADE (1), ANDRADE c HACKENBERG(54), no estudo da similaridade térmica-mássica em sistemas bifásicos transientes, sendo \tilde{h}_g dado pela expressão:

$$\bar{h}_{g} = \frac{K_{g} \pi^{2}}{3 a} \{ \sum_{n=1}^{\infty} \frac{\lambda}{\alpha n^{2} - \beta} (1 - e^{-\beta \tau}) + \sum_{n=1}^{\infty} \frac{1}{\alpha n^{2}} \}$$

$$(1 - \frac{\lambda \beta}{\alpha n^{2} - \beta}) (1 - e^{-\alpha n^{2} \tau}) \} / \{ \frac{1}{1 + \lambda} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \frac{1}{\beta - \alpha n^{2}} \}$$

$$[\frac{1}{n^{2}} (1 - e^{-\alpha n^{2} \tau}) + (1 + \lambda) (e^{-\beta \tau} - 1)] +$$

+
$$\sum_{n=1}^{\infty} \frac{1}{\alpha_n^4} (1 - e^{-\alpha n^2 \tau})$$
 (III.37)

onde:

$$\lambda = \frac{2 K_g}{h_L a}; \alpha = \xi_g \pi^2 / a^2; \beta = \alpha / (1 + \lambda)$$
 (III.38)

e onde K e ξ_g são a condutividade e a difusividade térmica da fase dispersa, respectivamente, h_L o coeficiente de transferência de calor da fase contínua e a o raio da bolha.

Nas equações (III.28) e (III. 31), os coeficientes de transferência são função das propriedades físicas das duas fases, como também dos perfís de temperatura e concentração da bolha. Consequentemente existe a necessidade na determinação desses perfís, os quais devem incluir o efeito do superaqueci mento. Dessa forma serão apresentadas a seguír as equações p<u>a</u> ra o perfil de temperatura interno, incluindo o superaquecime<u>n</u> to.

111.4. O PERFIL INTERNO E A TEMPERATURA DA SUPERFÍCIE DA BOLHA

Adotando um modelo difusivo transiente para a fase dis persa, o qual envolve bolhas superaquecidas, ANDRADE (1), determinou o perfil de temperatura para o interior de uma bolha, como também a temperatura da interface em função do tempo, levando em consideração o efeito da mudança de fase através de um fluxo instantâneo $q_{\rm L}(t)$, dado por:

$$q_{L}(t) = W_{1L}(t) L$$
 (III.39)

Observa-se nesta equação que $q_L(t)$, está em função do calor latente de vaporização L. Sendo $W_{1L}(t)$, a quantidade instantânea de líquido evaporado na interface, por unidade de tempo e unidade de área.

O perfil interno à bolha, quando é envolvido o efeito de superaquecimento, foi obtido igual a:

$$\Theta(\mathbf{r},\mathbf{t}) = \frac{\lambda \beta (\Delta T + q_L/h_L)}{T_g(1+\lambda)} \left[\frac{1}{\beta} \left(e^{-\beta t} - 1 \right) - \frac{2a}{\pi r} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \operatorname{sen} \frac{n\pi r}{a} \right],$$

$$\cdot \frac{1}{\alpha n^2 - \beta} \left(e^{-\beta t} - e^{-\alpha n^2 t} \right) - \frac{1}{(1+\lambda) T_g h_L} \left\{ q_L(t) + \right\}$$

$$+ \frac{2a}{\pi r} \frac{\varepsilon}{n=1} \frac{(-1)^n}{n} \operatorname{sen} \frac{n\pi r}{a} \left[q_L(t) - \bar{q}_L (1 - e^{-\alpha n^2 t}) \right] -$$

$$-\frac{\Delta T}{T_g(1+\lambda)} \left[1 + \frac{2a}{\pi r} \frac{\infty}{n=1} \frac{(1-)^n}{n} \operatorname{sen} \frac{n\pi r}{a} e^{-\alpha n^2 t} \right]$$
(III.40)

onde:

$$\alpha = \frac{\xi_{\pi}}{a^2}; \quad \theta = \frac{T - T_g}{T_g}$$
(III.41)

Para a temperatura da superfície da bolha resultou que:

$$T_{s}(t) = T_{L} - \frac{q_{L}(t)}{h_{L}(1+\lambda)} + \frac{\lambda}{1+\lambda} \left[\Delta T e^{-\beta t} - \frac{q_{L}}{h_{L}}(1-e^{-\beta t})\right]$$
(III.42)

onde:

$$\Delta T = T_{g} - T_{L}; \ \beta = \alpha/1 + \lambda \ ; \ \alpha = \xi_{g} \pi^{2}/a^{2}; \ \lambda = 2 K_{g}/h_{L}a$$
(III.42)

sendo T_g a temperatura inicial da bolha, T_L a temperatura da fase contínua, a o raio da bolha, h_L o coeficiente de transferência de calor da fase contínua, e ξ_g e K_g a difusividade e

condutividade térmica da fase dispersa, respectivamente.

Nas equações (III,40) e (III.42), necessita-se conhecer a função $q_L(t)$, para os cálculos do perfil de temperatura interno e da temperatura da superfície da bolha, respectivamen te. Para essas determinações serão considerados valores médios temporais \tilde{T}_s em relação ao tempo de residência τ , e valo res médios de \tilde{T}_m no volume e no tempo para o perfil de temperatura, tal como foi definido para as equações dos fluxos de calor e massa. Dessa maneira resulta um valor médio q_L dado por:

$$\bar{q}_{L} = \frac{1}{\tau} \int_{0}^{\tau} q_{L}(t) dt \qquad (III.44)$$

A temperatura média no volume é determinada por:

$$\theta_{\rm m}(t) = \frac{3}{a^3} \int_0^a \theta(r,t) r^2 dr \qquad (III.45)$$

e a temperatura média temporal dada por:

$$\bar{\theta}_{m} = \frac{1}{\tau} \int_{0}^{\tau} \theta_{m} (t) dt$$
 (III.46)

onde:

$$\overline{\Theta}_{m} = \frac{\overline{T}_{m} - \overline{T}_{g}}{T_{g}}$$
(III.47)

Analogamente a temperatura da superfície da bolha se-

rā:

$$\bar{T}_{s} = \frac{1}{\tau} \int_{0}^{\tau} T_{s}(t) dt \qquad (III.48)$$

A resolução dessas integrais resultam nos seguintes valores médios:

$$\overline{T}_{s} = T_{L} - \frac{\overline{q}_{L}}{h_{L}} + \frac{\lambda}{\alpha\tau} \left(\frac{\overline{q}_{L}}{h_{L}} + \Delta T\right) \left(1 - e_{L} - \beta\tau\right) \qquad (III.49)$$

e para a temperatura média $\tilde{T}_{\rm m}^{},$ fazendo uma aproxímação de primeira ordem, tem-se:

$$\bar{T}_{m} = T_{L} - \frac{\bar{q}_{L}}{h_{L}} + (\Delta T + \frac{\bar{q}_{L}}{h_{L}}) \left[\frac{1}{\alpha\tau} \left(\lambda + \frac{6}{\pi^{2}}\right) \left(1 - e^{-\beta\tau}\right)\right]$$
(III.50)

Em um estudo anterior, ANDRADE (45), HACKENBERG e AN-DRADE(55), resolveram um problema térmico semelhante,o qual en volveu uma expressão para o fluxo na superfície definida em fun ção de um coeficiente de transferência de calor para a fase con tínua, onde não levou em conta o calor latente de vaporização do líquido, ou seja, se $\tilde{q}_L = 0$, as equações (III.49)e(III.50), redu zem-se para as formas:

$$\bar{T}_{s} = T_{L} + \frac{\lambda \Delta T}{\alpha \tau} (1 - e^{-\beta \tau})$$
 (III.51)

e

$$\bar{T}_{m} = T_{L} + \frac{\Delta T}{\alpha \tau} (\lambda + \frac{6}{\pi^{2}}) (1 - e^{-\beta \tau})$$
 (III.52)

que são as relações obtidas no estudo do problema térmico, onde não ocorre mudança de fase.

Desse modo os resultados encontrados possibilitam a analisar as taxas de transferência de calor e massa com ou sem mudança de fase, e também os coeficientes de transferência. Es sa análise será feita com os resultados experimentais obtidos em um equipamento construído para este objetivo.

CAPÍTULO IV - EQUIPAMENTO E COLETA DE DADOS EXPERIMENTAIS

IV.1. DESCRIÇÃO DA APARELHAGEM EXPERIMENTAL

Com o objetivo de obter dados experimentais concernen tes a um processo de borbulhamento visando a evaporação de uma quantidade de líquido, foi utilizado um equipamento o qual per mitiu a determinação da taxa de evaporação deste líquido, sendo assim possível a comparação teórica-experimental das equa ções resultantes do modelo.

O sistema montado para a obtenção dos dados experimen tais, encontra-se esquematizado na Figura IV.1.

O ar injetado no sistema provém de um compressor (1), e é aquecido por dois aquecedores elétricos (7.a) e (7.b). 0 aquecedor (7.a) é constituído de quatro tubos de ferro fundido de meia polegada de diâmetro nominal, cada um com 1 metro de comprimento, contendo no seu interior um recheio refratário de modo a permitir uma maior área de troca térmica para o ar circulante. O aquecedor (7.b) foi acoplado ao sistema com a fina lidade de maior aumento na temperatura do gás de entrada no dís tribuidor (11). Estes aquecedores possuem resistências elétri cas de níquel-cromo de bitola 0,812 mm e 2,18 Ω/m, sendo que no aquecedor (7.a), as resistências estão colocadas externamente aos tubos em forma de espiral, e ligadas em paralelo duas а duas em variadores de tensão. No aquecedor (7.b), a resistên cia elétrica está no interior do tubo, e também ligada a um va riador de tensão. As resistências dos aquecedores estão isola das com material cerâmico refratário, em forma de missangas.

Os variadores de tensão que permitem controlar a temperatura do gás no distribuidor, possuem amperímetros e voltí-

FIG. (IV. 1) ESQUEMA GERAL DA MONTAGEM EXPERIMENTAL

14

ŝ. V metros na faixa de 0-15 Ampéres e 0-150 Volts, respectivamente. Esses variadores foram construídos especialmente para a mont<u>a</u> gem experimental.

O aquecedor (7.a) é isolado com duas mantas de fibra cerâmica de espessura de 5,0 cm. O aquecedor (7.b), é isolado por uma canaleta de lã de vidro com espessura de 5.0 cm.

O ar passa através dos aquecedores e chega até o distribuidor, Figura IV.2, o qual está fixo por parafusos situado na base do borbulhador (9). O distribuidor é constituído de um prato perfurado de latão, de diâmetro de 10,63 cm, com orifícios de 1.0 mm de diâmetro, tendo no total 13 orifícios, dis postos em forma triangular. Na superfície inferior do distribuidor foi fixada uma placa de amianto com espessura de 4,0 mm, com a finalidade de minimizar os efeitos de aquecimento do $1\underline{i}$ quido na superfície superior do distribuidor. Quando o ar penetra pelos orifícios do distribuidor, e adiciona-se líquido no borbulhador, as bolhas são formadas nos orifícios, inicia<u>n</u> do-se assim o processo de borbulhamento.

O borbulhador, Figura IV.3, consiste fundamentalmente de três partes: um cone metálico inferior, um corpo central de vidro, e um cone metálico superior. Essas partes são totalme<u>n</u> te desmontáveis, o que vem facilitar bastante a manutenção do equipamento.

Na sua base, construída em latão e em forma cônica, encontra-se o distribuidor, e também um tubo de cobre de 3/8 polegada, por onde é introduzido o ar aquecido. O corpo central é formado por dois cilindros concêntricos, de vidro pirex, sendo o tubo interno de 30,5 cm de altura e 11,43 cm de diâme-

FIGURA IV.2 - Detalhe do Distribuidor.

FIGURA IV.3 - Detalhe do Borbulhador.

N.

tro interno, e o tubo externo de 30,4 cm de altura e 13,40 cm de diâmetro interno, sendo a espessura de ambos 5 mm, O tubo externo é utilizado com a finalidade de proporcionar um isolamento térmico, pois o ar no espaço entre os dois tubos faz com que ocorra uma diminuição das perdas de calor para o ambiente.

Na parte superior do borbulhador há um cone de latão, constituído de dois tubos, sendo um tubo provido de válvula (2), por onde se adiciona o líquido a ser borbulhado, e o outro é utilizado para a saída do evaporado durante o processo de borbulhamento, existindo também um pequeno tubo de cobre, que facilita a entrada do termopar (TP1). Os cilindros concêntricos do borbulhador, são fixados na base e na parte superior por meio de três grandes parafusos, o que permite uma vedação completa.

Conectado à base do borbulhador, tem-se um tubo de co bre no qual foi instalado um resfriador (13), com a finalidade de evitar seu aquecimento excessivo e com isso eliminar possível formação de bolhas de vapor no seu interior ao se adicionar o líquido. Neste tubo de cobre foi acoplado um medidor de nível (10), o qual é um tubo de vidro de pequeno diâmetro, que possibilita a leitura da altura do líquido e do gás nele cont<u>i</u> do com maior precisão, evitando os efeitos das oscilações que ocorrem na superfície do líquido.

Os sensores de temperatura para a medida do ar de entrada TP2, situado no interior do cone metálico inferior e p<u>a</u> ra a medida da temperatura do líquido TP1, localizado no int<u>e</u> rior do borbulhador, são constituídos de pares termoelétricos de ferro-constantan (8), onde os resultados dessas temperatu-

51

ras são lidas com auxílio de um milivoltímetro digital, fabricado pela ECB-Equipamentos Científicos do Brasil-SP, dotado de chave seletora e depois convertidas para graus centígrados. E<u>s</u> ses termopares tem como referência a temperatura de O^OC.

Os rotâmetros (5), usados para as medidas de vazão de ar, foram previamente calibrados com um rotâmetro padrão da marca Groger Gilmont, série K-494, dotado de curva de calibração. O rotâmetro R1, situado logo após a válvula redutora de pressão (4), é constituído de um tubo de fabricação da Omel, o qual fornece a medida da vazão de ar de entrada no sistema. Em virtude do aumento da temperatura do gás provocar um aumento da perda de carga nos aquecedores, foram necessárias curvas de calibração para o rotâmetro R1 à várias pressões, abrangendo um intervalo de O a 2,6 Kgf/cm².

A Figura IV.4, mostra o esquema utilizado na calibração do rotâmetro R1 e R2, onde a perda de carga na válvula gaveta, corresponde a uma perda equivalente nos aquecedores, se<u>n</u> do feitas essas medidas ã temperatura ambiente.

O uso da línha auxiliar possibilita vazões maiores nos aquecedores e com isso propicia maiores temperaturas do gás de entrada no borbulhador, mesmo quando sua vazão é baixa. O fl<u>u</u> xo de ar que é retirado pelo desvio, passa por um recipiente (12), onde no seu interior há uma serpentina imersa em água, e chega ao rotâmetro R2, constituído de um tubo de fabricação da Blue White, onde é feita a medida dessa vazão. A finalidade do recipiente arrefecedor, é para garantir que o ar que passa pela linha auxiliar, esteja à temperatura ambiente, podendo en tão a vazão de ar do sistema, ser dada pela diferença das va-

program (x

zões lidas nos rotâmetros R1 e R2, respectivamente.

Com a finalidade de obter-se parâmetros relativos à qualidade do gás de entrada, foi construído e acoplado ao sistema, um psicrômetro (6), onde eram feitas leituras da tempera tura de bulbo seco, ts e da temperatura de bulbo úmido, tu. A ASIIRAE (46, 47), apresenta uma discussão detalhada a respeito da utilização adequada de psicrômetros e suas limitações.

O psicrômetro utilizado neste trabalho é constituído de um tubo de cobre todo revestido com uma camada de níquel, com 1,1 cm de diâmetro interno e 10,0 cm de comprimento, contendo termômetros de bulbo seco e bulbo úmido, e tendo um dispositivo que mantém umedecida a mecha de bulbo úmido (6), como mostra a Figura IV.5.

O ar úmido (1), proveniente do compressor, passa pelos termômetros de bulbo seco (2) e de bulbo úmido (3) e sai para os aquecedores. A água contida no depósito (7), tem a função básica de manter umedecida a mecha de bulbo úmido, permitindo com isso que o ar que passa sobre a mecha úmida fique em íntimo contato com o bulbo do termômetro, assim sendo a tem peratura de bulbo úmido é indicada.

A mecha de bulbo úmido foi feita com algodão hidróf<u>i</u> lo, envolvida em gaze cirúrgica e presa ao bulbo do termômetro com fio de algodão.

O procedimento utilizado para a obtenção das medidas experimentais efetuadas, será descrito a seguir.

O ar a ser aquecido, encontra-se disponível em uma l<u>i</u> nha de ar comprimido. Inicialmente abre-se a válvula gaveta (2) - ver Figura IV.1, e o ar passa por um filtro dotado de uma

FIG. (IV.5) ESQUEMA DO PSICRÔMETRO

and a strategy with a second of the

54

válvula redutora de pressão, tendo como elemento filtrante bron ze sinterizado. Em seguida, passa pelo rotâmetro RI, e pelo psicrômetro, sendo aquecido por meio das resistências elétricas contidas nos aquecedores. O ar aquecido ao sair do último aque cedor é transportado até o borbulhador através de uma tubulação de cobre de 0,64 cm de diâmetro interno, a qual está reve<u>s</u> tida com fibra cerâmica.

Uma temperatura do gás de entrada é conseguida rapida mente sem a utilização do desvio. Faz-se então o uso da linha auxiliar, que permite controlar a vazão de ar na entrada do bor bulhador, e consequentemente isso leva a uma nova temperatura de equilíbrio, a qual deseja-se operar no sistema. Com a temperatura e a vazão controladas, coloca-se rapidamente uma quan tidade conhecida de líquido no borbulhador, iniciando-se assim o processo de borbulhamento. A partir desta etapa, faz-se símultaneamente as leituras de temperatura de entrada do gás e do líquido no borbulhador, e mede-se a variação da altura de borbulhamento em intervalos de tempos definidos.

Este procedimento é quando opera-se com temperaturas de gás de entrada igual ou superior a 180⁰C no borbulhador, p<u>a</u> ra temperaturas menores não há necessidade do uso da linha auxiliar e as etapas de operação seguem o mesmo procedimento.

IV.2. OBTENÇÃO DAS MEDIDAS EXPERIMENTAIS

Com a finalidade de comprovar o modelo proposto e an<u>a</u> lisar os efeitos decorrentes da mudança de fase, foram feitas medidas experimentais que constaram basicamente do seguinte: medidas das temperaturas de bulbo seco (ts) e bulbo úmido (tu),

55

medida da vazão de ar de entrada (G_1) , medida da temperatura de entrada do ar aquecido (T_g) , medida da temperatura do líqui do no borbulhador (T_L) e medida da variação da altura de borbu lhamento (H_L) com o tempo. A última medida leva ã determinação da quantidade de líquido evaporado.

As temperaturas de bulbo seco e bulbo úmido, permiti ram calcular parâmetros, relativos à umidade do ar de alíment<u>a</u> ção.

Para a determinação da pressão de saturação, p_{ws} à temperatura tu e ts, utilizou-se a equação:

$$\log_{10} \left(\frac{P_{WS}}{218,167}\right) = -\frac{\gamma}{T} \left(\frac{e_1 + e_2\gamma + e_3\gamma^3}{1 + e_4\gamma}\right)$$
(IV.1)

apresentada por KEENAN e KEYS (48), válida para uma faixa de temperatura de 283,15 a 423,15 K, onde p_{ws} , é expressa em atm, $\gamma = (647,27 - T)$, T a temperatura em graus Kelvin, $e_1 = 3,2437814$, $e_2^* = 5,86826x10^{-3}$, $e_3 = 1,1702379x10^{-8}$ e $e_4 = 2,1878462x10^{-3}$.

O cálculo das umidades absolutas w_{su} à tu e p, e w_{ss} à ts e p, são através das equações:

$$w_{su} = 0,62198 \frac{p_{ws}(tu)}{p - p_{ws}(tu)}$$
 (IV.2a)

$$w_{ss} = 0,62198 \frac{p_{ws} (ts)}{p - p_{ws} (ts)}$$
 (IV.2b)

essas equações, são fundamentadas na consideração que o ar seco

UNICAMP BIBLIOTECA CENTRAL

e o vapor d'água, obedecem a equação do gás ideal. A pressão p é a pressão atmosférica, expressa em atm.

Um outro importante parâmetro, é a razão de umidadew, definida como a relação da quantidade de vapor d'água e a qua<u>n</u> tidade de ar seco contida na mistura. A equação para o cálculo é dada por:

$$w = \frac{(1093 - 0.556 \text{ tu})w_{su} - 0.240(\text{ts} - \text{tu})}{1093 + 0.444 \text{ ts} - \text{tu}}$$
(IV.3)

O cálculo da umidade relativa u_r, é através da equação:

$$u_r = \frac{g_s}{1 - (1 - g_s)(p_{ws}^{-1}(ts)/p)}$$
 (IV.4)

onde o parâmetro g_s é o grau de saturação, definido como a relação da umidade absoluta w, e a umidade absoluta w_{ss} de ar s<u>a</u> turado à ts e p:

$$g_{s} = \frac{w}{w_{ss}}$$
(IV.5)

As equações (IV.1) até (IV.5), constam da ASHRAE (48). A Tabela (IV.1), mostra o procedimento para o cálculo dessas propriedades. O programa PSI-BAS (ver anexo A), determina es sas propriedades, as quais são mostradas na Tabela (IV.2).

Na Tabela (IV.3), é mostrada uma comparação entre os valores calculados para a razão de umidade com os valores encontrados através da carta psicrométrica, para vários pares de ts e tu à pressão de 1,0 atm. Os valores de w calculados mostram boa concordância com os dados obtidos pela carta psicromé trica, apresentando um desvio médio relativo da ordem de 1,4%.

		······································		
Para Obter	Usar	Comentários		
p _{ws} (tu)	Eq. (IV.1)	A pressão de saturação a tempera- tura tu		
₩su	Eq. (IV.2a)	A umidade absoluta à tu e p, usa <u>n</u> do (tu):		
W	Eq. (IV.3)	A umidade absoluta		
p _{ws} (ts)	Eq. (IV.1)	A pressão de saturação a tempera- tura ts		
[₩] ss	Eq. (IV.2b)	A umidade absoluta à ts e p, usa <u>n</u> do p _{ws} (ts)		
gs	Eq. (IV.5)	O grau de saturação, usando w _{ss}		
^u r	Eq. (IV.4)	A umidade relativa em %, usando p _{ws} (ts)		

Tabela	IV.1	 Dados:	Temperaturas	(ts)	e	(tu)
			Pressão p			

As equações obtidas para o cálculo dos coeficientes de transferência de calor e massa e também as equações que dão os fluxos correspondentes, bem como as equações para a previsão da temperatura de equilíbrio do líquido, apresentam em suas formas, as dimensões das bolhas, através do seu raio a.

Para a determinação do raío a, foi utilizada

58

а

equação:

$$V_{\rm b} = 1,138 \frac{G_{\rm o}^{-1,2}}{g^{0,6}}$$
 (IV.6)

apresentada por DAVIDSON e HARRISON (7), a qual é fundamentada em uma teoria de formação da bolha em um líquido invíscido , onde V_b é o volume de uma bolha em cm³, G_o a vazão volumétrica em cm³/s por cada orifício e g a aceleração da gravidade, igual a 981 cm/s. Dando bons resultados para fluidos reais.

Ainda na referência (7), a equação (IV.6), foi comparada com resultados obtidos experimentalmente por diversos pes quisadores no estudo de formação de bolhas de hidrogênio e bolhas de ar em água, tendo sido obtidos bons resultados. Nos ex perimentos usados, os diâmetros dos orifícios variaram de 1,5 mm até 4,8 mm.

Devido às diferentes temperaturas médias de entrada do ar aquecido (T_g) - ver Tabela (IV.4), utilizadas em cada co<u>n</u> junto de corridas experimentais, foi feita uma correção para a vazão total de ar no distribuidor, sendo a vazão corrigida ca<u>l</u> culada por:

$$G = \frac{\rho_i G_i}{\rho}$$
(IV.7)

onde G é a vazão volumétrica total corrigida em cm³/s, ρ_i a de<u>n</u> sidade do ar de entrada no sistema considerada a temperatura de 26[°]C, ρ a densidade na temperatura do ar aquecido, c G_i a vazão total de ar de entrada igual a 0,230x10⁻³ m³/s, o qual foi o valor utilizado em nossos experimentos. Foi considerada uma distribuição uniforme nos treze orifícios do distribuidor.

59

A aplicação da equação (IV.6), e a consideração de que as holhas possuem uma forma esférica, levaram à determinação dos seus raios, conforme mostrado na Tabela (IV.4).

Um estudo fotográfico das dimensões das bolhas no bor hulhador foi realizado, onde mostrou um afastamento da forma esférica, tendendo para uma forma oblata (elipsoidal), conforme pode ser verificado nas Figuras (IV.6), (IV.7) e (IV.8). Es sas verificações apresentaram valores médios para o semi-eixos maior e menor iguais a 0,90 cm e 0,50 cm, respectivamente.

Calculando o volume correspondente a essa geometria e considerando uma esfera de igual volume, o raio resultante foi de 0,608 cm. Esse valor quando comparado com os valores dos raios das corridas Al até A6 (Tabela IV.4), apresentam boa com cordância, dando um desvio médio da ordem de 5,5%.

Para efeito de cálculo o valor considerado para os raios das bolhas serão aqueles apresentados na Tabela (IV.4).

O equipamento, Figura (IV.9), opera de uma forma bate lada, consequentemente o tempo de residência da bolha não será constante. À medida que a altura de borbulhamento diminui devido a evaporação da fase contínua, é evidente que o tem po de residência também irá diminuir. Assim sendo, o cálculo do tempo de residência será feito através da razão:

$$\tau = \frac{ll_{\rm m}}{v_{\rm b}}$$
(IV.8)

onde H_m é uma altura média de borbulhamento calculada em relação à altura inicial e final de borbulhamento, e v_b a velocid<u>a</u> de de ascensão da bolha.

FIGURA IV.6 - Detalhe do Borbulhamento.

FIGURA IV.7 - Detalhe do Borbulhamento.

FIGURA IV.8 - Detalhe do Borbulhamento

FIGURA IV.9 - Equipamento Experimental (Vista frontal).

O cálculo da velocidade de ascensão foi feito usando a correlação experimental de DAVIES e TAYLOR, segundo a referência (7),

$$v_{b} = 0,711 (g d_{b})^{0,5}$$
 (1V.9)

sendo v_b expressa em cm/s, g é a aceleração da gravidade, e d_b o diâmetro equivalente de uma esfera de igual volume, expresso em cm.

A quantidade de líquido evaporado em um determinado in tervalo de tempo é medida diretamente através de uma variação na altura de borbulhamento, sendo esses valores corrigidos a fim de fornecer a quantidade real de líquido evaporado. Essa correção leva em conta o volume V_b de bolhas presente no borbulhador em relação ao volume total V_T , de maneira que o volume de líquido V_1 , é dado por:

$$V_1 = V_T - V_b$$
 (IV.10)

A fração de gás presente no borbulhador, é a razão en tre V_h e V_T, sendo que:

$$H_g = V_b / V_T$$
 (IV.11)

Assim sendo, V₁ será dado por:

$$V_1 = V_T (1 - H_g)$$
 (IV.12)

O volume $V_{1,ev}$ de líquido evaporado, quando a altura de borbulhamento varia de um valor înicial H_i para um valor f<u>i</u> nai H_f, c dado por:
$$V_{1,ev} = (1 - H_g) (Y_{Ti} - V_{Tf})$$
 (IV.13)

onde V_{TT} e V_{TT} , são os volumes totais correspondentes às alturas H_i e H_f , respectivamente.

O cálculo da fração gasosa, foi feito experimentalmente, pois verificou-se a possibilidade de ocorrer uma variação da fração gasosa com a variação da altura de borbulhamento. Com o objetivo de caracterizar essa variação e determinar a fração gasosa, foram feitos ensaios, tomando-se volumes de líquidos correspondentes à aqueles utilizados nas corridas experimentais. Foram feitas medidas à temperatura ambiente, da altura do líquido sem borbulhamento e medidas de alturas com borbulha mento, usando a mesma vazão das corridas experimentais.

Os resultados mostraram uma variação da fração gasosa, mostrada na Tabela (IV.5), onde observa-se que ã medida que a altura de borbulhamento diminuí a fração gasosa aumenta.

A fração gasosa H_g , calculada experimentalmente foi atravês da equação:

$$H_{g} = \frac{h_{1} - h_{2}}{h_{1}}$$
(IV.14)

a qual é idêntica a equação (IV.11). Sendo h_1 , a altura de lí quido com borbulhamento, e h_2 a altura de líquido sem borbulha mento.Para os cálculos será utilizado o valor médio dessa fração.

Durante a operação de borbulhamento observou-se a possibilidade de ocorrer uma variação da altura de borbulhamen to não so devido a evaporação, mas também devido ao arraste. Para caracterizar esse efeito e determinar sua influên cia nos resultados obtidos, foi realizado o borbulhamento de ar à temperatura ambiente, utilizando-se a mesma vazão e o mesmo tempo de borbulhamento das corridas experimentais. Os resulta dos mostraram uma pequena influência desse efeito, onde a altu ra de borbulhamento sofreu uma variação da ordem de $1,58 \times 10^{-3}$ cm/min, correspondendo a um arraste de $0,271 \times 10^{-2}$ g/s de líqui do, o que evidencia uma pequena influência desse efeito. Essa quantidade de líquido arrastado será considerado nos cálculos das taxas de evaporação.

Com a vazão de ar na entrada mantida constante, e v<u>a</u> riando-se a altura de borbulhamento e a temperatura de entrada do ar, foram realizadas 48 corridas experimentais, cada uma com o tempo total de borbulhamento de 120 minutos, totalizando um conjunto de 528 pontos experimentais. A fixação do tempo de borbulhamento foi pelo fato de em alguns casos, não ser possível a medida da altura de borbulhamento além desse tempo, dev<u>i</u> do a pequena altura alcançada no borbulhador.

Para todas as corridas experimentais as medidas eram tomadas em intervalos de tempo pré-fixados, onde nos primeiros 15 minutos de borbulhamento esse intervalo foi de 5 minutos, e a partir desse intervalo passava a ser de 15 minutos.

IV.2.1. Tabela de dados experimentais

Os resultados obtidos encontram-se nas Tabelas (IV.6) a (IV.53), sendo considerados suficientes para a representação do fenômeno estudado.

PSI.BAS

ts(‡C)	tu(≝C)	pasts(atm)	pustu(atu)	uss(Kg/Kg)	nsu(Kg/Kg)	n(Kg/Kg)	95	w X
28.2444	24.0000	.0390	. 0294	.0253	.\$189	.0169	.6656	67.4399
28.8844	23.5000	. 8398	. #285	.\$253	. \$183	.0160	.6346	64.3819
28.8444	23.2494	.0390	.0280	.\$253	.0179	.0156	.6164	62.5735
28.8000	23.1045	, 0390	.0279	.0253	.0178	.0154	.6103	61.9758
28.8844	23.0000	. \$39\$.0277	.0253	.\$177	.0153	.6443	61.38 4
29 4444	23.0000	. \$395	.0277	.1256	.\$177	.#152	.5938	64.3490
27.4004	21.6667	.#352	,\$255	.\$227	.0163	.0141	.6214	62.8825
24 4844	21.1111	.0331	.0247	. \$213	. 6 157	.0137	.6421	64.9815
75 aaaa	29.9778	.4312	.\$235	.0201	.0149	,0130	.6462	65.3428
24 5444	24.6444	. 6363	.0231	.0194	.0147	.0128	.6579	66.A768
272 5808 273 5808	18.8299	4284	.0215	.0183	.0137	.\$118	,6428	64.9461
20139999 75 5488	10 0000	. \$322		.0207	, \$146	.0122	,5913	59,9143
57 4999	21 7770		.0257	. #23#	. \$164	. \$141	.6158	62.3564
L/ *LLLL 75. 7778	38 9000	A712	-\$236	.0204	.0150	.0130	.6370	64.4419
22.2110 ME 1117	LY - JOUT 78 4117	#?i5	.6233	.4243	.0148	.0127	, 6298	63.6210
20,100/ M 1000	24 377Q		.\$235	.0205	.0149	.\$128	.6230	63.0643
23.3003 31.1111	24 2779	.8334	. 6249	.0215	.4159	.0139	.6465	65.4245
25 2229	21.1667	. \$329	.0248	.0212	. \$158	.0138	,6524	65.9924
C4.0007	28.2989	. \$3\$7	.0236	.\$197	.0150	.0132	.6709	67.7781
25 9333	21.1111	. #328	. \$247	.0211	.0157	.\$138	.6520	65.9527
26.0000	21.3333	.0331	.0250	. \$213	.0169	. 8 5,48	. 6568	66. 4363
26.9444	21.6667	. \$35\$.#255	.#226	.0163	.\$141	.6236	63.1980
28.3333	23.3333	.0380	. 283	. \$246	. \$191	.\$1.\$.6543	63.9833
25.000	28.5556	.0312	.#239	.\$2 \$ 1	.0152	.0133	.6651	67.2147
23.7778	18.6111	.0290	.0211	.0186	.\$134	.0113	.6966	61.3079
23.8889	18.6889	.\$292	.0215	.0187	.0137	. #115	. 6157	62.368
26.3889	21.6000	.0339	.\$245	.0218	.0156	.0134	.6125	62.0013
24.444	20.2778	,0302	. 0235	.\$194	.0149	.0132	.6897	88./316
26.6667	21.3889	.\$345	.0251	.0222	.0169	.0138	×6216	62.9994
26. 6644	28.9444	.0331	.0244	.\$213	de16.	.0135	.6312	63.8984
26.1111	20.5556	,4334	.#239	.0215	. 152	. \$129	,5997	60./888
25.544	20.5556	\$322	.\$239	.4207	.0152	.0131	.6349	64.2444
25.444	24.3887	.0312	.0236	.4281	.0150	.0131	.6537	66.8873
24.000	24.0400	.0294	. 1231	.\$ 189	.0147	4 21 0 .	.6896	67.57.58

Tixux or winding tixux or winding tixux or generation

and the second second

		Razão de	umidade de (Kg v	apor d'água	/Kg ar soco)
ts	tu	Valor	Carta	Diferença	Desvio
(°C)	(°C)	calculado	psicrométrica		relativo (%)
28,8 28,8 28,8 28,8 29,0 26,0 25,5 25,2 25,2 25,2 25,2 25,2 25,2 25	24,0 23,5 23,1 23,0 21,7 21,1 20,0 18,8 20,2 21,3 20,3 21,3 20,3 21,3 21,3 20,4 21,3 21,3 21,3 21,3 21,3 21,3 21,3 21,3	0,0168 0,0150 0,0154 0,0153 0,0152 0,0141 0,0137 0,0130 0,0128 0,0128 0,0128 0,0128 0,0122 0,0141 0,0130 0,0127 0,0138 0,0139 0,0138 0,0138 0,0139 0,0138 0,0138 0,0139 0,0138 0,0139 0,0138 0,0131 0,0131 0,0131 0,0130	0,0167 0,0152 0,0156 0,0154 0,0154 0,0154 0,0143 0,0132 0,0128 0,0124 0,0142 0,0142 0,0131 0,0128 0,0130 0,0141 0,0141 0,0141 0,0141 0,0141 0,0141 0,0141 0,0130 0,0142 0,0130 0,0142 0,0134 0,0134 0,0134 0,0135 0,0135 0,0132 0,0137 0,0132 0,0132	0,0001 -0,0002 0,0000 -0,0001 -0,0002 -0,0002 -0,0001 -0,0002 -0,0001 -0,0001 -0,0001 -0,0001 -0,0002 -0,0002 -0,0002 -0,0002 -0,0002 -0,0002 -0,0002 -0,0002 -0,0002 -0,0002 -0,0002 -0,0002 -0,0001 -0,0001 -0,0001 -0,0002	0.595 1.250 0.000 0.649 0.653 1.316 1.418 0.730 1.538 0.000 0.847 1.639 0.709 0.769 0.787 1.563 1.438 2.174 1.515 0.725 1.428 1.418 0.625 0.752 7.966 6.896 0.746 0.000 1.449 1.481 0.775 0.763 1.526 1.538
					Desvio

Tabela IV.3 - Comparação entre valores calculados e dados da carta psicrométrica

médio = 1,402

Conjunto de	Número total	Temperatura	Vazão total	Vazão por	Volume da	Raio da
corridas expe	de corridas	do ar de entrada	corrigida	cada orifício	bolha	bolha
rimentais	experimentais	(Tg)	(G)	(Go)	(V_{b})	(a)
		(°C)	$(x10^{5}m^{3}/s)$	$(x10^{5}m^{3}/s)$	$(x10^{-6}m^{-5})$	$(x 10^2 m)$
(A1)	9	. 70	0,26608	0,020467	0,6830	0,546
(A2)	9	100	0,29816	0,022935	0,7830	0,572
(A3)	8	150	0,33090	0,025458	0,8870	0,592
(A4)	8	180	0,35473	0,027286	0,9640	0,612
(A5)	7	225	0,38429	0,029561	1,0616	0,632
(A6)	7	285	0,43711	0,033623	1,2391	0,666

Tabela IV.4 - Parâmetros relativos às corridas experimentais

and the second second

Ţ	а	b	e	1	а	1	V	\$ 5

Volume medido na proveta (x 10 ⁶ m ³)	Volume sem borbulhamento (x10 ⁶ m ³)	Volume com borbulhamento (x10 ⁶ m ³)	Altura de líqu <u>i</u> do sem borbulh <u>a</u> mento h ₂ x 10 ² (m)	Altura de líqui- com borbulhamen- to h ₁ x 10 ² (m)	Fração de gâs no borbulha- dor H _g
1000	908,081	923,472	8,85	9,00	0,0166
900	800,342	820,864	7,80	8,00	0,0250
800	697,734	718,256	6,80	7,00	0,0285
700	595,126	615,648	5,80	6,00	0,0333
600	492,518	513,040	4,80	5,00	0,0400
500	395,041	415,562	3,85	4,05	0,0493
400	. 297,563.	318,085	2,90	5,10	0,0645
300	205,216	220,607	2,00	2.15	0,0697
200	102,608	112,868	1,00	1,10	0,0909

Valor Médio = 0,046

Tabela IV.6 - (A1)

Tempo de	Temperat	tura(°C)	Altura de	Volume de líquido
borbulhamento (min)	Agua	Ar	borbulhamen- to (H_L) $(x10^2 m)$	presente no borbu lhamento (V_1) $(x10^6 m^3)$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	50,0 52,0 32,4 32,5 52,5 32,7 33,1 53,1 53,1 53,1 53,5 34,0	79,0 68,7 69,3 69,6 69,8 70,4 70,5 70,7 71,5 72,0	8,95 8,95 8,95 8,90 8,80 8,75 8,70 8,65 8,55 8,55 8,50 8,45	876.097 871.203 861.414 856.520 851.625 846.731 836.942 832.048 827.153

Tabela IV.7 - (Al)

Tempo de	Temperat	ura (⁰ C)	Altura de borbulbamen-	Volume de líquido presente no borbu
(min)	Agua	Ar	to (H_L) (x 10 ² m)	$\begin{array}{c} \text{lhamento} (V_1) \\ (x10^6 \text{ m}^3) \end{array}$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 32,4 32,5 32,5 33,0 33,3 33,3 33,3 33,5 33,7 33,7 33,7	78,0 68,3 68,7 69,3 70,0 70,2 70,6 70,6 71,1 71,1 71,1 71,7	7,95 7,95 7,95 7,90 7,85 7,75 7,65 7,65 7,60 7,55 7,50 7,45	778,209 ,,315 768,421 758,632 748,843 743,949 739,054 734,160 729,265

Tempo de	Tempera	atura (°C)	Altura de	Volume de líquido
porbulhamento			borbulhamen-	presente no borbu
(min)	Agua	Ar	to (H_L) $(x \ 10^2 \text{ m})$	$\frac{1 \text{hador}}{(\text{V}_{1})}$ $(x10^{6} \text{ m}^{3})$
$\begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	30,0 32,7 32,7 33,0 33,1 33,1 33,3 33,5 33,5 33,5 33,5 33,5 33,5	78,8 69,0 69,3 69,3 69,8 70,0 70,2 70,2 70,2 70,6 71,1 71,7	7,05 7,05 7,05 7,00 6,90 6,85 6,75 6,75 6,70 6,65 6,60 6,55	690,110 685,216 675,427 670,532 660,744 655,849 650,955 646,061 641,166

Tabela IV.8 - (A1)

Tabela IV.9 - (A1)

Tempo de	Temperat	ura (^o C)	Altura de	Volume de líquido
borbulhamento (min)	Água	Ar	borbulhamen- to (H _L) (x10 ² m)	presente no borb <u>u</u> hador (V_1) $(x10^6 m^3)$
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	30,0 32,0 32,5 32,5 32,5 33,0 33,3 33,3 33,7 33,7 33,7 33,7	78,5 68,5 68,6 69,0 69,6 69,8 70,2 70,7 71,5 71,8	6,15 6,15 6,15 6,10 6,05 5,95 5,90 5,85 5,80 5,75 5,70	602,011 597,117 592,222 582,433 577,539 572,644 567,750 562,856 557,961

Tempo de	Tempera	tura (°C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
(Água	Ar	to (H _L)	lhador V _{1 z}
			(x10 ⁴ m)	$(x106 m^{3})$
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	30,0 32,5 33,0 33,7 34,0 34,0 34,0 34,0 34,1 34,1 34,1 34,1	79,1 68,7 69,0 69,3 69,6 70,0 70,0 70,4 70,6 71,1 71,5	5,25 5,25 5,25 5,20 5,15 5,05 5,00 4,95 4,90 4,85 4,80	513,912 , 509,018 504,123 494,334 489,440 484,545 479,651 474,756 469,862

Tabela IV.10 - (Al)

Tabela IV.11 - (A1)

Tempo de	Tempera	tura (^o C)	Altura de	Volume de líquido
borbulhamento	Agua	Ar	borbulhame <u>n</u>	presente no borbu lhador
(min)			(x10 ² m)	$\begin{array}{c} (V_1) \\ (x10^6 \text{ m}^3) \end{array}$
0 5 10 15 30 45 60 75 90 105 120	30,0 32,2 32,7 32,7 33,0 33,0 33,1 33,3 33,3 33,3 33,5 33,5 33,5	78,3 68,2 68,6 68,9 68,9 69,4 70,0 70,2 70,5 70,7	4,10 4,10 4,05 3,95 3,85 3,80 3,75 3,70 3,65 3,60	401,340 396,446 386,657 376,868 371,974 367,080 362,185 357,291 352,396

. .

Temperatura (°C) Altura de Volume de líquido Tempo de borbulhamenpresente no borbu borbulhamento to lhador Água Ar (V_1) (H_L) $(x10^{6} m^{3})$ $(x10^2 m)$ (min) 3,25 3,25 3,25 3,20 3,15 3,10 2,05 79, 369, 00 30,0 318,136 32,0 32,4 32,5 33,0 33,3 33,7 34,0 34,0 34,5 34,5 5 • • 69,0 69,3 69,6 69,8 70,4 70,5 70,7 71,3 72,1 1011 15 $313,241 \\ 308,347$ 30 45 305,452 2,95 288,769 283,875 60 2,902,85 7590 278,981 2,802,75 105 274,086 120 269,192

Tabela IV.12 - (A1)

Tabela IV.13 - (A1)

Tempo de	Tempera	tura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Agua	Ar	to (HL)	lhador (V1)
(min)			(x10 ² m)	$(x10^6 m^3)$
0 5 10 15 30 45 60 75 90 105 120	30,0 32,0 32,0 32,0 32,0 32,4 32,7 33,7 33,7 33,1 33,5 33,7	78,7 68,6 69,0 69,8 70,0 70,0 70,6 70,7 71,5 72,1	2,20 2,20 2,15 2,15 2,15 2,10 2,00 1,95 1,90 1,85 1,80	215,353 210,459 205,564 195,776 190,881 185,987 181,092 176,198 171,504

1.

Tempo de	Tempera	atura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Água	Ar	to (HL)	lhador (V1)
(min)			$(x10^2 m)$	$(x10^{6} m^{3})$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 32,0 32,5 32,5 32,5 32,7 33,3 33,5 33,5 33,5 33,5 33,5 33,5 33,5 33,5 33,5	78,5 68,1 68,3 68,6 69,3 70,0 70,5 70,6 70,7 72,0 72,8	1,30 1,30 1,25 1,20 1,15 1,10 0,95 0,90 0,85 0,80 0,75	127,254 122,360 117,465 112,571 107,676 92,993 88,099 83,204 78,310 73,416

Tabela IV.14 - (A1)

Tabela IV.15 - (A2)

	Tempo de	Tempera	tura (⁰ C)	Altura de	Volume de líquido
	borbulhamento		9	borbulhamen-	presente no borbu
		Agua	Ar	to	lhador
	(min)			(H_L) (x102 m)	(V_1) $(x106 m3)$
	0	30,0	110,1	8,85	886,309
	5	35.4	97,3	8,85	in Ostania
	10	33,8 36.6	97,0	8,80 8,75	801,414
	30	37.4	99,3	8,65	846.731
	45	37,5	99,5	8,55	836,942
	60	37,9	100,0	8,45	827,153
	75	38,/	100,4	8,4U 2 75	822,259
	105	39.3	101.5	8,25	807.576
	120	39,4	102,1	8,15	797,787
-					

.

Tempo de	Tempera	atura (⁰ C)	Altura de	Volume de líquido
borbulhamento (min)	Лgua	Ar	borbulhamen- to (H_L) $(x \ 10^2 \text{ m})$	presente no borb <u>i</u> lhador (V1) (x10 ⁶ m ³)
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 35,6 36,4 37,0 37,4 37,7 38,7 39,3 39,3 39,5 39,6	110,6 98,6 99,1 99,1 99,3 99,9 100,6 100,6 101,2 101,3 102,1	7,85 7,85 7,80 7,75 7,65 7,55 7,50 7,40 7,30 7,25 7,20	768,421 763,526 758,632 748,843 739,054 734,160 724,371 714,582 709,688 704,793

Tabela IV.16 - (A2)

Tabela IV.17 - (A2)

Tempo de	Tempera	tura (^o C)	Altura de	Volume de líquido
borbulhamento	Кgua	Ar	borbulhamen- to (H_L) $(x10^2 m)$	presente no borbu $\frac{1 \text{hador}}{(\text{V}_1)}$ $(x 10^6 \text{ m}^3)$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 35,6 36,1 36,6 37,5 37,7 38,3 38,9 38,9 38,9 39,1 39,3	110,8 97,8 98,2 98,9 99,1 100,3 100,6 100,8 101,4 102,5 103,1	6,90 6,90 6,85 6,80 6,70 6,60 6,50 6,45 6,35 6,35 6,30 6,20	675,427 670,533 665,638 655,849 646,061 636,272 631,377 621,589 616,694 606,905

Tempo de	Tempera	itura (^o C)	Altura de	Volume de líquido
borbulhament			borbulhamen-	presente no borbu lhador
(min)	Agua	Ar	(nL) $(x10^2 m)$	$(x_10^6 m^3)$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 36,4 37,0 37,7 37,7 38,5 38,9 39,1 39,3 39,6 40,2	110,0 96,7 97,6 98,2 99,1 99,1 99,7 99,9 100,6 102,7 104,7	5,90 5,90 5,85 5,80 5,70 5,65 5,55 5,45 5,45 5,40 5,35 5,25	577,539 572,645 567,751 557.962 553,067 543,278 533,489 528,595 523,701 513,912

Tabela IV.18 - (A2)

Tabela IV.19 - (A2)

Tempo de	Tempera	tura (^o C)	Altura de	Volume de líquido
borbulhamento (min)	Agua	Ar	borbulhamen- to (H_L) $(x10^2 m)$	presente no borbu lhador (V_1) $(x10^6 m^3)$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 37,4 37,7 37,9 39,5 39,6 40,4 40,4 40,4 40,4 40,8 40,9	112,5 97,5 98,2 98,9 100,1 101,0 101,0 101,7 103,8 104,4	5,10 5,10 5,05 5,00 4,85 4,80 4,75 4,65 4,65 4,60 4,50 4,40	499,228 494,334 489,440 474,756 469,862 464,968 455,179 450,284 440,496 430,707

Tempo de	Tempera	tura (°C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
(min)	Agua	Ar	to (H_L) $(x10^2 m)$	$\frac{1 \text{hador}}{(x \times 10^6 \text{ m}^3)}$
0 5 10 15 30 45 60 75 90 105 120	30,0 40,4 40,6 40,6 40,8 40,9 40,9 40,9 40,9 40,9 41,2 41,2	115,2 98,6 99,5 99,9 100,0 100,3 101,2 101,9 102,1 103,4	4,10 4,10 4,05 4,00 3,90 3,85 3,70 3,65 3,60 3,50 3,40	401,341 396,446 391,552 381,763 376,868 362,185 357,291 352,396 342,608 332,819

Tabela IV.20 - (A2)

Tabela IV.21 - (A2)

Tempo de	Temperat	ura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borb <u>u</u>
	Agua	Ar	to (H _L)	hador (V_1)
(min)			$(x10^{\frac{1}{2}} m)$	$(x10^6 m^3)$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 38,5 38,5 38,9 39,5 39,5 39,6 40,0 40,0 40,0 40,4 40,6	114,4 96,9 96,9 97,8 98,6 99,5 99,7 99,9 101,0 102,3 103,4	2,95 2,95 2,90 2,80 2,75 2,70 2,65 2,55 2,55 2,50 2,40 2,30	288,769 283,875 274,086 269,192 264,297 259,403 249,614 244,720 234,931 225,142

. .

Tempo de	Tempera	tura (°C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borby
	Agua	Ar	to (H,)	(lhador (V1)
(min)	[$(x10^2 \text{m})$	$(x10^{6} m^{3})$
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	50,0 37,9 38,5 38,9 38,9 38,9 39,3 39,3 39,3 39,8	108,6 97,7 97,7 97,8 98,2 98,6 98,8 99,9 101,3 103,4 104,3	2,05 2,05 1,95 1,90 1,85 1,80 1,70 1,60 1,55 1,45 1,45 1,40	200,670 190,881 185,987 181,092 176,198 166,409 156,621 151,726 141,937 137,043

Tabela IV.22 - (A2)

.Tabela IV.23 - (A2)

Tempo de	Tempera	tura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borb <u>u</u>
	Agua	Ar	to (Hr)	1hador (Va)
(min)			$(x10^{2} m)$	(x10 ⁶ m ³)
0	30,0	110,3	1,05	107,782
5 10	38,7 39.1	97,3 97,7	1,05	102,608
15	39,4	98,4	0,95	92,993 83,204
45	39,6	98,6	0,80	78,310
60 75	40,0	99,5	0,70	63,627
90	40,4	100,6	0,55	53,838
120	40,8	101,9	0,35	34,261

Tempo de	Temperat	tura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borb <u>u</u>
****	Água	Ar	to (Hr)	lhador (V.)
(min)			(x10 ² m)	$(x10^6 m^3)$
05	50,0 39,6	167,1 143,4	8,9 8,9 8,9	871,205
10 15 30	40,8	148,4 148,2 149,3	8,7 8,6	851,625 841,837
45 60 75	48,6 49,9 49,9	151,0 152,2 152,5	8,5 8,4 8,3	832,048 822,259 812,470
90 105 120	50,7 50,7 51,4	153,6 155,0 155,5	8,2 8,1 8,0	802,681 792,893 783,104

Tabela IV.24 - (A3)

Tabela IV.25 - (A3)

Tempo de	Tempera	tura (°C)	Altura de	Volume de líquido
horbulhamento		**************************************	borbulhamen-	presente no borbu
001001Hamenco	δσμα	Ar	to	lhador
	ing au			(V_1)
(min)		{ }	$(x10^2 m)$	(x10 ⁶ m ³)
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 41,8 44,5 46,1 48,2 49,1 49,5 50,1 50,1 50,5 50,5	169,6 146,5 146,7 147,8 147,8 147,8 148,7 149,5 150,5 151,6 152,5 153,1	7,9 7,9 7,8 7,7 7,6 7,5 7,4 7,3 7,2 7,1 7,0	773,315 763,526 753,737 743,949 734,160 724,371 714,582 704,793 695,005 685,216

Tempo de	Tempera	tura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Хона	Ar	to	lhador
11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 E E		(V_1)
<u>(min)</u>			$(x10^2 m)$	$(x10^{\circ} m^3)$
0 5 10 15 30 45 60 75 90 105 120	30,0 41,9 43,6 44,9 47,3 49,2 49,9 50,1 50,3 50,7 50,9	167,1 141,1 141,8 143,6 146,5 148,4 150,4 151,8 152,9 154,2 154,9	7,1 7,0 6,9 6,8 6,7 6,6 6,5 6,5 6,4 6,3 6,2	695,005 685,216 675,427 665,638 655,849 646,061 636,272 626,483 616,694 606,905

Tabela IV.26 - (A3)

Tabela IV.27 - (A3)

Tempo de	Tempera	tura (⁰ C)	Altura de	Volume de líquido
borhulhamento	∮ *		borbulhamen-	presente no borb <u>u</u>
	Agua	Ar	to (HL)	1hador (V_1)
<u>(min)</u>			<u>(x10² m)</u>	$(x10^6 m^3)$
0 5 10 15 30 45 60 75 90 105 120	30,0 43,1 45,4 46,9 49,6 50,7 51,6 52,0 52,6 52,7 52,7 52,7	167,4 144,7 146,0 147,6 149,6 151,6 153,6 155,7 155,8 156,3 156,3	6,1 6,0 6,0 5,8 5,7 5,6 5,5 5,5 5,4 5,3 5,2	597,117 587,328 567,750 557,961 548,173 538,384 528,595 518,806 509,017

e.

Tempo de	Tempera	tura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
(min)	Λgua	Ar	$\begin{pmatrix} to \\ (H_L) \end{pmatrix}$	$\frac{\text{lhador}}{(x_{10}^{6} \text{ m}^{3})}$
0 5 10 15 30 45 60 75	30,0 44,4 46,5 47,6 49,4 50,3 50,7 51,2	166,5 144,0 144,5 145,0 147,3 148,2 150,7 151,8	5,10 5,10 5,00 5,00 4,90 4,80 4,70 4,60	499,328 489,440 479,651 469,862 460,073 450,284
90 105 120	51,8 52,0 52,2	153,3 154,2 154,7	4,50 4,40 4,30	440,496 430,707 420,918

Tabela IV.28 - (A3)

Tabela 1V.29 - (A3)

Tempo de	Tempera	tura (^O C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Agua	Ar	to (HL)	lhador (V1)
(min)			$(x10^2 m)$	$(x10^{6} m^{3})$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 46,0 48,5 50,5 50,8 51,2 51,4 51,6 51,8 51,8 51,8 51,8	167,1 144,3 145,6 146,4 147,6 149,1 151,2 152,4 153,1 154,4 155,3	4,00 4,00 3,90 3,85 3,80 3,70 3,60 3,50 3,40 3,30 3,20	391,55 381,763 376,868 371,974 362,185 352,396 342,608 332,819 323,031 313,241

				······································
Tempo de	Tempera	tura ([°] C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Agua	Ar	to (H _L)	Ihador (V_1)
<u>(mín)</u>			$(x10^2 m)$	$(x10^6 m^3)$
0 5 10 15 30 45 60 75 90 105 120	30,0 44,2 44,6 46,1 48,4 49,9 49,9 49,9 50,1 50,1 50,1	165,2 144,0 144,5 145,3 149,3 150,5 151,4 151,4 151,8 153,5 155,0	3,00 3,00 2,90 2,90 2,70 2,60 2,50 2,40 2,30 2,20 2,10	293,664 285,875 264,297 254,508 244,720 234,931 225,142 215,353 205,564

Tabela IV.30 - (A3)

Tabela IV.31 - (A3)

Tempo de	Tempera	tura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Agua	Ar	to (H _L)	1hador (V1)
(min)			<u>(x10² m)</u>	$(x10^6 m^3)$
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	30,0 45,4 45,7 46,1 48,8 48,8 48,8 49,7 49,7 49,7 50,1 50,1	165,8 144,5 144,7 145,4 147,8 148,9 149,8 150,7 152,7 152,7 153,8 155,1	2,10 2,10 2,00 2,00 1,90 1,70 1,60 1,50 1,40 1,30 1,20	205,564 195,776 185,987 166,409 156,620 146,832 137,043 127,254 117,465

Tempo do	Temperat	ura (^o C)	Altura de	Volume de líquido
horhulhamento			borbulhamen-	presente no borb <u>u</u>
	Agua	Ar	to (HL)	1hador (V_1)
(min)			$(x \ 10^2 \ m)$	$(x \ 10^6 \ m^3)$
$ \begin{array}{r} 0 \\ 5 \\ 10 \\ 15 \\ 30 \\ 45 \\ 60 \\ 75 \\ 90 \\ 105 \\ 120 \\ \end{array} $	30,0 47,3 49,2 50,5 51,6 52,0 52,3 53,3 53,3 53,3 53,7 53,9	198,5 177,2 178,1 178,6 179,5 179,9 180,1 180,6 180,6 180,8 180,0	9,00 9,00 8,95 8,90 8,75 8,60 8,45 8,35 8,35 8,25 8,05 7,90	880.992 876,097 871,203 850,520 841,837 827,153 817,365 807,576 787,998 773,315

Tabela IV.32 - (A4)

Tabela IV.33 - (A4)

Tempo de	Temperatura (^o C)		Altura de	Volume de líquído
borbulhamento (min)	Água	Ar	borbulhamen- to (H _L) (x 10 ² m)	presente no borb <u>u</u> lhador (V ₁) (x 10 ⁶ m ³)
0 5 10 15 30 45 60 75 90 105 120	30,0 46,5 47,6 49,3 52,2 52,9 53,5 53,9 54,4 54,4 54,4	199,0 176,8 178,1 178,8 179,2 179,2 180,5 180,8 181,0 181,4 181,4	8,0 8,0 7,95 7,90 7,75 7,60 7,45 7,30 7,20 7,10 6,95	783,104 778,209 773,315 758,632 743,949 729,265 714,582 704,793 695,005 680,321

Tempo de	Temperat	ura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
(min)	Água	Ar	$\begin{array}{c} \text{to} (\text{H}_{\text{L}}) \\ (\text{x } 10^2 \text{ m}) \end{array}$	lhador (V1) (x 106 m ³)
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	30,0 47,1 49,4 50,7 52,2 52,8 53,7 53,7 54,1 54,1 54,3	198,3 176,3 177,7 178,3 179,4 179,4 179,4 180,3 180,8 181,4 181,9 181,9	7,15 7,15 7,10 7,00 6,85 6,70 6,55 6,40 6,30 6,15 6,00	699,889 695,005 685,216 670,533 655,849 641,166 626,483 618,694 602,011 587,328

Tabela IV.34 - (A4)

Tabela IV.35 - (A4)

Tempo de	Temperat	ura (^o C)	Altura de	Volume de líquido
borbulhamento (min)	Agua	Ar	to (H_L) (x 10 ² m)	$\frac{1 \text{ hador } (V_1)}{(x \ 10^6 \ \text{m}^3)}$
0 5 10 15 30 45 60 75 90 105 120	30,0 47,6 48,6 49,7 51,2 52,5 53,7 53,9 53,9 54,4 54,6	199,5 177,9 178,7 179,2 179,4 179,9 179,9 180,5 181,2 181,7 182,1	6,20 6,20 6,15 6,10 5,85 5,70 5,55 5,40 5,30 5,13 5,05	606,905 602,011 597,117 572,644 557,961 543,278 528,595 518,806 502,165 494,334

.

.

20000 10	Tempera	tura (⁰ C)	Altura de	Volume de líquido
borbulhamento (min)	Água	Ar	borbulhamen- to (H_L) $(x 10^2 m)$	presente no borb <u>u</u> Ihador (V1) (x 10 ⁶ m ³)
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	50,0 48,0 48,8 49,3 51,1 51,6 52,7 53,9 54,3 54,4 54,8	198,8 178,3 178,8 179,0 179,7 180,3 180,8 181,5 181,5 181,6 181,9	5,20 5,20 5,15 5,10 4,90 4,75 4,55 4,45 4,45 4,30 4,20 4,10	509,017 504,123 499,228 479,651 464,968 445,390 435,601 420,918 411,129 401,340

Tabela IV.36 - (A4)

Tabela IV.37 - (A4)

Towno de	Temperatura (^C		Altura de	Volume de líquido
borbulhamento (min)	Água	Ar	borbulhamen- to (H_L) $(x \ 10^2 m)$	presente no borbu- lhador (V ₁) (x 10 ⁶ m ³)
0 5 10 15 30 45 60 75 90 105 120	30,0 48,4 48,9 49,7 51,1 52,2 53,5 54,1 54,3 54,6 55,0	197,7 178,5 178,6 179,2 179,5 180,1 180,3 180,8 18,2 181,4 181,7	4,15 4,15 4,10 3,95 3,85 3,60 3,50 3,40 3,30 3,15 3,00	406,235 401,340 386,657 376,868 352,396 342,608 332,819 323,031 308,347 293,664

Towno do	Temperatura (^O C)		Altura de	Volume de líquido
horbulhamento	· · · · · · · · · · · · · · · · · · ·	"•••••••••••••••••••••••••••••••••••••	borbulhamen	presente no borb <u>u</u>
oor our mannen co	Agua	Ar	to (Hi)	lhador (V1)
(min)	~~~~		$(x \ 10^2 \ m)$	$(x \ 10^6 \ m^3)$
0	30.0 47.5	197,1	3,20	313,241
10	49,1	179,5	5,15	308,347
15 30	50,2	179,5	3,10	303,452 283,875
4š	51,8	180,1	2,75	209,192
60 7 c	52,0	180,1	2,60	254,508
90	52,0	180.5 180.5	2,45 2,30	239,825
105	52,4	180,8	2,20	215,353
120	52,4	180,8	2,05	200,670
				n i fa bili fa fa mangan ing mangang na mangang na mangang na kanang na kanang na mangang na mangang na mangang

Tabela IV.38 - (A4)

Tabela IV.39 - (A4)

Tempo de	Temperatura (^o C)		Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
(min)	Água	Ar	$\begin{array}{c} \text{to} (\text{H}_{\text{L}}) \\ (\text{x } 10^2 \text{m}) \end{array}$	1hador (V1) (x 106 m3)
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	30,0 48,5 50,8 51,2 51,6 52,0 52,0 52,4 52,4 52,4 52,4 52,6	197,9 177,7 177,9 178,3 179,0 179,2 179,4 179,9 180,5 180,5 181,0	2,20 2,20 2,15 2,10 1,95 1,80 1,65 1,55 1,40 1,30 1,10	215,353 210,459 205,564 190,881 176,198 161,515 151,726 137,043 127,254 107,676

11 m m m m m m m m m m m m m m m m m m	Tempera	tura (⁰ C)	Altura de	Volume de líquido
borbulhamento (min)	Água	Ar	borbulhamen- to _(HL) (x 10 ² m)	presente no borb <u>u</u> lhador (V ₁) (x 10 ⁶ m ³)
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	45,0 50,7 54,3 55,8 57,7 59,4 59,8 60,1 60,1 60,1 60,1	265,2 223,5 224,0 224,4 227,3 227,4 228,5 229,0 229,1 229,1 229,4 230,3	8,90 8,90 8,85 8,80 8,65 8,50 8,50 8,30 8,10 7,90 7,70 7,50	871,203 866,309 861,414 846,731 832,048 812,470 792,893 773,315 753,737 734,160

Tabela IV.40 - (A5)

Tabela IV.41 - (A5)

Tempo de	Temperat	tura (⁰ C)	Altura de	Volume de líquido
borbulhamento (min)	Agua	Ar	borbulhame <u>n</u> to (H _L) (x 10 ² m)	presente no borb <u>u</u> lhador (V ₁) (x 10 ⁶ m ³)
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	45,0 60,1 60,1 60,1 60,1 60,1 60,1 61,0 61,0	265,3 224,2 224,3 224,4 226,3 229,0 230,8 231,5 231,5 231,9 232,2	7,90 7,90 7,80 7,75 7,60 7,40 7,25 7,05 6,85 6,65 6,65 6,45	773,315 763,526 758,632 743,949 724,371 709,688 690,110 670,533 650,955 631,377

Tempo de	Temperat	ura (⁰ C)	Altura de	Volume de líquido
borbulhamento (min)	Agua	Ar	borbulhamen- to (H _L) (x 10 ² m)	presente no borb <u>u</u> hador (V ₁) (x 10 ⁶ m ³)
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	45,0 54,3 57,8 58,4 59,5 6,01 60,1 60,1 60,1 60,1 60,3	269,0 222,0 222,2 222,7 225,9 227,0 227,9 229,2 229,2 230,1 231,4	7,10 7,00 6,90 6,75 6,55 6,40 6,20 6,00 5,80 5,60	695,005 685,216 675,427 660,744 641,166 626,483 606,905 587,328 567,750 548,173

Tabela IV.42 - (A5)

Tabela IV.43 - (A5)

Tempo de	Temperat	ura (^o C)	Altura de	Volume de líquido
borbulhamento (min)	Água	Ar	borbulhamen- to (H _L) (x 10 ² m)	presente no borb <u>u</u> lhador (V ₁) (x 10 ⁶ m ³)
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	45,0 55,9 58,4 59,2 59,6 59,6 59,6 59,9 59,9 59,9 59,9	264,2 211,3 212,3 213,8 214,5 217,0 219,5 220,9 222,2 226,1 227,4	6,30 6,30 6,25 6,15 6,00 5,80 5,60 5,45 5,25 5,10 4,90	616,694 (611,800 602,011 587,328 567,750 548,173 533,489 513,912 499,228 479,651

Tampa da	Tempera	tura (^O C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
(min)	Agua	Ar	$\begin{bmatrix} to & (H_L) \\ (T_L)^2 & m \end{bmatrix}$	$\begin{bmatrix} 1 \text{ nador } (V_1) \\ (x_1) \\ 0 \end{bmatrix}$
()	45.0	250 5	5 00	
5 10	60,1 61.0	219,5	5,00	4021,440 H
$1\overline{5}$ 30	62,0 62.0	219,8	4,90	404,545 479,651 460,862
45 60	62,0 62.0	222,9	4,60 4,60 4 40	409,302 450,284 430,707
75 90	62,0 62,0	227,4	4,20	411,129
105	62,0 62,0	227,4	3,80	371,974
		210,0	. ئ ا ئى و ك	242,008

Tabela IV.44 - (A5)

Tabela IV.45 - (A5)

Por a to	Temperati	ıra (^o C)	Altura de	Volume de líquido
borbulhamento (min)	Água	Ar	borbulhamen- to (H_L) $(x \ 10^2 m)$	presente no borb <u>u</u> lhador (V ₁) (x 10 ⁶ m ³)
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	45,0 60,4 60,8 61,0 61,2 61,4 61,4 61,4 61,4 61,4 61,4 61,4	260,0 218,8 218,9 219,7 220,4 221,8 221,8 222,7 224,0 224,0 224,4	4,20 4,20 4,15 4,05 3,90 3,70 3,50 3,35 3,15 2,95 2,75	411,129 406,235 396,446 381,763 362,185 342,608 327,925 308,347 288,769 269,192

Tempo de	Temper	atura (^o C) Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Agua	Ar	to (H _L)	lhador
(min)			$(x10^2 m)$	$(x10^6 m^3)$
0 5 10 15 30 45 60 75 90 105 120	45,0 55,9 57,1 58,4 59,7 60,1 60,7 60,7 60,9 60,9 61,1	258,1 221,1 222,2 222,2 223,1 224,0 224,6 225,5 225,8 225,8 227,1 228,3	3,20 3,20 3,15 3,10 2,95 2,75 2,55 2,40 2,20 2,00 1,80	313,241 308,347 305,452 288,769 269,192 249,614 234,931 215,353 195,776 176,198

Tabela IV.46 - (A5)

Tabela IV.47 - (A6)

Tempo de	Temperat	ura (^o C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Agua	Ar	to (H _L)	lhador
(min)		·	$(x10^2 m)$	$(x10^{6} m^{3})$
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	45,0 62,0 62,2 62,5 62,5 62,5 62,8 63,2 63,2 63,2 63,2 63,2	310,5 282,1 283,2 284,0 285,2 285,2 285,9 286,5 286,5 286,9 287,3 288,0	9,00 9,00 8,90 8,80 8,60 8,40 8,15 7,95 7,70 7,40 7,20	830,992 871,203 861,414 841,837 822,259 797,787 778,209 753,737 624,371 704,793

Tempo de	Temperat	tura ([°] C)	Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
			to	lhador
	Agua	Ar	(H_L)	6 3.
(min)	· ·		(x10 ⁴ m)	(x10 [~] m ⁻)
0 5 10 15 30 45 60 75 90 105 120	45,0 61,8 61,9 62,0 62,2 62,2 62,2 62,5 62,5 62,5 62,5 62,8	306,6 280,3 280,3 280,7 282,0 282,7 284,1 285,5 285,5 285,5 285,5 285,9 286,3	8,00 8,00 7,90 7,55 7,55 7,30 7,05 6,80 6,55 6,35 6,15	783, 104 775, 315 763, 526 739, 054 714, 582 690, 110 665, 638 641, 166 621, 589 602, 011

Tabela IV.48 - (A6)

Tabela IV.49 (A6)

•

Tempo de	Temperat	ura ([°] C)	Altura de	Volume de líquido	
borbulhamento (min)	Agua	Ar	borbulhamen- to (HL) (x10 ² m)	presente no borbu lhador (x10 ⁶ m ³)	
0 5 10 15 30 45 60 75 90 105 120	45,0 61,8 62,0 62,4 62,5 62,5 62,8 62,8 62,8 62,8 62,8 62,8 62,8	305,7 281,6 281,4 283,1 283,4 284,0 284,8 284,8 286,1 286,5 287,7	7,15 7,15 7,10 7,00 6,80 6,55 6,30 6,05 5,80 5,55 5,25	699,899 695,005 685,216 665,638 641,166 616,694 592,222 567,750 543,912 513,912	and a second

-7

Tempo de	'empo de Temperatura (^o C)		Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Agua	Ar	to (H _L)	lhador
(min)			$(x10^2 m)$	$(x10^6 m^3)$
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array}$	45,0 62,8 63,0 63,0 63,0 63,0 63,0 63,0 63,0 63,0	305,0 283,2 283,2 283,3 283,7 284,3 285,0 285,2 285,5 285,5 285,5 286,9	5,95 5,95 5,90 5,80 5,55 5,30 5,05 4,80 4,55 4,35 4,10	582,433 577,539 567,750 543,278 518,806 494,334 469,862 445,390 425,812 401,340

Tabela 1V.50 (A6)

Tabela IV.51 - (A6)

Tempo de	Temperatura (^o C)		Altura de	Volume de líquido
borbulhamento			borbulhamen-	presente no borbu
	Água	Ar	to (H _L)	lhador
_(min)	· · · · · · · · · · · · · · · · · · ·		(x10 ² m)	$(x10^6 m^3)$
0 5 10 15 30 45 60 75 90 105 120	45,0 01.8 62,5 63,0 63,6 63,8 63,8 63,8 63,8 64,0 64,0 64,0	310,7 279,8 280,9 281,6 283,4 284,5 285,4 286,3 286,8 286,8 287,7 288,0	5,10 5,00 4,90 4,70 4,45 4,20 3,95 3,70 3,50 3,30	499,228 489,440 479,651 460,073 435,601 411,129 386,657 362,185 342,608 323,031

Tempo de	Temperatura (^o C)		Altura de	Volume de líquido
borbulhamento			borbulhamen	presente no borb <u>u</u>
	Agua	Ar	to (H _L)	lhador
(min)			$(x \ 10^2 \ m)$	$(x \ 10^6 \ m^3)$
p	45,0	306,2	4,10	401,340
10	63.2	281,4	4,10	391.552
1 Š	63,4	283,2	3,90	381,763
30	63,8	283,4	3,65	357,291
45	63,8	284,3	3,40	332,819
60	63,8	284,8	3,15	308,347
75	64,1	286,1	2,90	283,875
90	64,1	286,8	2,65	259,403
105	64, 1	287,1	2,40	234,931
120	64,1	288,4	2,15	210,459

Tabela 1V.52 - (A6)

.Tabela IV.53 - (A6)

Tempo de borbulhamento (mîn)	Temperat Água	ura (^o C) Ar	Altura de borbulhamen to (H_L) $(x \ 10^2 m)$	Volume de líquido presente no borbu lhador (x 10 ⁶ m ³)
$ \begin{array}{r} 0\\ 5\\ 10\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 105\\ 120\\ \end{array} $	45,0 61,1 63,0 62,8 63,8 64,1 64,5 64,5 64,5 64,5 64,5	308,0 280,5 281,1 282,6 284,1 285,4 286,3 286,6 287,1 288,1 289,3	3,10 3,10 3,00 2,90 2,65 2,40 2,15 1,90 1,70 1,45 1,20	303,452 293,664 283,875 259,403 234,931 210,459 185,987 166,409 141,937 117,465

. -

CAPÍTULO V - ANÁLISE DOS RESULTADOS E CONCLUSÕES

V.1. INTRODUÇÃO

Com os resultados experimentais obtidos, podemos proceder uma análise com as equações resultantes do modelo.

Os coeficientes de transferência de calor e de massa, \overline{h} e \overline{b} , identificam-se com os coeficientes de transferência de calor e massa isotérmico \overline{h}_g e \overline{b}_g , respectivamente, sendo dados pelas equações (III.34) e (III.37).

Portanto, os coeficientes \bar{h} e \bar{b} , serão calculados pelas equações:

$$\tilde{h} = \frac{K_g}{3} \frac{\pi^2}{a} \left\{ \frac{\omega}{\Sigma} \frac{\lambda}{\alpha n^2 - \beta} (1 - e^{-\beta\tau}) + \frac{\omega}{\Sigma} \frac{1}{n^{-1} \alpha n^2} \right.$$

$$\left(1 - \frac{\lambda\beta}{\alpha n^2 - \beta}\right) \left(1 - e^{-\alpha n^2\tau}\right) \left\} / \left\{ \frac{1}{1 + \lambda} \frac{\omega}{n^{-1} 1} \frac{1}{n^2} \frac{1}{\beta - \alpha n^2} \right.$$

$$\left. \frac{1}{n^2} \left(1 - e^{-\alpha n^2\tau}\right) + (1 + \lambda) \left(e^{-\beta\tau} - 1\right) \right. +$$

$$\left. + \frac{\omega}{n^2} \frac{1}{\alpha n^4} \left(1 - e^{-\alpha n^2\tau}\right) \right\}$$

$$\left(V.1\right)$$

e

$$\overline{\mathbf{b}} = \frac{\delta_{g} \pi^{2}}{3 a} \left(\begin{array}{c} \Sigma \\ \mathbf{n} = 1 \end{array} \right) \frac{\lambda_{m}}{\alpha_{m} n^{2} - \beta_{m}} \left(1 - e^{-\beta_{m} \tau} \right) + \begin{array}{c} \Sigma \\ \Sigma \\ \mathbf{n} = 1 \end{array} \frac{1}{\alpha_{m} n^{2}}$$

$$(1 - \frac{\lambda_m \beta_m}{\alpha_m n^2 - \beta_m}) (1 - e^{-\alpha_m n^2 \tau})$$

$$/ \left\{ \frac{1}{1 + \lambda_{m}} \frac{\sum_{n=1}^{\infty} \frac{1}{n^{2}}}{n^{2}} \frac{1}{\beta_{m} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2} n^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2} n^{2} n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2} n^{2} n^{2}} \frac{1}{n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} \tau}\right) + \frac{1}{\beta_{m}^{2} - \alpha_{m}^{2} n^{2} n^{2} n^{2}} \frac{1}{n^{2}} \frac{1}{n^{2}} \left(1 - e^{-\alpha_{m}^{2} n^{2} n^$$

+
$$(1 + \lambda_m) (e^{-\beta_m \tau} - 1) + \sum_{n=1}^{\infty} \frac{1}{\alpha_m n^4} (1 - e^{-\alpha_m n^2 \tau})$$
 (V.2)

Os valores das propriedades físicas utilizadas nas equações (V.1) e (V.2), tanto para a fase contínua como para fase dispersa, foram obtidas do Perry (49). A utilização do método de análise de regressão permitiu a obtenção de equações polinomiais para estas propriedades, sendo dadas em função da temperatura, conforme mostrado no anexo A.

Tomando um valor médio de $\bar{p}_{ws}(\bar{t}s)$ na tabela (IV.2), po demos calcular o teor de vapor d'água médio, contido no ar de alimentação à temperatura média $\bar{t}s$, igual a 26[°]C, através da fração molar média de vapor d'água, \bar{x}_w , sendo dada em (48) pela relação:

 $\bar{x}_{w} = \bar{p}_{ws}(\bar{t}s)/p$ (V.3)

onde o seu valor médio é igual a 0,0335.

Considerando que não ocorre mudança apreciável desse valor, com o aumento da temperatura do ar, durante todas as cor ridas experimentais as propriedades físicas do ar úmido podem ser obtidas utilizando as propriedades do ar seco. Esta consi deração é baseada no fato de que a fração molar de vapor d'água é pequena, sendo então as propriedades físicas i do ar úmido e do ar seco praticamente as mesmas, conforme indicado na referência (48). Portanto, para a fase dispersa as propri<u>e</u> dades físicas são do ar seco.

No cálculo de λ necessita-se conhecer o coeficiente de transferência de calor h_L para a fase contínua. A sua determinação foi através da correlação experimental de CALDERBANK e MOO-YOUNG (50), utilizada por HACKENBERG(56), na forma:

$$\frac{h_{\rm L}}{C_{\rm p}\rho} ({\rm Pr})^{1/3} = 0,31 \left(\frac{\Delta\rho\mu g}{\rho^2}\right)^{1/3}$$
(V.4)

As propriedades físicas da equação (V.4), são da fase contínua, onde C_p é o calor específico à pressão constante, ρ a densidade, Pr o número de Prandt1, $\Delta \rho$ a diferença de densid<u>a</u> de entre a fase contínua e fasedispersa, g a aceleração normal da gravidade, μ a viscosidade. Ainda de acordo com CALDERBANK e MOO-YOUNG (50) essa correlação foi utilizada para dispersões gás-líquido, líquido-líquido, e comparada com uma grande quantidade de dados experimentais. Esta equação foi também d<u>e</u> monstrada analiticamente por HACKENBERG(51), em um estudo desenvolvido sobre os processos de borbulhamento.

Como a temperatura da fase contínua variou para cada conjunto de corridas experimentais, foram obtidos valores de h_L , para cada conjunto, mostrados na tabela (V.1). Foi considerado nesse cálculo que a fase dispersa, constituída pelo ar, estava a uma temperatura média entre T_g e T_L .

O cálculo do parâmetro δ_g , da equação (V.2), foi fei to, através da equação:

$$\delta_{g} = \delta_{g0} \left(\frac{T}{273, 15}\right)^{n}$$
 (V.5)

de acordo com VARGAFTIK (52). Essa equação é utilizada para uma faixa de temperatura de 273 até 1473 K, sendo aplicada para o sistema ar-H₂O nas seguintes condições: $\delta_{gO} = 0.216 \text{ cm}^2/\text{s}$, é o coeficiente de difusão à T = 273,15 K e p = 1 atm, n é um coe ficiente igual a 0.18, e T a temperatura expressa em Kelvin. Para o nosso caso, essa temperatura, foi considerada como a mé dia entre T_g e T_L.

O valor do parâmetro $\lambda_{\rm m}$, que aparece na equação do co<u>e</u> ficiente de transferência de massa b, será igual ao valor do parâmetro λ da transferência de calor, sendo portanto utilizada a condição de similaridade $\lambda = \lambda_{\rm m}$, conforme mostrado por AN-DRADE (1), ANDRADE e HACKENBERG(55), no estudo da similaridade térmica-mássica em sistemas bifásicos transiente.

Com os valores das propriedades físicas e da equação (V.5), os parâmetros α , β , α_m , $\beta_m e \lambda = \lambda_m$, foram calculados pa ra cada conjunto de corrida experimental, e são mostrados na tabela (V.1). Assim sendo, com esses valores, calcula-se os coeficientes de transferência \tilde{h} e \tilde{b} para todos os conjuntos de corrida, mostrados nas tabelas (V.8) até (V.13).

V.2. DETERMINAÇÃO DA TEMPERATURA MEDIA INTERNA, E DA TEMPERAT<u>U</u> RA MEDIA DA SUPERFÍCIE DA BOLHA

Para o cálculo das taxas de evaporação, necessita-se conhecer os valores da temperatura média interna \overline{T}_m , e da temperatura média da superfície da bolha \overline{T}_s da bolha. As equações (III.49) e (III.50), para o caso em que ocorre mudança de fase, e as equações (III.51) e (III.52), sem mudança de fase, serão

utilizadas. O termo ΔT que aparece nessas equações é a diferença entre as temperaturas $T_g = T_L$, medidas experimentalmente.

Na determinação de \overline{T}_m e \overline{T}_s com mudança de fase, neces sita-se conhecer o fluxo de calor médio temporal na superfície, \overline{q}_L , dado por:

$$\bar{q}_{L} = L \bar{b}_{\xi,\delta} \frac{\bar{C}_{s} \bar{T}_{s} - \bar{C}_{m} \bar{T}_{m}}{\bar{T}_{m}}$$
(V.6)

onde, L é o calor latente referida à temperatura T_L da fase con tínua, \bar{C}_s e \bar{C}_m , são as concentrações médias na interface, e no înterior da bolha, respectivamente, seus cálculos serão discutidos no ítem V.3. O parâmetro $\bar{b}_{\xi,\delta}$, é o coeficiente de trans ferência de massa com mudança de fase e obtém-se da equação (III.28), sendo:

$$\bar{b}_{\xi,\delta} = b_{\xi,\delta} + \frac{\rho V_b C_p (\bar{T}_m - T_L) \bar{T}_m}{\tau A_b L (\bar{C}_s \bar{T}_s - \bar{C}_m \bar{T}_m)}$$
(V.7)

onde, $b_{\xi,\delta}$ é expresso pela equação (III.13).

O valor de \tilde{q}_L , na equação (V.6), é obtido pelo método da Bisecção. Os cálculos de \tilde{T}_m e \tilde{T}_s , sem mudança de fase e com mudança de fase, para cada conjunto de corrida experimental, são realizados, utilizando os programas WLS-BAS e WLSA-BAS, re<u>s</u> pectivamente. Os programas estão escritos em linguagem BASIC, como mostrado no anexo A.

As tabelas (V.2) até (V.7), apresentam os valores da temperatura média interna, determinadas pelas equações (III.49)
e (111.51) e os valores da temperatura média na superfície, cal culadas pelas equações (III.50) e (HII.52).

O termo \bar{q}_L/h_L ΔT apresentado nas tabelas (V.2) a (V.7), mostra o efeito do superaquecimento, obtido por ANDRADE (1), quando expressou as equações (III.49) e (III.50) em formas ad<u>i</u> mensionais. Esse parâmetro adimensional alcançou valores ba<u>s</u> tante pequenos, com uma variação para todas as corridas exper<u>i</u> mentais de 1,556x10⁻³ a 5,258x10⁻³. Isto explica porque os r<u>e</u> sultados de \tilde{T}_m , mostrados nas tabelas (V.2) até (V.7), com mudanças de fase e sem mudança de fase estão bem próximos.

Com relação a temperatura média interfacial, o compor tamento é semelhante, ou seja, os valores de \overline{T}_s , estão também próximos, com e sem mudança de fase respectivamente.

Verifica-se também que para os dois casos, os valores de \overline{T}_s , estão muito próximos da temperatura da fase contínua T_L , isso se deve a influência do parâmetro λ , pois segundo ANDRA-DE (1), para pequenos valores de λ , a temperatura instantânea da superfície, $T_s(t)$, estará muito próxima do valor da tempera tura T_1 , mesmo nos instantes iniciais do processo.

Para cada conjunto de corrida experimental, os valores de \overline{T}_m , aumentam à medida em que o tempo de residência dimi nui, o que está de acordo com o que deve ser observado experimentalmente, pois a temperatura mínima alcançada pela bolha é a temperatura do líquido, e isto seria alcançado à medida em que, ou se aumentasse a altura de borbulhamento ou se aumentas se o tempo de residência através de modificações na vazão do gás. V.3. OS COEFICIENTES DE TRANSFERÊNCIA DE CALOR E MASSA

Nas equações para calcular as taxas de transferência de calor e massa pelo modelo, aparecem como parâmetros os coeficientes de transferência de calor e massa. No capítulo III, são apresentadas as equações que permitem o cálculo dos três coeficientes de transferência de calor e dos três coeficientes de transferência de massa.

Para os fenômenos isolados de transferência de calor e massa, temos os coeficientes \tilde{h} e \tilde{b} , dados pelas equações (V.1) e (V.2), respectivamente.

Nos fenômenos ocorrendo transferência simultânea, o coeficiente de transferência de calor, é obtido da equação (III.16), sendo:

$$h_{\xi,\delta} = \frac{p C_p \bar{p}_s \bar{b}}{T_m (p - \bar{p}_s) \bar{C}_s} (\bar{C}_s \bar{T}_s - \bar{C}_m \bar{T}_m) + \bar{h} \qquad (V.8)$$

e o coeficiente de transferência de massa simultâneo, é calc<u>u</u> 1ado pela equação (111.13).

Para os fenômenos envolvendo o efeito de mudança de fase, o coefíciente de transferência de calor, é obtido da equa ção (111.31), onde teremos:

$$\tilde{h}_{\xi,\delta} = h_{\xi,\delta} + \frac{\rho V_b C_p}{\tau_{A_b}} \frac{(\tilde{T}_m - T_L)}{(\tilde{T}_m - \tilde{T}_s)}$$
(V.9)

e o coeficiente de transferência de massa, $\tilde{b}_{\xi,\delta}$, é determinado pela equação (V.7).

Observa-se que tanto os coeficientes de transferência

simultâneos, como os que envolvem uma mudança de fase, são fun ções das grandezas, \overline{C}_m , \overline{T}_m , \overline{C}_s e \overline{T}_s , sendo que as duas primeir ras representam os valores médios para o interior da bolha, e as duas últimas valores na superfície.

Os cálculos das temperaturas \overline{T}_m e \overline{T}_s , são feitos atr<u>a</u> vés das equações conhecidas e já comentadas. Para as concentrações médias, \overline{C}_m e \overline{C}_s , não dispomos de equações que permitam o cálculo dessas grandezas. Para determinar seus valores utilizamos uma aproximação, a qual será discutida a seguir.

Para o cálculo da concentração $\bar{C}_{\rm m}$, consideramos que o gás no interior da bolha, comporta-se como um gás perfeito, e que a quantidade de água presente no ar de alimentação, mantém-se constante, de tal modo que $\bar{C}_{\rm m}$, será a concentração de vapor d'água à temperatura $\bar{T}_{\rm m}$. Para a obtenção do valor de $\bar{C}_{\rm m}$, consideramos uma concentração de vapor d'água média no ar igual a 1,62x10⁻⁵ g/cm³, correspondente à uma temperatura média de bulbo seco de 26^oC.

Considerando o processo de aquecimento de 26°C até \overline{T}_m , à pressão constante a concentração \overline{C}_m , será dada por:

$$\bar{C}_{m} = \frac{4,8462 \times 10^{-3}}{\bar{T}_{m} + 273,15}$$
(V.10)

sendo \overline{T}_m em graus centígrados e \overline{C}_m em g/cm³.

Para determinarmos o valor de \overline{C}_s , consideraremos que ocorre uma condição de saturação na interface, correspondente à temperatura média \overline{T}_s , sendo \overline{p}_s , a pressão de saturação correspondente.

Com essas considerações, os valores dos coeficientes

são calculados, através dos programas WLS-BAS e WLSA-BAS, mostrados no anexo A, e estão dispostos nas tabelas (V.8) até (V.13).

Os valores de \bar{h} e $h_{\xi,\delta}$, calculados e mostrados nas t<u>a</u> belas (V.8) até (V.13), estão bastante próximos. Uma análise das equações, permite concluir que este fato é devido a diferença \bar{C}_{s} \bar{T}_{s} - \bar{C}_{m} \bar{T}_{m} ser muito pequena em todos os casos est<u>u</u> dados.

A tabela V.14, mostra os valores médios dessa diferen ça, tomadas no tempo de residência $\tau_1 = \tau_2$, os quais são os tem pos para a maior e menor altura de borbulhamento, respectiva mente, para cada conjunto de corrida experimental.

Conjunto de Corridas	τ ₁ (s)	[†] 2 (s)	$(\overline{C_s} \ \overline{T_s} - \overline{C_m} \ \overline{T_m})$ para τ_1 $(x10^3 g^{O}C/cm^3)$	$(\overline{C}_{s} \ \overline{T}_{s} - \overline{C}_{m} \ \overline{T}_{m})$ para τ_{2} (x10 ³ g ^o C/cm ³)	Desvio Relativo (%)
Al	0,374	0,044	0,623	0,466	25,20
A2	0,367	0,030	1,350	1,097	18,74
A3	0,347	0,068	3,733	3,460	7,31
A4	0,343	0,066	4,542	4,214	7,22
A5	0,327	0,099	8,824	8,559	3,00
A6	0,315	0,083	10,701	10,455	2,29

TABELA V.14

À medida que essa diferença for maior, o efeito da transferência de massa sobre a transferência de calor sera maior, e quando essa diferença for nula, o efeito sera nulo, e o valor de h_{ξ, δ} será igual ao coeficiente \tilde{h}_g , correspondendo ao caso no qual o fenômeno da transferência de calor ocorre de modo isolado.

Os coeficientes de transferência de calor e massa,ta<u>n</u> to para os casos isolados como para os simultâneos, variam devido a variação do tempo de residência encontrado para todas as corridas experimentais.

Os valores dos coeficientes mostrados nas tabelas, au mentam de valor à medida que o tempo de residência diminue.

Quanto aos coeficientes $\tilde{h}_{\xi,\delta} = \tilde{b}_{\xi,\delta}$, essa tendência também é verificada, sendo que a variação desses coeficientes é influenciada exclusivamente pelo tempo de residência.

V.4. AS TAXAS DE TRANSFERÊNCIA DE CALOR E MASSA

Com os resultados experimentais, podemos fazer um con fronto com os resultados obtidos pelo modelo procurando caracterizar os efeitos dos processos simultâneo e de superaqueci mento, no que concerne à previsão das taxas de evaporação de uma quantidade de líquido, decorrente do borbulhamento de um gás aquecido.

Para o processos simultâneo de calor e massa, o fluxo de massa na interface, é obtido, substituindo a equação (III.13) em (III.12), sendo considerado que \overline{T}_m é a temperatura [T] de referência, tendo-se então:

$$W_{1} = b_{\xi,\delta} \frac{\overline{C}_{s} \overline{T}_{s} - \overline{C}_{m} \overline{T}_{m}}{\overline{T}_{m}}$$
(V.11)

A equação para o fluxo de calor no processo simultâneo, de acordo com a substituição da equação (III,16) em (III,15), e considerando $T_m = [T]$, é expressa na forma:

$$q = h_{\xi,\delta} (\bar{T}_m - \bar{T}_s)$$
 (V.12)

Para o processo com superaquecimento, o fluxo de massa, obtém-se da equação (III.32), considerando $[T_m] = T_m$, por tanto:

$$\bar{W}_{1} = \bar{b}_{\xi,\delta} \frac{\bar{C}_{s} \bar{T}_{s} - \bar{C}_{m} \bar{T}_{m}}{\bar{T}_{m}}$$
(V.13)

onde observamos que difere da equação (V.11), pelo termo $b_{\xi,\delta}$, que é o coeficiente de transferência de massa com superaquecimento, dado pela equação (V.7), e que contémo coeficiente $b_{\xi,\delta}$.

Quanto à equação para o fluxo de calor com superaquecimento, é da forma:

$$\bar{q} = \bar{h}_{\xi,\delta} (\bar{T}_m - \bar{T}_s), \qquad (V.14)$$

se $[T] = T_m$.

Esta equação diferencia da equação (V.12), no termo do coeficiente de transferência de calor com superaquecimento, $\tilde{h}_{\mathcal{E},\delta}$, apresentado pela equação (V.9), sendo função de $h_{\mathcal{E},\delta}$.

Para o cálculo das taxas de calor e massa nos processos simultâneo e com superaquecimento, temos que conhecer a área total de transferência de calor A_t , a qual multiplicada pe los fluxos de calor e massa, fornecerão as referidas taxas. O valor, será expresso pela área da superfície de uma bolha A_b , multiplicada pelo número de bolhas N, presentes no borbulhador, portanto:

$$A_{t} = A_{b} N \qquad (V.15)$$

O cálculo de N, depende da altura de borbulhamento , sendo que essa altura varia ao longo do processo. Considerar<u>e</u> mos então para a sua determinação, um valor médio dessa altura, de forma que, relacionando com a fração de gás H_o, teremos:

$$N = \frac{H_{g} V_{T}}{V_{b}}$$
(V.16)

onde V_b é o volume de uma bolha e V_T o volume total do borbulhador. O produto $H_g V_T$, vem ser o volume total de bolhas sem pre presente no borbulhador para uma determinada altura média.

Com os valores dos fluxos de calor e massa e de A_t , calculamos as taxas de calor e massa. As taxas de transferência de calor e massa para o caso simultâneo são $Q_s \in W_{1s}$, e p<u>a</u> ra o caso com superaquecimento são $\bar{Q}_{sa} \in \bar{W}_{1sa}$, sendo expressas em Watts e Kg/s, respectivamente, e são apresentados nas tabelas (V.15) a (V.20), onde cada tabela corresponde a um co<u>n</u> junto de corrida experimental.

O valor de \overline{Q}_m apresentado nas tabelas (V.15) até (V.20), vem ser a máxima taxa de calor possível de ser trocada entre as duas fases, relacionando a máxima diferença de temperatura do processo, dada pela temperatura de entrada do ar, T_g , e a temperatura de equilíbrio da fase contínua, T_L , de maneira que:

$$\bar{Q}_{m} = \dot{m} C_{p} (T_{g} - T_{L})$$
 (V.17)

onde m, é a vazão mássica de ar no processo e $\frac{c}{p}$ o calor específico do ar.

Nas tabelas (V.15) até (V.20), são apresentados valo res de \tilde{W}_m , que é a máxima taxa de massa, calculada através da razão \tilde{Q}_m/L , onde L é o calor latente de vaporização.

Uma análise dos resultados mostrados nas referidas ta belas, mostra uma diferença entre os valores de $Q_s \in \tilde{Q}_{sa}$, sendo essa diferença mais sensível à medida em que o tempo de re sidência dimínui, sendo isto verificado em todas as corridas experimentais.

Observamos nas tabelas que ocorre uma maior díferença de \tilde{Q}_m , quando comparada com Q_s e \tilde{Q}_{sa} , à medida que a dif<u>e</u> rença de temperatura $T_g - T_L$ aumenta. Isso vem ressaltar a importância que essas temperaturas têm no desempenho de equip<u>a</u> mento desta espécie.

Esta influência também pode ser verificada através da taxa de líquido evaporado \overline{W}_{exp} , obtida experimentalmente, onde as corridas experimentais mostram claramente que as maiores t<u>a</u> xas de evaporação, correspondem as máximas diferenças de temp<u>e</u> ratura .

Os resultados experimentais de \tilde{W}_{exp} para cada conju<u>n</u> to de corridas experimentais estão bem próximos, o que caract<u>e</u> riza que o tempo de residência não influenciou nessas taxas . Quanto aos valores das taxas calculadas pelos modelos com superaquecimento e simultâneo, observa-se que eles diferem para pequenos tempos de residência e diminuem essa diferença ã med<u>i</u> da que esse tempo aumenta.

Uma comparação dos resultados das taxas de transferên

cia de massa experimentais com os valores das taxas de transf<u>e</u> rência obtidas pelos dois modelos, mostra que à medida que o tempo de residência diminui os valores de \overline{W}_{1sa} aproximam-se dos resultados experimentais, em todos os casos estudados.

Assim sendo, o modelo de superaquecimento, mostra-se satisfatório para estimar a quantidade de líquido evaporado p<u>a</u> ra a faixa de T_u, entre 70[°]C a 285[°]C.

Os cálculos das taxas de transferência de calor e ma<u>s</u> sa, mostrados nas tabelas (V.15) até (V.20), foram realizados através dos programas WLS-BAS e WLSA-BAS, mostrados no anexo A.

V.5. PREVISÃO DA TEMPERATURA DE EQUILÍBRIO DO LÍQUIDO

Para a análise do desempenho de equipamentos do tipo dos evaporadores diretos, um dado de suma importância é a temperatura de equilíbrio que a fase contínua deve atingir após o período transiente de operação. Nosso objetivo é através do uso das equações resultantes do modelo, calcular essa temperatura de equilíbrio, de acordo com o procedimento descrito a s<u>e</u> guir.

Seja NT, o número total de bolhas presentes no borbulhador num intervalo de tempo, QP, a quantidade de calor per dida para o meio ambiente. Q, a quantidade de calor trocada por uma bolha e o líquido, MI a massa média do líquido no borbulhador, $C_{p\ H_2 O}$ o calor específico. TLF a temperatura do 1iquido, correspondente a um instante tf, e TLI é a temperatura do líquido para um instante inicial ti. A quantidade de calor necessária para variar a temperatura do líquido de TLI a TLF, no intervalo de tempo (tf - ti), é dada por:

$$(NTQ - QP) = M1 C_{p H_2O} (TLF - TLI)$$
 (V.18)

Através da equação (V.18), podemos então estimar a te<u>m</u> peratura de equilíbrio do líquido, após um determinado tempo de borbulhamento.

O cálculo de NT, será obtido pelo produto da frequência de bolhas geradas no intervalo de tempo de 10 minutos,se<u>n</u> do essa frequência determinada pela relação da vazão de ar total corrigida e o volume V_b de uma bolha.

A taxa de calor perdida para o ambiente foi calculada, através da equação

$$QP1 = M1 C_{p H_2O \Delta t} \qquad (V.19)$$

O parâmetro $\Delta T/\Delta t$, é a variação de temperatura do 1í quido com o tempo. O seu cálculo foi obtido experimentalmente da seguinte maneira:

Aquecemos uma quantidade conhecida de líquido até uma temperatura em torno de 80°C e introduzimos no borbulhador. Em seguida foram feitas leituras da temperatura em intervalos de 3 minutos para os 15 minutos iniciais, e a partir desse tempo em intervalos de 5 minutos até o tempo suficiente para a temp<u>e</u> ratura do líquido aproximar-se da temperatura ambiente.

Com os valores da temperatura do líquido e o tempo de resfriamento, construiu-se um gráfico de $T_L(^{\circ}C)$ versus t(min), onde os valores de $\Delta T/\Delta t$ foram determinados. A partir dos valores de T_L e $\Delta T/\Delta t$, obteve-se através da análise de regressão

a equação de $\Delta T/\Delta t$ em função de T_L. Foram realizados dois en saios, cada um com uma determinada quantidade de água no borh<u>u</u> lhador. Os gráficos de T_L(^OC) versus t(min) são apresentados nas figuras (V.1) e (V.2).

O cálculo de QP, será obtido multiplicando o valor de QP1, pelo intervalo de tempo de 10 minutos.

Para o modelo simultâneo, o cálculo de Q, será através da equação:

$$Q = q A_{\rm h} \tau \tag{V.20}$$

onde q é o fluxo de calor no processo simultâneo expresso pela equação (V.12) em cal/s cm², A_b a área da interface de uma bolha em cm² e τ o tempo de residência médio em segundos.

A equação para o cálculo de Q, quando o modelo é de superaquecimento, é dada por:

$$Q = \tilde{q} A_{b} \tau \qquad (V.21)$$

onde \tilde{q} , \tilde{e} o fluxo de calor no processo com superaquecimento, d<u>a</u> de pela equação (V.14), em cal/s cm².

Com as equações (V.19) a (V.21) conhecidas podemos determinar a temperatura de equilíbrio do líquido, dada pela (V.18). Os programas TLFS-BAS e TLFSA-BAS, calculam essas tem peraturas para os processos simultâneos e de superaquecimento, respectivamente, como mostrado no anexo A.

A variação da temperatura T_L , para o processo de bo<u>r</u> bulhamento, para os dois modelos são mostrados nas tabelas (V.21) até (V.26), para cada conjunto de corrida. Verifica-se que essas variações calculadas através dos dois modelos para todas as corridas, são sensivelmente înfluen ciadas pelo tempo de residência médio, onde à medida que esse tempo diminui as variações de temperatura aumentam.

Com a finalidade de ilustrar o processo de aquecimento da fase continua, desde o tempo inicial igual a zero até o tempo final de borbulhamento de 120 minutos, as figuras (V.3) até (V.20), mostram os pontos experimentais da variação da tem peratura T_L do líquido em (^OC), com o tempo de borbulhamento expresso em minutos, bem como as curvas obtidas pelos dois modelos. São apresentadas 3 corridas experimentais para - cada temperatura T_g estudada. São ainda indicadas nas figuras, a temperatura T_g , a altura média de borbulhamento H_m , e o tempo de residência médio τ .

Como pode ser verificado, os pontos experimentais são muito semelhantes para cada conjunto de corrida, mostrando que a temperatura de equilíbrio do líquido é praticamente alcançada nos 30 minutos iniciais de borbulhamento.

Observa-se que à medida que a temperatura T_g aumenta, a temperatura de equilíbrio do líquido aumenta, evidenciando que T_g influencia diretamente na temperatura de equilíbrio do líquido, ressaltando-se que para as temperaturas T_g iguais a 225 e 285 graus centígrados, respectivamente, ocorreu somente um aumento de T_L experimental da ordem de 2,5°C, caracteriza<u>n</u> do que para altas variações de temperatura T_g , a temperatura T_L , não apresenta o mesmo comportamento de variação.

Para uma mesma temperatura T_g , verifica-se em todos os casos estudados que para majores tempos de residência, a tempe

ratura de equilíbrio do modelo com superaquecimento aproxima--se mais da temperatura T_L experimental. À medida que esse tem po diminuí a temperatura de equilíbrio obtida pelo modelo simultâneo tende a aproximar-se de T_L experimental.

Para dar continuidade aos estudos realizados — nesta área, sugere-se:

 a) Desenvolver uma modelagem matemática considerando o efeito da população de bolhas, visando evidenciar sua influência no processo de borbulhamento.

 b) Obter temperatura do gás mais elevadas através do uso de fornos elétricos de alta potência.

c) Melhorar o sistema de aquecimento, de modo a permi tir um maior controle da temperatura de entrada do gás. Para isto propomos a adição de uma resistência variável controlada por um termostato, possuindo um par termoelétrico localizadono interior do cone metálico inferior.

d) Construir um equipamento que permita a operação de uma forma contínua, de modo a estabelecer uma alimentação constante para o líquido à medida em que se verifica a evaporação.
 Certamente que para este caso o modo de medida do evaporado não será mais pelo método empregado neste trabalho.

e) Construção do equipamento em uma escala maior, de maneira a permitir a utilização de maiores faixas de vazão de gás.

f) Estudo da influência do distribuidor através da modificação da disposição dos orifícios, como também dos seus diâmetros.

g) Procurar obter dados experimentais associados com maiores taxas de evaporação, seja através do aumento da temp<u>e</u> ratura do gás ou através da utilização de líquidos com ponto de ebulição menor.

TABELA V.1

Conjunto de	Coeficiente de transferên	Parametro admensional $\lambda = \lambda_m$ $(x10^3)$	Calo	DT	Massa	
rimental	cia de calor h_L (w/m ² °C)		α (s ⁻¹)	β (s ⁻¹)	α _m (s ⁻¹)	β _m (s ⁻¹)
(A1)	8416,9	1,28	9,369	9,350	9,766	9,747
.(A2).		1,25	.10,256	10,235	9,803	9,784
(A3)	9594,3	1.,23	11,586	11,563	10,502	10,481
(A4)	9734,3	1,26	12,490	12,465	10,751	10,729
. (A5)	10150,6		. 13,639	.13,612	11,366	11,343
(A6)	10250,7	1,31	15,153	15,122	11,659	11,636

Temperatura média da superfície e temperatura média interna de bolha

Conjunto de corrida experimental: (A1) Dados : $T_g = 70^{\circ}C$, $T_L = 33,11^{\circ}C$

Diferença de terrença	Tempo de			Τ _s (⁰ C)	𝕂 _m ([°] C)		
tura ΔT ([°] C)	residencia médio τ ([°] C)	$\overline{q}_{L}/h_{L}\Delta T$ (x10 ³)	com mudança de fase	sem mudança de fase	com mudança de fase	sem mudança de fase	
37,23	0,374	1,556	33,065	33,123	39,281	39.329	
37,04	0,331	1,574	33,065	33,124	39,980	40.028	
36,95	0,292	1,600	33,066	33,126	40,741	40.788	
36,98	0,255	1,634	33,067	33,128	41,602	41.649	
36,67	0,216	1,711	33,067	33,130	42,694	42.741	
36,67	0,165	1,861	33,065	33,134	44,492	44.539	
36,78	0,129	2,059	33,061	33,137	46,088	46.138	
36,52	0,085	2,594	33,047	33,142	48,527	48.582	
37,00	0,044	4,027	33,000	33,148	51,422	51,496	

Conjunto de corrida experimental: (A2)

Dados: $T_g = 100 \, {}^{\circ}C$, $T_L = 39,5 \, {}^{\circ}C$

Diferença de tempera-	Tempo de		T	s ^{(°} C)	Τ _m (^o c)		
tura ΔT (°C)	resistencia médio τ (s)	$\overline{q}_L/h_L\Delta T$ (x10 ³)	com mudança de fase	sem mudança de fase	com mudança de fase	sem mudança de fase	
61,30	0,357	1,660	39,418	39,520	49,220	49,304	
61,20	0,316	1,673	39,420	39,522	50,339	50,423	
61,80	0,275	1,680	39,421	39,525	51,700	51,783	
61,00	0,234	1,744	39,422	39,528	53,374	53,456	
60,00	0,199	1,837	39,421	39,532	55,119	55,201	
60,01	0,157	1,969	39,419	39,537	57,715	57,798	
59,70	0,110	2,285	39,408	39,545	61,483	61.570	
60,60	0,072	2,820	39,383	39,553	65,425	65.522	
59,6	0,030	5,258	39,252	39,565	71,018	71,168	

ىسىر سىز 201

Conjunto de corrida experimental:(A3)

Dados: $T_g = 150 \ ^{\circ}C$, $T_L = 50, 0 \ ^{\circ}C$

Diferença de tempera-	Tempo de residência		. 1	(°C)	T _m (^ο C)		
tura ∆T ([°] C)	mēdio τ (s)	$\overline{q}_L/h_L\Delta T$ (x10 ³)	com mudança de fase	sem mudança de fase	com mudança de fase	sem mudança de fase	
101,00	0,347	2,248	49,803	50,030	64,684	64.877	
104,00	0,306	2,184	49,806	50,033	66,492	66.682	
99,20	0,273	2,302	49,809	50,037	68,252	68 438	
101,10	0,232	2,291	49,811	50,042	70,929	71 111	
98,30	0,193	2,420	49,811	50,049	74,136	74 316	
99,10	0,148	2,544	49,807	50,059	78,928	79 107	
98,90	0,105	2,842	49,791	50,071	85.019	85 201	
98,90	0,068	3,422	49,748	50,085	92,000	92,096	

f

.

Conjunto de corrida experimental: (A4) Dados : $T_g = 180$ °C, $T_L = 52,33$ °C

de tempera-	Tempo de residência		T	o (⁰ C)	Τ _m (^o C)		
tura ΔT (^o C)	médio T (s)	$\overline{q}_L/h_L\Delta T$ (x10 ³)	com mudança de fase	sem mudança de fase	com mudança de fase	sem mudança de fase	
127,90	0,343	2,087	52,100	52,366	70,001	70,230	
127,80	0,303	2,086	52,105	52,371	72,185	72,409	
127,60	0,267	2,090	52,109	52,376	74,594	74.814	
126,90	0,228	2,122	52,114	52,382	77,832	78.047	
127,60	0,188	2,159	52,116	52,391	82,060	82.270	
127,00	0,145	2,285	52,113	52,403	88,017	88 226	
128,00	0,106	2,491	52,100	52,418	95,188	95 300	
127,50	0,066	3,063	52,048	52,438	105,004	105,233	

Conjunto de corrida experimental: (A5)

Dados: $T_g = 225 {}^{\circ}C$, $T_L = 60.5 {}^{\circ}C$

Diferença de tempera-	Tempo de residência		T	s (°C)	т _m (^о с)		
ra ΔT (°C)	médio T (s)	ā _L /h _L ∆T (x10 ³)	com mudança de fase	sem mudança de fase	com mudança de fase	sem mudança de fase	
167,16	0,327	2,836	60,069	60,546	82,294	82 706	
167,86	0,286	2,825	60,078	60,552	85,264	85.665	
166,40	0,253	2,849	60,085	60,558	88,220	88,612	
159,80	0,223	2,969	60,090	60,565	91,479	91.863	
162,25	0,169	2,988	60,096	60,581	99,247	99,617	
161,02	0,138	3,103	60,094	60,594	105,241	105.604	
164,29	0,099	3,278	60,075	60,614	115,069	115,428	

Conjunto de corrida experimental: (A6)

Dados: $T_g = 285 \ ^{\circ}C$, $T_L = 63,0 \ ^{\circ}C$

Diferença Tempo de			Ť	s (^o C)	T _m (°C)		
de tempera- tura ∆T (^O C)	e tempera-residência \overline{a}_{L}/h ura médio ΔT τ (°C) (s) (x10	$\overline{q}_{L}/h_{L}\Delta T$ (x10 ³)	com mudança de fase	sem mudança de fase	com mudança de fase	sem mudança de fase	
222,70	0,315	2,383	62,499	63,060	90,602	91,092	
221,10	0,275	2,400	62,513	63,068	94,472	94,948	
221,50	0,241	2,488	62,525	63,077	98,604	99,066	
221,30	0,195	2,490	62,542	63,093	105,929	106,372	
220,80	0,163	2,519	62,551	63,107	112,670	113,101	
221,10	0,121	2,585	62,555	63,133	124,511	124,927	
220,00	0,083	2,969	62,505	63,165	139,882	139,450	

Coeficiente de transferência de calor e massa

Conjunto de corrida experimental: (A1)

Altura média de borbulba-	Tempo de	Cœficiente	s de transferê	ncia de massa	Coeficientes de transferência de calor			
mento $H_{m} \times 10^{2}$ (m)	médio T (s)	b x 10 ² (m/s)	^b ξ,δx10 ² (m/s)	$\frac{\overline{b}_{\xi,\delta} \times 10^2}{(m/s)}$	h (W/m ² °C)	h _{ξ,δ} (W/m ² °C)	^h ξ,δ (W/m ² °C)	
8,70	0,374	1,139	1,199	1,281	11,720	11,987	17,034	
7,70	0,331	1,165	1,227	1,334	12,013	12,277	17,985	
6,80	0,292	1,198	1,261	1,401	12,390	12,612	19,127	
5,93	0,255	1,240	1,305	1,491	12,851	13,111	20.530	
5,03	0,216	1,300	1,368	1,629	13,478	13,738	22.502	
3,85	0,165	1,414	1,489	1,929	14,692	14,953	26.431	
3,00	0,129	1,532	1,613	2,305	15,948	16,210	30.894	
1,98	0,085	1,746	1,839	3,239	18,209	18,476	40.754	
1,03	0,044	2,068	2,177	5,897	21,599	21,876	64,830	

.

Conjunto de corrida experimental: (A2)

Altura média de borbulba-	Tempo de	Coeficient	es de transferê	ncia de massa	Coeficientes de transferência de calor		
mento $H_m x 10^2$ (m)	médio T (s)	b x 10 ² (m/s)	b _{ξ,δ} x10 ² (m/s)	$\tilde{b}_{\xi,\delta} \times 10^2$ (m/s)	h (W/m ² °C)	h _{ξ,δ} (W/m ^{2 o} C)	ĥ _{ζ,ć} (W/m ^{2 ο} C)
8,50	0,375	1,218	1,311	1,385	12,097	12,548	17,502
7,53	0,316	1,249	1,344	1,491	12,390	12,838	18,440
6,55	0,275	1,291	1,389	1,519	12,809	13,254	19.698
5,58	0,234	1,348	1,452	1 634	13,353	13,796	21,377
4,75	0,199	1,416	1,524	1,778	14,023	14,466	23,386
3,75	0,157	1,528	1,645	2,048	15,153	15,599	26,912
2,63	0,110	1,717	1,849	2,619	17,120	17,574	33.727
1,73	0,072	1,955	2,1047	3,646	19,590	20,058	44.728
0,70	0,030	2,381	2,564	7,844	24,195	24,691	83,705

*

Conjunto de corrida experimental: (A3)

Altura média	Tempo de	Coeficientes	de transferên	cia de massa	Coeficientes de transferência de calor			
de borbulha- mento	residência médio	$\overline{b} \times 10^2$	$b_{\xi,\delta} x 10^2$	b _{ξ,δ} x10 ²	h	h _{ξ,δ}	ĥξ,ŝ	
$H_{m} \times 10^{2}$ (m)	τ (s)	(m/s)	(m/s)	(m/s)	(W/m ^{2 o} C)	(W/m ^{2 o} C)	(W/m ^{2 o} C)	
8,45	0,347	1,375	1,566	1,617	12,558	13,557	18,324	
7,45	0,306	1,409	1,605	1,673	12,809	14,093	19,216	
6,65	0,273	1,448	1,648	1,735	12,102	14,088	20,169	
5,65	0,232	1,510	1,720	1,844	13,646	14,629	21,797	
4,70	0,193	1,595	1,817	1,999	14,358	15,343	23,972	
3,60	0,148	1,740	1,982	2,290	15,613	16,609	27,880	
2,55	0,105	1,954	2,226	2,805	17,539	18,560	34,462	
1,65	0,068	2,291	2,553	3,743	20,176	21,239	45,800	

Conjunto de corrida experimental : (A4)

Altura média de borbulha-	Tempo de residência	Coeficientes	de transferên	cia de massa	Coeficientes de transferência de calor			
mento H _m x10 ² (m)	médio τ (s)	b x 10 ² (m/s)	b _{ξ,δ} x10 ² (m/s)	<pre></pre>	h (W/m ^{2 o} C)	h _{ξ,δ} (W/m ^{2 ο} C)	$\frac{\tilde{h}_{\xi,\delta}}{(W/m^{2} \circ C)}$	
8,45	0,343	1,444	1,673	1,725	12,809	13,921	18,556	
7,48	0,303	1,478	1,713	1,782	13,060	14,159	19,418	
6,58	0,267	1,521	1,763	1,856	13,353	14,442	20,471	
5,63	0,228	1,586	1,838	1,970	13,855	14,935	21,951	
4,65	0,188	1,680	1,947	2,148	14,567	15,642	24,166	
3,58	0,145	1,829	2,119	2,462	15,781	16,858	27,927	
2,63	0,106	2,033	2,357	2,979	17,539	18,630	33,788	
1,65	0,066	2,362	2,738	4,136	20,427	21,554	45,908	

κ.

.

		TABEI	LA V.12	
Conjunto	de	corrida	experimental:	(A5)

Altura média	Tempo de	Coeficiente	de transferênc	ia de massa:	Coeficiente de transferência de calor					
de borbulha- mento H _m x10 ² (m)	residência τ (s)	$\frac{1}{b} \times 10^2$ (m/s)	b _{ξ,δ} x10 ² (m/s)	.b _{ξ,δ} x10 ² (m/s)	h (W/m ^{2 o} C)	h _{ξ,δ} (W/m ^{2 ο} C)	$\frac{\tilde{h}_{\xi = \delta}}{(W/m^{2-0}C)}$			
.8,20	0,327	1,564	1,959	1,991	13,353	15,247	19 849			
7,18	0,286	1;604	2;009	2;056	13,604	15,474	20,759			
6,35	0,253	1,649	2,066	2,130	13,897	15,750	21,745			
5,60	0,223	1,703	2,134	2,222	14,274	16,114	22,936			
4,25	0,169	1,849	2,317	2,485	15,320	17,150	26,194			
3,48	0,138	1,976	2,477	2,734	16,325	18,159	29,261			
2,50	0,099	2,208	2,768	3,263	18,167	20,026	35,540			

		TABEI	LA V.13	
Conjunto	de	corrida	experimental:	(A6)

Altura mēdia	Tempo de	Coeficientes	de transferên	cia de massa	Coeficientes de transferência de caler					
de borbulha- mento H _m x10 ² (m)	residência médio T (s)	$\overline{b} \times 10^2$ (m/s)	,bx10 ² ξ,δ (m/s)	$\dot{\tilde{b}}_{\xi,\delta} x 10^2$ ξ,δ (m/s)	$\frac{1}{h}$ (W/m ² °C)	h ξ,ô (W/m ² °C)	h ε,δ (W/m ² °C)			
8,10	0,315	1,650	2,133	2,165	13,855	15,828	20,298			
7,08	0,275	1,695	2,192	2,241	14,065	16,003	21,150			
6,20	0,241	1,746	2,258	2,330	14,358	16,266	22,163			
5,03	0,195	1,847	2,388	2,514	14,985	16,855	24,181			
4,20	0,163	1,949	2,520	2,713	15,697	17,544	26,337			
3,13	0,121	2,144	2,773	3,146	17,162	18,988	30,877			
2,15	0,083	2,558	3,311	4,095	24,153	26,082	43,445			
							an and a second and a			

Taxas de transferência de calor e massa

Conjunto de corrida experimental : (Al)

Dados :
$$T_g = 70^{\circ}C$$
, $T_L = 33,11^{\circ}C$

Tempo de	Taxa de t	transferênci	a de calor	Taxa de ti	ransferência	de massa	
residência médio (s)	Q _s (W)	Q _{sa} (W)	Q _m (W)	W _{ls} x 10 ⁵ (Ke/s)		$\frac{\overline{W}_{m} \times 10^{5}}{(Kg/s)}$	$\frac{\overline{x}_{exp}^{x10^5}}{(Kg/s)}$
0,374	1,676	2,385	10,351	0,428	0,453	0,427	0.409
0,331	1,689	2,479	10,297	0,375	0,404	0,425	0.409
0,292	1,706	2,584	10,272	0,328	0,362	0,424	0,409
0,255	1,715	2,690	10,280	0,285	0,325	0,424	0,342
0,216	1,719	2,821	10,194	0,241	0,284	0,421	0,342
0,165	1,700	3,100	10,194	0,184	0,237	0,421	0,409
0,129	1,636	3,126	10,225	0,145	0,204	0,422	0,409
0,085	1,462	3,234	10,152	0,097	0,169	0,419	0,342
0,044	1,070	3,184	10,286	0,053	0,138	0,425	0,407
<u></u>		1					

TABELA V.16 Conjunto de corrida experimental: (A2) Dados : $T_g = 100 {}^{\circ}C$, $T_L = 39,5 {}^{\circ}C$

Tempo do	Taxa de t	ransferência	de calor	Taxa de transferência de massa							
residência médio (s)	Qs (W)	Q _{sa} (W)	Q _m (W)	W _{1s} x 10 ⁵ (Kg/s)	₩ _{lsa} x 10 ⁵ (Kg/s)	$\overline{W}_{m} \times 10^{5}$ (Kg/s)	Wexp × 10 ⁵ (Kg/s)				
0,357	2,586	3,614	17,113	0,757	0,791	0,710	0,682				
0,316	2,612	3,758	17,085	0,665	0,705	0,709	0,612				
0,275	2,637	3,924	17,253	0,575	0,604	0,716	0,682				
0,234	2,657	4,124	17,029	0,488	0,543	0,707	0,612				
0,199	2,668	4,322	16,751	0,416	0,478	0,696	0,682				
0,157	2,697	4,576	16,753	0,330	0,405	0,697	0,682				
0,110	2,523	4,853	16,663	0,236	0,328	0,692	0,612				
0,072	2,233	4,994	16,918	0,159	0,271	0,702	0,612				
0,030	1,353	1,353 4,613		0,068	0,200	0,692	0,682				

TABELA V.17 Conjunto de corrida experimental: (A3) Dados : $T_g = 150 \ ^{\circ}C$, $T_L = 50,0 \ ^{\circ}C$

Tempo de	Taxa de t	ransferênci	a de calor	Taxa de transferência de massa						
residência médio	dência Q _s		$\overline{Q}_{\mathfrak{m}}$	$W_{1s} \times 10^5$	$\tilde{W}_{lsa} \ge 10^5$	$\overline{W}_{m} \times 10^{5}$	$\overline{W}_{exp} \times 10^5$			
т (s)	(W)	(₩)		(Kg/s)	(Kg/s)	(Kg/s)	(Kg/s)			
0,347	4,040	5,472	28,239	1,809	1,835	1,184	0,953			
0,306	4,065	5,674	29,081	1,582	1,612	1,217	0,953			
0,273	4,094	5,875	27,737	1,405	1,453	1,164	0,953			
0,232	4,136	6,178	28,269	1,191	1,252	1,188	0,953			
0,193	4,156	6,510	27,486	0,992	1,069	1,155	0,817			
0,148	4,125	6,942	27,708	0,768	0,868	1,164	0,817			
0,105	3,949	7,353	27,653	0,558	0,685	1,161	0,953			
0,068	3,497	7,566	27,653	0,376	0,534	1,161	0,953			

TABELA V.18 Conjunto de corrida experimental: (A4) Dados : $T_g = 180$ °C, $T_L = 52,33$ °C

Tempo de	Taxa de	transferênci	a de calor	Таха	de transferé	Ència de mas:	 sa
residencia médio	Q _s	Q _{sa}	\overline{Q}_{m}	$W_{1s} \times 10^{5}$	$\tilde{W}_{1sa} \times 10^5$	$\overline{W}_{m} \times 10^{5}$	$W_{exp} \times 10^5$
(s)	(₩)	(W)	(W)	(Kg/s)	(Kg/s)	(Kg/s)	(Kg/s)
0,343 0,303 0,267 0,228 0,188	4,842 4,890 4,913 4,973 5,008	6,468 6,721 6,962 7,324 7,754	36,002 35,973 35,914 35,717 35,914	2;106 1,843 1,606 1,363 1,121	2,129 1,843 1,656 1,431 1,209	1,514 1,513 1,511 1,472 1,544	1,225 1,157 1,293 1,293
0,145 0,106 0,066	4,982 4,853 4,326	8,272 8,824 9,243	35,746 36,027 35,889	0,865 0,643 0,417	0,981 0,791 0,608	1,544 1,505 1,512 1,509	1,225 1,293 1,293 1,225
						l ,	

TABELA V.19 Conjunto de corrida experimental:(A5) Dados : $T_g = 225 {}^{O}C$, $T_L = 60,5 {}^{O}C$

Tempo de	Taxa de t	ransferência	de calor	Taxa d	le transferên	cia de massa	
residência médio	Q _s	Q _{sa}	\overline{Q}_{m}	$W_{1s} \times 10^5$	$\tilde{w}_{1sa} = 10^5$	$\overline{W}_{m} \times 10^{5}$	$\overline{W}_{exp} \times 10^5$
τ (s)	(W)	(W)	(W)	(Kg/s)	(Kg/s)	(Kg/s)	(Kg/s)
0,327	6,183	8,072	47,323	3,825	3,862	2,007	1,633
0,286	6,222	8,371	47,520	3,304	3,372	2,016	1,701
0,253	6,261	6,669	47,105	2,898	2,991	1,998	1,769
0,223	6,303	8,997	45,238	2,538	2,538	2,556	1,633
0,169	6,349	9,726	45,933	1,915	1,982	1,952	1,769
0,138	6,338	10,244	45,585	1,570	1,670	1,934	1,701
0,099	6,124	10,904	46,678	1,145	1,295	1,978	1,633

.Conjunto de corrida experimental : (A6) Dados : $T_g = 285 {}^{O}C$, $T_L = 63,0 {}^{O}C$

Tempo de	Taxa de ti	ransferência	de calor	Taxa de transferência de massa							
residência mêdio T (S)	· Q _s (W)	Q _{sa} (W)	Q _m (W)	W _{ls} x 10 ⁶ (Kg/s)	w̃ _{lsa} x 10 ⁶ (Kg∕s)	₩ _m x 10 ⁶ (Kg/s)	₩ _{exp} x 10 ⁶ (Kg/s)				
0,315	7,630	9,810	63,819	4,309	4,380	2,714	2,177				
0,275	7,663	10,154	63,317	3,700	3,740	2,692	2,245				
0,241	8,208	10,526	63,430	3,400	3,468	2,698	2,313				
0,195	7,783	11,193	63,371	2,535	2,535	2,564	2,245				
0,163	7,821	11,771	63,233	2,093	2,163	2,692	2,156				
0,121	7,785	12,693	63,317	1,5403	1,672	2,696	2,245				
0,083	9,133	15,2597	63,047	1,120	1,312	2,684	2,313				

TABELA V.21 - Variação da temperatura do líquido com o tempo a) S = modelo simultâneo, b) SA = modelo superaquecimento $T_g = 70^{\circ}C$

Tempo de borbulha- mento	τ=0, Τ _L (°	374 s C)	τ≈0, T _L (331 s °C)	τ=0, T _L	292 s ([°] C)	τ=0, Τ _L	255 s (^O C)	τ=0, T _L	216 s ([°] C)	τ=0, Τ _L	165 s (°C)	τ=0, T _L	129 s ([°] C)	τ=0, T _L	085 s (⁰ C)	τ=0, Τ ₁	044 s (^o C)
(min)	S	. SA	S	SA	S	SA	S	SA	S	SA	S	SA	S	SA	S	SA	S	SA
0 10 20 30 40 50 60 70 80 90 100	30,0 30,1 30,3 30,4 30,5 30,6 30,7 30,8 30,8 30,8 30,9 30,9	30,0 30,4 30,8 31,2 31,4 31,7 31,9 32,2 32,3 32,5 32,6	30,0 30,2 30,5 30,6 30,8 30,9 31,1 31,2 31,3 31,4 31,5	30,0 30,6 31,2 31,6 32,0 32,4 32,7 33,0 33,3 33,5 33,7	30,0 30,4 30,7 30,9 31,2 31,4 31,6 31,8 31,9 32,0 32,1	30,0 30,8 31,5 32,1 32,7 33,2 33,7 34,0 34,4 34,7 34,9	30,0 30,5 30,9 31,3 31,6 31,9 32,2 32,4 32,7 32,8 33,0	30,0 31,0 32,0 32,8 33,6 34,3 34,3 34,8 35,4 35,8 36,2 36,2 36,6	30,0 30,7 31,3 31,8 32,3 32,7 33,0 33,4 33,7 33,9 34,1	30,0 31,5 32,7 33,8 34,8 35,7 36,5 37,3 37,8 38,4 38,4 38,8	30,0 30,8 31,5 32,1 32,6 32,9 33,3 33,6 33,8 34,0 34,0	30,0 32,0 33,7 35,1 36,3 37,3 38,2 38,2 38,9 39,5 40,0 40,5	30,0 31,0 31,8 32,4 32,9 33,3 33,5 33,5 33,8 33,9 34,1 34,2	30,0 32,8 34,9 36,6 38,0 39,1 40,0 40,7 41,3 41,8 41,8	30,0 31,6 32,6 33,4 33,9 34,3 34,6 34,8 34,9 35,1	30,0 34,7 38,1 40,6 42,6 44,2 45,3 46,0 46,5 46,8	30,0 32,4 34,1 35,3 36,2 36,9 37,5 37,9 38,2 38,5	30.0 39,3 46,2 51,3 54,0 55,0 55,2 55,3 55,3 55,3
110 120	30,9 31,0	32,8 32,9	31,6 31,6	33,9 34,0	32,3 32,4	35,2	33,2	36,8	34,3	39,2	34,3	40,8	34,3	42,1	35,3	47,1	38,6 38,8	55,3 55,3
J	<u> </u>								24,2		34,5	41,1 	54,3	42,6	35,3	47,3	38,9	55,3

TABELA V.22 - Variação da temperatura do fiquido com o tempo a) S = modelo simultâneo, b) SA = Modelo superaquecimento $T_{G} = 100^{\circ}C$

Tempo de borbulha- mento	τ=0, T _L (357 s °C)	τ=0, T _L	316 s (⁰ C)	τ=0, T _L (275 s ⁰ C)	τ=0, Τ _L	234 s ([°] C)	τ=0, T _L	199 s (^O C)	τ=0, Τ _L	157 s ([°] C)	τ=0, Τ _L	110 s (^o C)	τ=0, Τ _L	072 s (⁰ C)	τ=0, T _L	030 s (^O C)
(min)	S ·	ŞA	S	SA	[•] S	SA	S	SA	S	SA	S	SA	S	SA	S	SΔ		SA
0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0
10 20	30,0 31 7	31,1 32 1	21 5	51,4	31,0 71 0	31,8	31,3	32,3	31,6	32,9	32,0	34,0	32,8	36,2	33,9	40,1	36,6	55,1
20 30	31.7	32,1	31,5	32,0	э1,9 32,7	33,9 21 0	32,5	34,4	33,1	35,6	33,7	37,3	34,9	41,1	36,7	47,5	41,4	70,9
40	32,2	33.7	32.7	34.7	33.4	36 0	33,5 34 A	30,2	34,4	57,9	35,0	40,1	36,7	45,1	38,7	52,8	45,1	70,9
50	32,5	34,4	33,3	35,5	34,1	37,1	35.2	39.3	36.5	40,0	37.2	42,5	20 2	48,1 50 1	40,3	55,4	47,8	70,9
60	32,9	35,0	33,6	36,3	34,6	38,1	35,9	40,5	37,4	43.3	38.1	46.0	40.1	51 4	41,0 47 5	50,0 56 1	49,5	70,9
70	33,2	35,5	34,0	37,0	35,1	38,9	36,5	41,5	38,2	44,6	38,8	47,2	40.8	52.0	43.3	50,1 56.1	50.9	70,9 70 Q
80	33,5	36,0	34,4	37,5	35,6	39,6	37,1	42,4	38,8	45,7	39,4	48,1	41,4	52,4	43,8	56,1	51.2	70.9
90	33,7	36,4	34,7	38,1	35,9.	40,3	37,6	43,2	39,4	46,6	39,9	48,8	41,8	52,5	44,2	56,1	51,3	70,9
100	33,9	36,8	34,9	38,5	36,3	40,8	38,0	43,9	39,9	47,4	40,3	49,3	42,2	52,6	44,5	56,1	51,3	70,9
120	54,1	37,1	35,2	38,9	36,6	41,3	38,4	44,4	40,4	47,9	40,6	49,5	42,5	52,7	44,6	56,1	51,3	70,9
120	34,5	3/,4	55,4	39,3	38,6	41,7	.38,7	44,9	40,8	48,4	40,9	49,8	42,7	52,7	44,8	56,1	51,3	70,9

TABELA V.23 - Variação da temperatura do líquido com o tempo a) S = Modelo simultâneo , b) SA = Modelo superaquecimento $T_{G} = 150^{\circ}C$

Tempo de borbulhamen	τ=0,347 s T _L (^o C)		τ=0,306 s T _L (^O C)		τ=0,273 s T _L (^O C)		τ=0,323 s T _L (^O C)		τ=0,193 s T _L (^o C)		τ=0,148 s T _L (^O C)		τ=0,105 s T _I (^O C)		τ=0,068 s T ₁ (^O C)	
(min)	S	SA	S	SA	S.	SA	S	SA								
0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30.0	30.0	30_0	30.0
10	31,5	32,2	31,7	32,7	32,0	33,2	32,5	34,1	33,2	35,3	34,1	37,4	35.6	41.3	37.9	48 3
20	32,8	34,1	33,3	35,0	33,9	36,0	34,8	37,6	36,0	40,0	37,5	43,6	40.0	50.2	43.7	61.6
30	33,9	35,8	34,7	37,1	35,5	38,5	36,8	40,8	38,5	44,1	40,4	48,8	43.6	56.5	48.1	63.8
40	34,9	37,4	35,9	38,9	36,9	40,7	38,5	43,6	40,7	47,6	42,8	52,6	46.4	59.2	51.1	63.8
50	35,8	38,7	37,0	40,6	38,2	42,6	40,1	45,9	42,6	50,4	44,8	55,2	48,4	59.7	52.5	63.8
60	36,7	39,8	37,9	41,9	39,3	44,2	41,4	47,9	44,2	52,7	46,5	56,6	49,7	59,8	53.1	63.8
70	37,4	40,9	38,8	43,2	40,2	45,6	42,6	49,5	45,6	54,4	47,6	57,3	50,6	59.8	53.2	63.8
80	38,0	41,7	39,5	44,2	41,0	46,7	43,6	50,7	46,7	55,6	48,5	57,6	51.0	59.8	53.4	63.8
90	38,5	42,5	40,1	45,0	41,8	47,6	44,4	51,6	47,6	56,4	49,2	58,8	51.3	59.8	53.4	63.8
100	39,0	43,1	40,7	45,7	42,4	48,3	45,1	52,4	48,4	56,9	49,6	57,8	51.4	59.8	53.4	63.8
110	39,4	43,7	41,2	46,3	42,9	48,9	45,6	52,9	48,9	57,3	40,9	57,9	51.5	59.8	53.4	63.8
120	39,8	44,1	41,5	46,8	43,3	49,4	46,1	53,3	49,4	57,6	50,2	57,9	51,5	59,8	53,4	63,8
TABELA V.24 - Variação da temperatura do líquido com o tempo a) S = Modelo simultâneo , b) SA = Modelo superaquecimento $T_g = 180^{\circ}C$

Tempo de borbulhamen to	τ=0, T _L (343 s ^o C)	τ=0,303 s T _L (^o C)		τ=0,267 s T _L (^O C)		τ=0,228 s T _L (^O C)		τ=0,188 s T _L (^O C)		τ=0,145 s T _L (^O C)		$\tau = 0,106 \text{ s}$ $T_{L} (^{O}C)$		τ=0,0 Τ _L (66 s °С)
(min)	S	SA	.S	SA .	S	SA	S	SA	S	SA	S	SA	S	SA	S	SA
0 10	30,0 32,0	30,0 32 9	30,0 32 4	30,0 33 /	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0
20	33,8	35,4	34,5	36,5	35,3	34,1 37,9	35,4 36,4	39,9	54,2 38,0	36,89 42,9	35,5 40,0	39,5 47.6	37,3 43.0	44,0 55.0	40,5 48-3	53,6
30 40	35,4	37,7	36,3	39,2	37,4	41,1	39,1	43,9	41,3	48,2	43,9	53,9	47,6	61,4	53,7	69,1
40 50	50,8 38,0	59,7 41.4	37,9 39.4	41,6 43.6	39,4 41.0	43,9 46 4	41,4 43.4	47,4 50 3	44,2 46.6	52,5 cc o	47,0	58,1	50,8	62,5	56,0	69,1
60	39,1	42,9	40,7	45,4	42,5	48,3	45,1	52,5	40,0 48,6	55,0 58,1	49,5 51,2	60,1	52,8	62,5 62,5	56,5 56.6	69,1 69.1
70 80	40,0	44,1	41,7	46,8	43,7	49,9	46,5	54,2	50,2	59,6	52,3	61,1	54,2	62,5	56,6	69,1
90	40,8 41,5	45,2 46,1	44,7	48,0	44,8	51,2 52.1	47,7 48.6	55,4 56 2	51,5 52 /	60,6	53,0	61,2	54,4	62,5	56,6	69,1
100	42,2	46,8	44,2	49,7	46,4	52,8	49,4	56,8	53,1	61,5	53,7	61,2	54,5 54,6	02,5 62.5	50,6 56.6	69,1 69-1
110 120	42,7 47 1	47,4	44,7	50,2	46,9	53,3	49,9	57,2	53,6	61,7	53,9	61,3	54,6	62,5	56,6	69,1
	43,1	47,9	45,4	50,/	4/,4	53,7	50,4	57,4	54,0	61,8	54,1	61,3	54,6	62,5	56,6	69,1

TABELA V.25 - Variação da temperatura do líquido com o tempo a) S = Modelo simultâneo , b) SA = Modelo superaquecimento $T_g = 225^{\circ}C$

Tempo de	τ=0,327 s		τ=O,	286 s	τ=0,	253 s	τ=0.	223 s	τ=0	0.169 s $\tau = 0.138$		138 c	S 7=0 000 c	
borbulhamen	т _L	(⁰ C)	TL	(°C)	T	(⁰ C)	Т _{І.}	(⁰ C)	т, Т,	(°C)	τ,	100.2	ι =0, Τ.	(⁰ C)
to (min)	S	.SA	S	SA	S	SA	S	SA	S	SA	S L	SA	L S	SA
0	45,0	45,0	45,0	45,0	45,0	45,0	45.0	45,0	45.0	45.0	45.0	45 0	45 0	15 0
10	46,1	47,1	46,6	48,0	47,2	48,9	47.8	50.0	48.8	52.5	50 3	55 6	52 1	40,0 61 A
20	46,9	48,9	47,9	50,5	48,9	52,2	50,1	54,2	51.6	57.8	54.2	62 7	57 0	68 7
30	47,7	50,3	49,0	52,4	50,4	54,6	51,9	57,2	53.5	60.5	56.6	65.2	58 7	68.2
40	48,3	51,4	49,8	53,9	\$1,5	56,4	53,3	59,3	54,6	61.6	57.8	65.6	59.0	68.7
50	48,7	52,3	50,5	54,9	52,3	57,6	54,S	60,6	55,3	61.8	58.3	65.6	59 1	68 2
60	49,1	52,9	51,0	55,7	52,9	58,4	55,0	61,4	55,6	61.9	58.6	65.6	59 1	68.2
70	49,4	53,4	51,4	56,1	53,4	58,9	55,5	61,8	55,7	61.9	58.7	65.6	59.1	68.2
80	49,6	53,7	51,7	56,5	53,7	59,2	55,9	62,0	55,8	61.9	58.7	65 6	50 1	68.2
90	49,8	53,9	51,9	56,7	53,9	59,4	56,1	62,2	55,9	62.0	58.7	65.6	59 1	68 2
100	49,9	54,1	52,0	56,9	54,1	59,5	56,3	62,3	55.9	62.0	58.7	65.6	50,1	68 2
110	50,0	54,2	52,2	57,0	54,2	59,6	56,4	62,4	56,0	62.0	58.7	65 G	507,1	68.2
120	50,1	54,3	52,3	57,1	54,3	59,6	56,4	62,4	56,0	62,0	58,7	65,6	59,1	68,2

TABELA V.26 - Variação da temperatura do líquido com o tempo a) S = Modelo simultâneio , b) Modelo superaquecimento $T_{G} = 285^{\circ}C$

Tempo de	$\tau=0,315 s$ $T_{L}(C)$		$\tau = 0,275 \text{ s}$ $T_{L}(^{\circ}C)$		$\tau = 0,241 \text{ s}$ T_L (°C)		τ=0,195 s T _L (°C)		τ=0,163 s T _L (^O C)		τ=0,121 s Τ _L (°C)		τ=0,083 s TL(^O C)	
borbulhamen														
(min)	S	SA	S	SA	S	SA	S	SA	S	SA	S	SA	S	SΛ
0	45,0	45,0	45,0	45,0	45,0	45,0	45.0	45.0	45.0	45 0	45 N	45 0	15 0	15 0
10	47,5	48,9	48,2	50,0	49,0	51,4	50,6	54,2	51.5	56.4	54.7	63.0	63 1	45,0 78 0
20	49,5	52,0	50,8	54,1	52,3	56,5	55,1	61,3	56,1	63.8	61.3	72.7	69 7	78 n
30	51,0	54,4	52,8	57,2	54,8	60,2	58,4	65,9	58,7	66,2	64.0	72.7	69 7	78.0
40	52,3	56,1	54,3	59,2	56,6	62,4	60,5	68,2	59,9	66,4	64,6	72.7	69.7	78 O
50	53,2	57,3	55,4	60,5	57,8	63,7	61,9	69,2	60,3	66,5	64,7	72.7	69.7	78.0
60	53,8	58,1	56,2	61,3	58,6	64,4	62,6	69,6	60,4	66,5	64,7	72.7	69.7	78.0
70	54,3	58,6	56,7	61,7	59,1	64,7	63,0	69,7	60,5	66,5	64,7	72,7	69.7	78.0
80	54,7	58,9	57,0	61,9	59,4	64,9	63,2	69,8	60,5	66,5	64,7	72,7	69.7	78.0
90	54,9	59,1	57,2	62,1	59,6	65,0	63,3	69,8	60,5	66,5	64,7	72,7	69.7	78.0
100	55,0	59,3	57,4	62,2	59,7	65,0	63,4	69,8	60,5	66,5	64,7	72,7	69.7	78.0
110	55,2	59,4	57,5	62,2	59,8	65,0	63,4	69,8	60,5	66,5	64,7	72,7	69.7	78.0
120	55,3	59,4	57,5	62,3	59,8	65,0	63,4	69,8	60,5	66,5	64,7	72,7	69,7	78,0

λ.

FISURA V.14 - VARIAÇÃO DA TEMPERATURA DO LÍQUIDO COM O TEMPO

NOMENCLATURA

а	- raio da bolha
Ab	- área da bolha
A n	- parâmetro (equação II.21)
Λ ₁ ,Α ₂	- constantes (equação II.16)
р ^Т	- coeficiente de transferência de massa convectivo para
	a fase contínua
Б	- coeficiente médio de transferência de massa para a fa
	se dispersa
b _{ξ,δ}	- coeficiente de transferência de massa simultâneo
δ _{ε,δ}	- coeficiente de transferência de massa com superaqueci
<i>" ,</i>	mento
С	- concentração (massa/volume)
7	- concentração média temporal
C _m	~ concentração média no volume e no tempo
C _p	- calor específico
Ċ,	- concentração média na interface
D	- diâmetro da bolha
e ₁ ,e ₂ ,	e ₃ ,e ₄ - constantes (equação IV.1)
g	- aceleração da gravidade
g _s	- grau de saturação
G	- vazão volumétrica
ħ	- coeficiente de transferência de calor convectivo
h _l	- coeficiente de transferência de calor convectivo para
	a fase continua
hg	- coeficiente de transferência de calor convectivo para
	a fase dispersa

Ti	- coeficiente médio de transferência de calor para a
	fase dispersa
h _{ξ,δ}	- coeficiente de transferência de calor simultâneo
ĥ _{ε,δ}	- coeficiente de transferência de calor com superaque-
	cimento
H	- fração de gãs presente no borbulhador
H	- altura média de borbulhamento
K	- condutibilidade térmica da fase dispersa
L	- calor latente de evaporação
m	- vazão mássica de ar
M1	- massa média de líquido
N	- número de bolhas
NT	- número total de bolhas num intervalo de tempo
р	- pressão total
pws	- pressão de saturação
$\overline{\overline{\mathbf{p}}}$	- pressão média temporal
$\overline{\mathbf{p}}_{\mathrm{m}}$	- pressão média no volume e no tempo
\overline{p}_s	- pressão média na interface
q	- fluxo de transferência de calor - modelo simultâneo
\overline{q}_{L}	- fluxo de calor médio temporal na superfície
ą	- fluxo de transferência de calor - modelo superaqueci
	mento
QP	- perda de calor para o ambiente
Q _s	- taxa de calor - modelo simultâneo
õ _{sa}	- taxa de calor - modelo superaquecimento
Q _m	- taxa máxima de calor
Q _S	- Quantidade de calor associado ao superaquecimento
R	- constante dos gases

t	- tempo
ts	- temperatura de hulbo seco
tu	- temperatura de bulho úmido
Ţ	- temperatura
T _{amb}	- temperatura ambiente
$^{\mathrm{T}}\mathrm{eb}$	- temperatura de ebulição
	- temperatura de referência
1	- temperatura de fase contínua
Тg	- temperatura da fase dispersa
1	- temperatura média temporal
Tm	- temperatura média no volume e no tempo
T _s	- temperatura média na interface
ur	- umidade relativa
v _b	- velocidade de ascensão da bolha
V	- volume
v_{b}	- volume das bolhas presente no borbulhador
V ₁	- volume de líquido presente no borbulhador
V _{1,ev}	- volume de líquido evaporado
V _T	- volume total
W	- umidade absoluta
WIL	- fluxo médio de massa na interface
N 1	- fluxo médio de massa - modelo simultâneo
\tilde{w}_1	- fluxo médio de massa - modelo superaquecimento
W _{1s}	- taxa de transferência de massa - modelo simultâneo
W _{lsa}	- taxa de transferência de massa - modelo superaqueci-
	mento
W exp	- taxa de líquido medida experimentalmente
Ŵ.	- taxa máxima de líquido

- fração molar média de vapor d'água

Letras Gregas

 \overline{X}_{K}

CX,		$\xi \pi^2/a^2$
α _m	-24	$\delta_{g} \pi^{2}/a^{2}$
	-	difusibilidade térmica
ξg	-	difusibilidade térmica da fase gasosa
Ţ	***	tempo de residência
λ		parâmetro admensional para a transferência de calor,
		definido por 2Kg/h _L a
λ_{m}		parâmetro admensional para a transferência de massa,
		definido por 2 ξ_g/b_La
θ	-	temperatura admensional
8	-	temperatura média temporal

Subscritos

- i inicial
- f final

<u>ANEXO-A</u>

Equações das propriedades físicas da fase contínua e dispersa

1.a - Para a fase continua, constituída pela água :

$$Cp = (1,00375 - 2,37.10^{-4}T + 2.10^{-6}T^2 + 2,39031.10^{-9}T^3)$$

 $K = (1,131037 + 6,683.10^{-3}T - 4,5.10^{-5}T^2 + 9,602.10^{-8}T^3).10^{-3}$
 $\mu = (1,66335 - 0,037302T + 3,52.10^{-4}T^2 - 10^{-6}T^3).10^{-2}$
 $\rho = (1,00154 - 1,34.10^{-4}T - 3.10^{-6}T^2)$

$$Cp = (0,239701 + 8.10^{-6}T + 7,68766.10^{-8}T^{2})$$

$$K = (0,058316 + 1,82.10^{-4}T - 3,90929.10^{-8}T^{2}).10^{-3}$$

$$e$$

$$\rho = (0,0028505 + 340,9/(T + 273,15)).1,01325.10^{-3}$$

Esta última equação para a fase dispersa é apresent<u>a</u> da por MUJUMDAR (53).

As equações para a fase continua, são válidas para uma faixa de 4 - 140° C, e para a fase dispersa são aplicadas no intervalo de 4 - 425° C. Essas equações são dadas no sist<u>e</u> ma C.G.S.

2. Programas

Foram utilizados os valores da ASHRAE (48), para o banco de dados dos programas WLS-BAS, WLSA-BAS, TLFS-BAS e TLFSA-BAS.

A seguir são apresentados os programas desenvolvidas em linguagem BASIC, utilizados neste trabalho.

```
10 REN Programa PSI.BAS
20 PRINT"Com os valores de temperatura de bulbo seco (ts), bulbo úmido (tu) e da pressão atmosferica(p),"
30 PRINT"este programa calcula as seguintes propriedades do ar úmido:"
40 REM pustu, usu, w, pusts, uss, gs, ur
50 DEFDBL PWSTU(100), WSU(100), W(100), PWSTS(100), WSS(100), GS(100), UR(100), TS(100), TU(100), TS1(100), TU(100), TU(
40 DEFORL GAMAS(100), TKTS(100), TKTU(100), GAMAU(100), H(100), G(100), NUM(100)
70 N=34
88 DATA 83.84,75.20,83.84,74.38,83.84,73.76,83.84,73.58,83.84,73.40,84.20,73.40,80.60,71.0,78.8,70.0,58.5
90 DATA 76.1,68,74.3,66,77.9,67.8,81.0,71.2,77.5,68.7,77.3,68.3,77.7,68.5,79.0,70.3,78.6,70.1,76.5,68.7
100 DATA 78.5,70,78.8,78.4,80.5,71,83,74,77,69,74.8,65.5,75,66,79.5,69.8,76,68.5,80,70.5,78.8,69.7,79,69,77.9,69
110 DATA 77,68.7,75.2,68
120 LPRINT:LPRINT:LPRINT:LPRINT
130 LPRINT SPC(10);"PSI.BAS"
140 LPRINT: LPRINT: LPRINT
150 LPRINT
160 FOR 1=1 TO N
170 GET TS(1), TU(1)
184 TS1(1)=(5/9)=(TS(1)-32)
194 TH1(I)=(5/9)*(TU(I)-32)
200 NEXT
210 LPRINT:LPRINT:LPRINT
224 E1=3.2437814
230 E2=5.86826*(10**(-3))
244 E3=1.1742379*(18**(-8))
254 [4=2.1878462*(10**(-3))
260 P=1
278 FOR I=1 TO N
280 TKTS(1)=5/9#(TS(1)-32)+273.15
294 IKTU(1)=5/9*(TU(1)-32)+273.15
388 GAHAS(1)=647.27-TKTS(1)
310 GAMAU(1)=647.27-TKTU(1)
32# H(1)=(E(+E2*GAHAS(1)+E3*GAHAS(1)**3)/(1+E4*GAHAS(1))
330 PUSTS(1)=218.167*(10**(-66MAS(1)*H(1)/TKTS(1)))
340 G(I)=(E1+E2+GAMAU(I)+E3+GAMAU(I)+#3)/(1+E4+GAMAU(I))
354 PWSTU(I)=218.167*(10**(-64MAU(I)*G(I)/TKTU(I)))
36# WSS(1)=#.62198#PWSTS(1)/(P-PWSTS(1))
374 WSU(1)=0.62198+PWSTU(1)/(P-PWSTU(1))
384 HUR(I)=(1093-0.556xTU(I))*HSU(I)-0.24*(TS(I)-TU(I))
39# ¥(1)=谜闼(1)/(1093+0,444#TS(1)-TU(1))
400 (S(I)=V(I)/VSS(I)
$10 LR(1)=(65(1)/(1-(1-65(1))*(PWSTS(1)/P)))*100
430 LPRINT SPC(4); "ts("C)"; SPC(9); "tu("C)"; SPC(9); "pusts(atm)"; SPC(9); "pustu(atm)"; SPC(9); "uss(Kg/Kg)"; SPC(9); "usu(Kg/Kg)";
420 MEXT
448 LPRINT SPC(9); "#(Kg/Kg)"; SPC(9); "gs"; SPC(9); "ur 1"
450 LPRINT
460 FOR I=1 TO N
470 LPRINT ("F11.4,F15.4,F15.4,F19.4,F19.4,F19.4,F19.4,F13.4,F14.4") TS1(1);TU1(1);PWSTS(1);PWSTU(1);WSU(1);W(1);
488 (PRINT ES(I); (R(I))
494 XXI
SAM END
```

10 (15 20 REN Programa para calcular TN (SC) e TS (SC), Processo Simultâneo 30 REN Programa W.S.BAS 40 P=1 50 4-102.608 18 RD=0.00104 78 CP=0.24 80 LANBDA=0.001289 90 ALFA=9.369 100 BETA=9.350 110 48=3.7462 120 TG=70 130 LPRINT TG="+TG 140 11=33.11 150 V8=0.683 168 INPUT'TAU'; TAU 170 INPUT BGT ;BGT 180 INPUT HGT HGT 190 INPUT HM .: HM 200 INPUT 'HEV' HEV 210 B=(LAMBDA*(TG-TL))/(ALFA*TAU)*(1-1/EXP(BETA*TAU)) 220 C=((TG-TL)/(ALFA*TAU))*(LAMBDA+0.6079)*(1-1/EXP(BETA*TAU)) 230 标(图》444册)/(图) 240 TS=(TL+B) 250 TK=(TS+273.15) 260 RD1=(0.0028505+(340.9)/(TK))+0.00101325 270 TH=(TL+C) 284 CM=(0, 0048462)/(TM+273.15) 290 TF=(1.8#15+32) 300 GET T.CSN.PSN 310 IF TFOT THEN TI=T:CS=CS0:PS=PS0: GOTO 300 320 DELTA=(1-TF)/(T-TI) 330 CS=(CS0-DELTA*(CS0-CS))*R01 340 PS=(PS0-DELTA*(PS0-PS))/(29.921) 350 RESIDRE 360 A1=(CS#TS-CH#TH) 370 0671=(861*P)/(P-PS) 389 HETC=HGT#41860 398 HC=(HCT+(RO+CP+PS+BGT)/(TM+CS+(P-PS))+(CS+TS-CH+TM)) 400 H=10:041868 410 QS=H#(TH-TS)#AB#H#9.0091 420 OLS=86T1*(A1/TH) 438 H S=01.544848 444 LPRINT TAU- TAU: " ISA LPRINT"TH=";TK;" " 460 LPRINT TS=" ; TS;" 470 LPRINT*CH=";CH;" *; 484 LPRINT CS=";CS;" ; 490 LPRINT PS=";PS;" '; 500 LPRINT'AL=";AL 510 LPRINT'BGT=";86T;" * 520 LPRINT'86TI=";86TI;" '; ÷ • ; 534 LPRINT OLS=":OLS;" ') 544 LPRINT WLS=":WLS;" ';

550 (PRINT'hate=';HETC;' ';

Cont invação

560 LPRINT hc=";HC;" ; 570 LPRINT %=";H;" 580 LPRINT*05=";05;* *; **S90 LPRINT** 600 LPRINT 610 DATA 77, 0.02016, 0.93523, 79, 0.02153, 0.99899, 81, 0.02310, 1.0665, 83, 0.0271, 1.1379, 85, 0.02642, 1.2135, 87, 0.02824, 1.2934 620 DATA 89, 0.03017, 1.3779, 91, 0.03223, 1.4671, 93, 0.03441, 1.5612, 95, 0.03673, 1.6606, 97, 0.03920, 1.7654, 99, 0.04182, 1.8759 630 DATA 101,0.04468,1.9923,103,0.04756,2.1149,105,0.05070,2.2439,107,0.05404,2.3797,109,0.05750,2.5225,111,0.06135,2.6726 640 DATA 113, 0.06536.2.8304.115, 0.06962, 2.9962, 117, 0.07415, 3.1701, 119, 0.07997, 3.3527, 121, 0.08410, 3.5443, 123, 0.08955, 3.7452 650 DATA 125, 0.09537, 3.9558, 127, 0.1016, 4.1765, 129, 0.1082, 4.4076, 131, 0.1152, 4.6495, 133, 0.1227, 4.9028, 135, 0.1308, 5.1676 660 DATA 137,0.1393,5.4446,139,0.1485,5.7342,141,0.1584,6.0367,143,0.169,6.3527,145,0.1803,6.6828,147,0.1924,7.0273 670 DATA 149, 0.2055, 7.3867, 151, 0.2197, 7.7616, 153, 0.2349, 8.1525, 155, 0.2514, 8.5599, 157, 0.2693, 8.9846, 159, 0.2887, 9.4271 680 DATA 161, 0. 3078, 9. 8876, 163, 0. 3339, 10. 367, 165, 0. 3581, 10. 865, 167, 0. 3858, 11. 385, 169, 0. 4163, 11. 925, 171, 0. 4500, 12. 486 690 DATA 173, 0. 4875, 13. 069, 175, 0. 5292, 13. 675, 176, 0. 5519, 13. 987, 178, 0. 6016, 14. 628, 180, 0. 6578, 15. 294, 182, 0. 7218, 15. 985 700 DATA 184,0,7953,16,702,186,0.8805,17.446,188,0.9802,18.217,190,1.099,19.017,192,1.241,19.845,194,1.416,20.704 710 DATA 196, 1.635, 21.594, 198, 1.917, 22.514, 200, 2.295, 23.468 720 END

io cis 20 REN Programa para calcular os seguintes parametros.Processo Superaguecimento: 30 REM TH (:C) e TS (:C) 40 REN BGT1 (CM/S) E BGT2 (CM/S) 50 REN H (W/N2*C) e H1 (W/N2*C) 60 REN OS (WATT) E OSA (WATT) 70 REM WLS (G/S) E WLSA (G/S) 80 REN PROGRAMA WESA.BAS 90 A=102,608 100 80=0.00104 110 CP=0.24 129 LANSDA=0.001289 130 ALFA=9.369 140 BETA=9.350 150 P=1 160 16=70 170 LPRINT'TG=";TG 180 TL=33.11 190 48=3.7462 200 18=0.683 210 1=578.7 220 18=0.546 230 11-9.2011 244 INPUT TAU TAU 250 INPUT'OST' ;8GT 260 INPUT "HET" (HET 274 INPUT 'M' : M 284 INPUT HOV HOV 290 INPUT ol="101 300 D=(LANBDA)/(ALFA*TAU)=(1-1/EXP(BETA*TAU)) 310 8=(1/(ALFA*TAU))*(LAMBDA+0.6079)*(1-1/EXP(BETA*TAU)) 320 E=(R0*(P*R8)/(3*TAU*L) 334 N=(HSVAAAHH)/(VB) 344 TS=(TL-(QL/HL)+((TG-TL)+(QL/HL))+0) 350 TK=(TS+273.15) 360 RD1=(0.0028505+(340.9)/(TK))+0.00101325 370 TH=(TL-(QL/HL)+((TG-TL)+(QL/HL))#8) 380 CH=(0.0048462)/(TH+273.15) 399 TF=(1.8+TS+32) 400 GET T.CSN.PSN 410 IF TF)Y THEN TI=T:CS=CS0:PS=PS0: GOTO 400 420 DELIA=(I-IF)/(I-II) 434 CS=(CS4-DELTA+(CS4-CS1)+#01 440 PS=(PS0-DELTAX(PS0-PS))/(29.921) 458 RESTORE 468 8671=(867#P)/(P-PS) 474 8612=(8611+(E*(TN-TL)*TN)/(CS*TS-CN*TN)) 480 QL1=L+BGT2+((CS+TS-CH+TH)/TH) 499 IF ABS(01-01)(=0.0001 THEN 520 编 就=(创计数)/(2)

 $(1,2^{M_{\mathrm{eff}}})$, where $(1,2^{M_{\mathrm{eff}}})$ is the set of t

Cont invacão

510 6010 300

520 QL=QL1 530 PRINT ol=":0L 549 HC=(HGT+(RD#CP#PS#BGT)/(TH#CS#(P-PS))#(CS#TS-CH#TH)) 55# HC1=(HC+(ROxCP+RB)/(3+TAL)+(TH-TL)/(TH-TS)) 569 1年代141868 570 H1=KC1×41860 589 HETC=HET141868 SPO QLSA=86T2*(CS#TS-CH#TH)/(TH) 600 QSA=H1*(TH-TS)*AB*H#0.0001 ALL U.SA=Q.SAMAR 628 AL=(CS#TS-CN#TH) 630 LPRINT TALE STALLS 640 LPRINT'TS=";TS;" 654 (PRINI "TH=";TH;" 660 LPRINT[®]CK=";CK;" 670 LPRINT'CS=":CS;" ': 680 LPRINT PS=";PS;" APA LPRINT AL= AL 700 LPRINT*86T=";86T;" '; 710 | PRINT BET1=";86T1;* 720 LPRINT BUT2=":06T2;" 73% LPRINT QL= ;QL; ;; ;; 749 LPRINT"OLSA=";OLSA;" 750 LPRINT OSA="; OSA; " 760 LPRINT WISA=" HILSA 778 LPRINT*HETC="#HETC: '; 78% LPRINT"K=";H;" '; 790 LPRINT Hts : Ht; 900 LPRINT 810 LPRINT 820 DATA 77. 8. 02016. 0. 93523. 79. 4. 02158. 0. 99899. 81. 0. 02310. 1. 0665. 03. 0. 0271. 1. 1379. 85. 0. 02642. 1. 2135. 87. 0. 02824. 1. 2934 830 DATA 89.0.83017.1.3779.91.0.03223.1.4761.93.0.03441.1.5612.95.0.03673.1.6686.97.0.03920.1.7654.99.0.04182.1.8759 840 DATA 101.0.04460.1.9923.103.0.04756.2.1149.105.0.05070.2.2439.107.0.05404.2.3797.109.0.05750.2.5225.111.0.06125.2.6726 850 DATA 113.0.06536.2.8304.115.0.06962.2.9962.117.0.07415.3.1701.119.0.07897.3.3527.121.0.08440.3.5443.123.0.08955.3.7452 860 DATA 125.0.07537.3.9538.127.0.1016.4.1765.129.0.1082.4.4076.131.0.1152.4.6495.133.0.1227.4.9028.135.0.1308.5.1676 870 0474 137.0.1393.5.4446.139.0.1485.5.7342.141.0.1584.6.0367.143.0.169.6.3527.145.0.1803.6.6828.147.0.1924.7.4273 888 DATA 149. 0.2055.7.3867.151.0.2197.7.7616.153.0.2349.8.1525.155.0.2514.8.5599.157.0.2693.8.9846.159.0.2887.9.4271 890 DATA 161.0.3098.7.8876.163.0.3337.10.367.165.0.3581.10.865.167.0.3858.11.385.167.0.4163.11.925.171.0.4500.12.486 900 DATA 173.0.4875.13.069.175.0.5292.13.675.176.0.5519.13.987.178.0.6016.14.620.180.0.6570.15.294.182.0.7210.15.985 910 DATA 184, 8, 7953, 16, 702, 196, 6, 8905, 17, 446, 188, 4, 9882, 18, 217, 196, 1, 099, 19, 017, 192, 1, 241, 19, 845, 194, 1, 416, 29, 704 928 DATA 196.1.635.21.594.196.1.917.22.514.208.2.295.23.468 938 END

10 CLS 20 XEN Programa para calcular a temperatura de equilibrio.Processo Simultâneo 39 SEM Programa TLFS.BAS 48 10-0.00144 50 09=0.24 00 (9120=1 78 LANDA-4.001289 80 ALFA=9.369 90 SETA=9.350 100 P=1 110 11=33.11 120 16=70 134 48=3.7462 140 #1=233717.13 150 XL=105.824 160 INPUT TAC ; TAU 170 LPNINT TALE"; TAU 180 NPUT BCT BGT 194 INPUT HET HET 200 INPUT TLFO ; TLFO 210 LPRINT TLF0=";TLF0 220 A=(LANBDA)/(ALFA*TAU)*(1-1/EXP(BETA*TAU)) 239 E=(1/(ALFA*TAU))*(LAMBEA+0.6079)*(1-1/EXP(BETA*TAU)) 240 TSE=(TL+(TG-TL)*A) 250 TX=(TSE+273.15) 260 001=(0.0028505+(340.9)/(TK))+0.00101325 270 1112=(11+(16-11)+8) 280 CH=(0.0048462)/(THE+273.15) 29% TF=(1.8*TSE+22) 300 (CT 1.CS0.PS0 310 IF TFOT THEN TI=T:CSI=CS0:PSI=PS0: GOTO 300 320 DELTA=(T-TF)/(T-T1) 334 CS=(CS0-DELTAX(CS0-CSI))#R01 340 PS=(PS0-DELTA*(PS0-PS1))/(29.921) 350 RESTORE 364 HCE=(HGT+(ROXCPAPSABGT)/(TNEXCS+(P-PS))+(CS+TSE-CH+THE)) 370 AI=HCEN(THE-TSE) 389 9=91#A8#TAU 398 0T=NT#Q 400 FOR 1=1 TO 12 410 TAND#=(-#.76983172074+0.0548466578363*TLF0-#.601309115335*TLF0*TLF0+4.000013211726*TLF0*TLF0*TLF0 420 091=(ML+CPH20+TANG0) 430 (P=((P)+10) 440 IF OP)OT THEN STOP 450 TLF1=(TLF0+(NT+0-0P)/(NL+CPH20))

s.

Continuação

570 TLF0=TLF1 580 LPRINT 590 LPRINT 600 NEXT I

73% END

460 LPRINT'TSE=';TSE;''; 470 LPRINT'TNE=';TNE;''; 480 LPRINT'CN=';CN;''; 490 LPRINT'CS=';CS;''; 500 LPRINT'CS=';CS;''; 510 LPRINT'PS=';PS;''; 510 LPRINT'NE=';HCE 520 LPRINT'0=';Q;''; 530 LPRINT'QT=';Q;'';

540 LPRINT*TANGO':I-1;*=*;TANGO;***; 550 LPRINT*OP*:I-1;*=*;OP;**; 560 LPRINT*L1**;I;*=*;TLF1

610 LPRINT A=" A; LPRINT B=":8

720 DATA 196,1.635,21.594,198,1.917,22.514,209,2.295,23.468

620 DATA 77, 6.02016, 0.93523, 79, 0.02159, 0.99899, 81, 0.02310, 1.0665, 83, 0.0271, 1.1379, 85, 0.02642, 1.2135, 87, 0.02824, 1.2934 630 DATA 89, 0.03017, 1.3779, 91, 0.03223, 1.4671, 93, 0.03441, 1.5612, 95, 0.03673, 1.6606, 97, 0.03920, 1.7654, 99, 0.04182, 1.8759 640 DATA 101, 0.04460, 1.9923, 103, 0.04756, 2.1149, 105, 0.0570, 2.2439, 107, 0.05404, 2.3797, 109, 0.05758, 2.5225, 111, 0.06135, 2.6726 650 DATA 13, 0.06460, 1.9923, 103, 0.04756, 2.1149, 105, 0.0570, 2.2439, 107, 0.05404, 2.3797, 109, 0.05758, 2.5225, 111, 0.06135, 2.6726 650 DATA 13, 0.06536, 2.8304, 115, 0.06962, 2.9962, 117, 0.07415, 3.1701, 119, 0.07897, 3.3527, 121, 0.08410, 3.5443, 123, 0.00955, 3.7452 660 DATA 125, 0.09537, 3.9558, 127, 0.1016, 4.1765, 129, 0.1002, 4.4076, 131, 0.1152, 4.6475, 133, 0.1227, 4.9028, 135, 0.1308, 5.1676 670 DATA 137, 0.1393, 5.4446, 139, 0.1485, 5.7342, 141, 0.1584, 6.0367, 143, 0.169, 6.3527, 145, 0.1803, 6.6820, 147, 0.1924, 7, 0273 680 DATA 149, 0.2055, 7, 3867, 151, 0.2197, 7, 7616, 153, 0.2349, 8.1525, 155, 0.2514, 8.5599, 157, 0.2693, 8.9846, 159, 0.2687, 9.4271 690 DATA 161, 0.3098, 9.8876, 163, 0.3339, 10, 367, 165, 0, 3581, 10, 065, 167, 0, 3859, 11, 385, 169, 0, 4163, 11, 925, 171, 0, 4500, 12, 486 700 DATA 173, 0, 4075, 13, 0649, 175, 0, 5292, 13, 675, 176, 0, 5519, 13, 987, 178, 0, 6016, 14, 628, 180, 0, 6578, 15, 294, 182, 0, 7210, 15, 985 710 DATA 164, 0, 7953, 16, 702, 186, 0, 5895, 17, 446, 188, 0, 9802, 18, 217, 190, 11, 099, 19, 017, 192, 1, 241, 19, 845, 194, 1, 416, 20, 704

He DLS 20 REM Programa para calcular a temperatura de equilibrio,Processo Superaquecimento 30 REN Programa TLFSA.BAS 10 (C=0.00(04 50 CF=0.24 AN CAN20=1 78 LANSDA=0.001289 188 ALFA=9.369 90 BETA=9.350 jee P=1 114 TL=33.11 120 16=70 134 48=3.7462 146 HT=233717.13 158 81=195.824 16# L=578.7 178 RB=0.546 188 12=0.2011 198 INPUT TAU ; TAU 200 LPRINT TALE" : TAU 210 INPUT 867 .867 279 INPUT HET";HET 230 INPUT'TLFO";TLFO 200 LPRINT TLFO=" ;TLFO 250 INPUT ol= in 280 A=(LANBDA)/(ALFA#TAU)#(1-1/EXP(BETA#TAU)) 270 8=(1/(ALFA*TAU))*(LAM2DA+0.6079)*(1-1/EXP(8ETA*TAU)) 26% E=(ROXCP+RB)/(3+TAU+L) 290 T5=(TL-(QL/HL)+((TG-TL)+(QL/HL))+A) 308 18=(15+273.15) 310 R01=(0.0020505+(340.9)/(TK))*0.00101325 320 TH=(TL-(0L/HL)+((TG-TL)+(0L/HL))+8) 330 EN=(0.6648462)/(TN+273.15) 349 TF=(1,8xTS+32) 350 GET 1.CS0.PS0 360 IF IFOT THEN TI=1:CS1=CS0:PS1=PS0: 6010 350 378 DELTA=(I-TF)/(I-TI) 380 CS=(CS0-DELTA*(CS0-CSI))#801 399 PS=(PS0-DELTA+(PS0-PSI))/(29.921) 466 RESTORE 410 BGT1=(86T#P)/(P-PS) 420 BGT2=(BGT1+(E)(TN-TL))TN)/(CS)TS-CH+TN)) 430 0L1=L*8GT2*((CS*TS-CH*TH)/TH) 440 IF ASS(011-01)(=0.0001 THEN 470 454 AL=(0L1+0L)/(2) 456 1010 270 470 (1=01.1 488 931NT*ol=";@L

 $A^{\prime\prime}$

Cont innacão

kpa HC=(HGT+(ROxCP+PS+BGT)/(TH+CS+(P-PS))+(CS+TS-CH+TH)) 500 H1=(HC+(RD*CP*RB)/(3*TAU)*(TN-TL)/(TN-TS)) 510 Q1=H1+(IN-IS) 520 G=01XA8+TAU 530 AT=XIX0 540 FOR I=1 TO 12 550 TANG0+(-0.76983172074+0.054806678363*TLF0-0.001309115335*TLF0*TLF0+0.000013211726*TLF0*TLF0*TLF0*TLF0 560 0P1=(HL*CPH20+TANG8) 570 09=(091+18) 580 IF OPHOT THEN STOP 590 TLF1=(TLF0+(NT+Q-OP)/(NL+CPH20)) 600 LPRINT TS=":TS: "; 610 LPRINT TH=";TH; 620 LPRINT"CH=";CH;" 638 LPRINT CS="(CS)" 640 LPRINT'PS=";PS;" S54 LPRINT'HC=";HC;" '; 660 LPRINT"HI=";HI 670 LPRINT'8671=";8671;" 688 LPRINT OL=";OL;" 690 LPRINT 0=":0;" 700 LPRINT OT=":OT; '; 710 LPRINT*TANGO';1-1;*=*;TANGO;* *; 720 LPRINT OP :1-1: = :0P: :: 730 LPRINT'HIT':1:'=':TLF1 744 TI F8=TI F1 750 LPRINT 760 LPRINT 770 WEXT I 78# LPRINT A=";A; : LPRINT 8=";8; : LPRINT c=";C 790 BATA 77, 0.02016, 0.93523, 79, 0.02150, 0.99899, 81, 0.02310, 1.0645, 83, 0.0271.1.1379, 85, 0.02642, 1.2135, 87, 0.02824, 1.2934 800 DATA 89, 0.03017, 1.3779, 91, 0.03223, 1.4671, 93, 0.03441, 1.5612, 95, 0.03673, 1.6606, 97, 0.03920, 1.7654, 99, 0.04182, 1.8759 810 DATA 101.0.04460.1.9923.103.0.04756.2.1149.105.0.05070.2.2439.107.0.05404.2.3797.109.0.05750.2.5225.111.0.06135.2.6726 820 DATA 113, 0.06536, 2.8304, 115, 0.06962, 2.9962, 117, 0.07415, 3.1701, 119, 0.07897, 3.3527, 121, 0.08410, 3.5443, 123, 0.08955, 3.7452 830 DATA 125,0.09537, 3.9558,127,0.1016,4.1765,127,0.1082,4.4076,131,0.1152,4.6495,133,0.1227,4.9028,135,0.1308,5.1676 840 DATA 137.0.1393.5.4446.139.0.1485.5.7342.141.0.1584.6.0367.143.0.169.6.3527.145.0.1803.6.6828.147.0.1924.7.0273 850 DATA 149, 0.2055, 7.3867, 151, 0.2197, 7.7616, 153, 0.2349, 0.1525, 155, 0.2514, 0.5599, 157, 0.2693, 0.9846, 159, 0.2007, 9.4271 860 DATA 161,0.3099,9.0876,163,0.3339,10.367,165,0.3581,10.865,167,0.3858,11.385,169,0.4163,11.925,171,0.4580,12.486 870 DATA 173, 0. 4875, 13, 069, 175, 0. 5292, 13. 675, 176, 0. 5519, 13. 987, 178, 0. 6016, 14. 628, 180, 0. 6570, 15. 294, 182, 0. 7218, 15. 985 880 DATA 184, 4.7953, 16.702, 186, 0.8085, 17.446, 188, 0.9092, 18.217, 190, 1.099, 19.017, 192, 1.241, 19.845, 194, 1.416, 20.704 879 DATA 196,1.635,21.574,198,1.917,22.514,200,2.295,23.468 966 D.D

الهمية المراجع المعاد المعام المناجع المناجع المعاد المعاد المعاد المعاد المعاد ومواد المراجع المراجع

REFERÊNCIAS BIBLIOGRÁFICAS

- ANDRADE, A.L. Transferência de calor em bolhas superaqueci das. Tese de Doutorado, COPPE/UFRJ, 1985.
- GAL-OR, B.; KLINEING, G.E.; TAVLARIDES, L.L. Bubble and drop phenomena. <u>Industrial and Engineering Chemistry, 61</u>
 (2): 21-34, 1969.
- 3 SIDEMAN, S. Direct contact heat transfer between immiscible liquids. <u>Advanced in Chem. Eng.</u>, 6: 207-286, 1966.
- 4 DATTA,R.L.; NAPIER,D.H.; NEWITT,D.M. The properties and behaviour of gas bubbles formed at a circular orifice. <u>Trans.Inst.Chem. Engrs.</u>, 28: 14-26, 1950.
- 5 LEVICH, V.G. <u>Physicochemical hydrodynamics</u>. Prentice Hall, 1962.
- KUMAR,R. & KULOOR,R. The formation of bubbles and drops.
 Advanced in Chem.Eng., 8: 255-367, 1970.
- 7 DAVIDSON, J.F. & HARRISON, D. <u>Fluidised particles</u>. Cambrigde University Press, 1963.
- 8 MARTIN, W. & CHANDLER, G.M. The local measurement of the size and velocity of bubbles rising in liquids. <u>Applied</u> <u>Scientific Research</u>, 38: 239-246, 1982.
- 9 HABERMAN, W.L. & MORTON, R.K. An experimental study of bubbles moving in liquids. <u>Transactions of the American</u> Society of Civil Engineers, 121: 227-250, 1956.

- 10 STOKES,G.G. On the effect of internal friction of fluids on the motion of pendulums. <u>Trans. Cam. Phil. Soc.</u>, <u>9</u>: 8-106, 1851.
- 11 HADAMARD, J. Mouvement permanent lent d'une sphere liquide et visquese dans un liquide visquex. <u>Comptes Rendes</u>, 152: 1735, 1911.
- 12 RYBCZYNSKI, W. Über die forschreitende bewegung einer flüssinger kugel in einem zähen medium. <u>Bull. Acad.</u> <u>Cracovia</u>, A: 40, 1911.
- 13 BOUSSINESQ, J. Vitesse de la chute lente devenue uniforme d'une goutte liquide sphérique, dans un fluide visqueux de poids specifique moindre. <u>Comptes Rendus</u>, <u>156</u>: 1124, 1913.
- 14 PAI, Shi-I. <u>Two-phase flows: Vieweg trats in pure and</u> applied physics. 3v. German-West, 1977.
- 15 HARPER, J.F. & MOORE, D.W. The motion of a spherical liquid drop at high Reynolds number. <u>J. Fluid Mechanics</u>, <u>22</u>: 367-391, 1968.
- 16 MILNE-THOMSON, L.M. Theoretical hydrodynamics. 5. ed. New York, MacMillan Company, 1968.
- 17 MOORE, D.W. The rise of a gas bubble in a viscous liquid.J. Fluid Mechanics, 6: 113-130, 1959.
- 18 CHAO, B.T. Motion of spherical gas bubbles in a viscous liquid at large Reynolds numbers. <u>The Physics of</u> Fluids, 5 (1): 69-79, 1962.

- 19 VALENTIN, F.H.H. <u>Absorption in gas liquid dispersions: Some</u> <u>aspects of bubble technology</u>. London, E.&F.N. Spon LTD, 1967.
- 20 LOCHIEL,A.C. Mass transfer from a single bubbles. <u>Ph.D.</u> <u>Thesis</u>. University Edinburgh, Scotland, 1963.
- 21 MOORE, D.W. The boundary layer on a spherical gas bubble.
 J. Fluid Mechanics, 16: 161-176, 1963.
- 22 LANGMUIR, I. The evaporation of small spheres. <u>Physical</u> Review, 12: 368-370, 1918.
- 23 LOCHIEL,A.C. & CALDERBANK,P.H. Mass transfer in the continuous phase around axisymmetric bodies of revolution. <u>Chemical Engineering Science</u>, <u>19</u>: 471-484, 1964.
- 24 SIDEMAN,S. & SHABTAI,H. Direct-contact heat transfer between a single drop and an immiscible liquid medium. <u>The Canadian Journal of Chemical Engineering</u>: 107-117, 1964.
- 25 RUCKENSTEIN,E. On mass transfer in the continous phase from spherical bubbles or drops. <u>Chemical Engineering</u> Science, 19: 131-146, 1964.
- 26 WASLO,S. & GAL-OR,B. Boundary layer theory of mass and heat transfer in clouds of moving drops, bubbles our solid particles. <u>Chemical Engineering Science</u>, <u>26</u>: 829-838, 1971.

- 27 YARON, I. & GAL-OR, B. Convective mass or heat transfer from size-distributed drops, bubbles or solid particles. <u>Int. J. Heat Mass Transfer, 14</u>: 727-737, 1971.
- 28 CHAO, B.T. Transient heat and mass transfer to a translating droplet. Journal of Heat Transfer, 91: 273-281, 1969.
- 29 CHAO, B.T. & CHEN, J.L.S. Series solution of unsteady heat or mass transfer to a translating fluid sphere. <u>Int. J.</u> <u>Heat Mass Transfer</u>, 13: 359-367, 1970.
- 30 KONOPLIV,N. & SPARROW,E.M. Unsteady heat transfer and temperature for stokesian flow about a sphere. Journal of Heat Transfer, <u>94</u>:266-272, 1972.
- 31 BRAUER,H. Unsteady state mass transfer through the interface of spherical particles-I. <u>Int. J. Heat Mass</u> Transfer, 21: 445-453, 1978.
- 32 BRAUER, H. Unsteady state mass transfer through the interface of spherical particles-II. <u>Int. J. Heat Mass</u> <u>Transfer</u>, <u>21</u>: 455-465, 1978.
- 33 KRONIG,R. & BRINK, J.C. On the theory of extraction from falling droplets. <u>Applied Scientific Research</u>, <u>A2</u>: 142-154, 1950.
- 34 CALDERBANK, P.H. & KORCHINSKI, J.O. Circulation in liquid drops: A heat-transfer study. <u>Chemical Engineering</u> Science, 6: 65-78, 1956.
- 35 JAKOB, M. Heat transfer. v.l. John Wiley, 1949.

- 36 SIDEMAN,S. & TAITEL,Y. Direct-contact heat transfer with change of phase: Evaporation of drops in an immiscible liquid medium. Int. J. Heat Mass Transfer, 7:1273-1289, 1964.
- 37 BOUSSINESQ,M. Calcul du pouvoir refroidissant des courant fluids. J. Math. Pures. Appl., <u>1</u>: 285, 1905.
- 38 SELECKI, A. & GRADON, L. Equation of motion of an expanding vapour drop in an immiscible liquid medium. <u>Int. Heat</u> Mass Transfer, 19: 925-929, 1976.
- 39 MOKHTARZADEH, M.R. & EL-SHIRBINI, A.A. A theoretical analysis of evaporating droplets in an immiscible liquid. Int. J. Heat Mass Transfer, 22: 27-38, 1979.
- 40 SMITH,R.C.; ROHSENOW,W.M.; KAZIMI,M.S. Volumetric heattransfer coefficients for direct-contact evaporation. Journal of Heat Transfer, 104: 264-270, 1982.
- 41 BATTYA,P.; RAGHAVAN,V.R.; SEETHARAMU,K.N. Parametric studies on direct contact evaporation of a drop in an immiscible liquid. <u>Int.J. Heat Mass Transfer</u>, <u>27</u>: 263-272, 1984.
- 42 ISENBERG, J. & SIDEMAN, S. Direct contact heat transfer with change of phase: Bubble condensation in immiscible liquids. Int. J. Heat Mass Transfer, 13: 997-1011,1970.
- 43 JACOBS, H.R.& MAJOR, B.H. The effect of noncondensible gases on bubble condensation in an immiscible liquid. Journal of Heat Transfer, 104 : 487-492, 1982.

- 44 CHUNG, J.N. & CHANG, T. A mathematical model of condensation heat and mass transfer to a moving droplet in its own vapor. Journal of Heat Transfer, 106: 417-424, 1984.
- 45 ANDRADE, A.L. Transferência de calor transiente em processos de borbulhamento. Tese de Mestrado, COPPE/UFRJ, 1972.
- 46 ASHRAE. Brochure on Psychrometry. New York, ASHRAE Inc., 1977.
- 47 ASHRAE. Standard methods of measurement of moist air properties. ASHRAE Standard Draft, 1981.
- 48 ASHRAE. <u>Handbook of fundamentals</u>. New York, ASHRAE Inc., 1977.
- 49 PERRY, R.H. <u>Chemical engineers' handbook</u>. 5 ed. New York, Mc Graw-Hill, 1973.
- 50 CALDERBANK, P.H & MOO-YOUNG, M.B. The continuous phase heat and mass transfer properties of dispersions. <u>Chemical</u> Engineering Science, <u>16</u>: 39-54, 1961.
- 51 HACKENBERG,C.M. Transferência de calor em processos de borbulhamento. VI Congresso Interamericano de Engenharia Química. Caracas-Venezuela, 1975.
- 52 VARGAFTIK, N.B. <u>Tables the thermophysical properties of</u> liquids and gases. 2 ed., Wiley, 1975.
- 53 MUJUMDAR, A.S. <u>Drying of granular materials</u>; lecture notes. Montreal, Department of chemical engineering, Mc Gill University, 1981.

- -54 ANDRADE,A.L. & HACKENBERG,C.M. Two phase systems:
 An analogy os heat and mass transfer in an unsteady
 state regime. Lat. Am. J. Heat and Mass Transfer, 9:
 59-73, 1985.
- 55 HACKENBERG,C.M. & ANDRADE, A.L. Transferência de calor transiente em processos de borbulhamento: Determinação da temperatura superficial. VI Int. Am. Congress of Chemical Eng. Caracas-VZ., 1975.
- 56 HACKENBERG, C.M. Transferência de calor em bolhas. <u>Tese de</u> Mestrado, COPPE/UFRJ, 1965.