

Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia

DESENVOLVIMENTO DE UNIDADE PILOTO DE TRANSFERÊNCIA DE MASSA GÁS/LÍQUIDO: REDUÇÃO DA REATIVIDADE DO RESÍDUO DA INDÚSTRIA DE ALUMINA ATRAVÉS DA REAÇÃO COM GASES DE COMBUSTÃO

Luis Carlos Alves Venancio

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia, PRODERNA/ITEC, da Universidade Federal do Pará, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia de Recursos Naturais.

Orientadores: Emanuel Negrão Macêdo José Antonio da Silva Souza

Belém Fevereiro de 2013

DESENVOLVIMENTO DE UNIDADE PILOTO DE TRANSFERÊNCIA DE MASSA GÁS/LÍQUIDO: REDUÇÃO DA REATIVIDADE DO RESÍDUO DA INDÚSTRIA DE ALUMINA ATRAVÉS DA REAÇÃO COM GASES DE COMBUSTÃO

Luis Carlos Alves Venancio

TESE SUBMETIDA AO CORPO DOCENTE DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE RECURSOS NATURAIS DA AMAZÔNIA (PRODERNA/ITEC) DA UNIVERSIDADE FEDERAL DO PARÁ COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA DE RECURSOS NATURAIS.

Aprovada por:

Empaquel Negran Marcila
/Prof. Emanuel Negrão Macêdo, D.Sc.
(FEQ/UFPA-Orientador)
Prof. José Antonio da Silva Souza, D.Eng.
(FEQ/UFPA-Orientador)
Claug m Prem
Prof. Claudio José Cavalcante Blanco, Ph.D.
(FEC/UFPA-Membro)
al Aptolog
Prof. Célio Augusto Gomes de Souza, D.Eng.
(FEQ/UFPA-Membro) for Cafet & Ch
Prof. Alan Cavalcanti da Cunha, D.Eng.
(UNIFAP-Membro)
~ C R. Ch
Profa. Maria Lúcia Pereira Antunes, D.Sc.
(UNESP-Sorocaba – Membro)

BELÉM, PA - BRASIL FEVEREIRO DE 2013

Dados Internacionais de Catalogação na Publicação (CIP) Instituto de Tecnologia/Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia

Venancio, Luis Carlos Alves

Tese (Doutorado) – Universidade Federal do Pará. Instituto de Tecnologia. Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, 2013

1. Resíduo de bauxita. 2. Lama vermelha. 3. Carbonatação. 4. Dióxido de carbono. I. Título

CDD 22. ed. 660.28

Desenvolvimento de Unidade Piloto de Transferência de Massa Gás/Líquido: Redução da Reatividade do Resíduo da Indústria de Alumina Através da Reação com Gases de Combustão/Luis Carlos Alves Venancio; orientadores, Emanuel Negrão Macêdo e José Antonio da Silva Souza. - Belém, 2013

Este trabalho a dedicado aos colegas, professores e todos aqueles que tornaram possível a sua realização em especial a minha família pela compreensão e apoio.

AGRADECIMENTOS

Aos amigos e Professores José Antonio da Silva Souza e Emanuel Negrão Macêdo pela orientação, incentivo e apoio nesta longa jornada.

A UFPA e ao PRODERNA por tornarem possível este trabalho.

Ao CNPQ pela bolsa.

Aos órgãos de financiamento pelos recursos que tornaram possível este trabalho.

Aos colaboradores Fernando, Gláucia, Otacílio e Iara.

Aos colegas do PRODERNA pelo apoio e acolhida.

Aos amigos que supriram a minha ausência em especial Agenor Jaguar.

A minha família pelo apoio e incentivo.

Resumo da Tese apresentada ao PRODERNA/UFPA como parte dos requisitos necessários para a obtenção do grau de Doutor em Engenharia de Recursos Naturais (D.Eng.).

DESENVOLVIMENTO DE UNIDADE PILOTO DE TRANSFERÊNCIA DE MASSA GÁS/LÍQUIDO: REDUÇÃO DA REATIVIDADE DO RESÍDUO DA INDÚSTRIA DE ALUMINA ATRAVÉS DA REAÇÃO COM GASES DE COMBUSTÃO

Luis Carlos Alves Venancio

Fevereiro/2013

Orientadores: Emanuel Negrão Macêdo e José Antonio da Silva Souza

Área de Concentração: Uso e Transformação de Recursos Naturais

O refino de bauxita utilizando o processo Bayer produz de 0,7 a 2,0 t do resíduo conhecido como lama vermelha e cerca de 1,0 t de CO₂ para cada tonelada de alumina produzida. O resíduo de bauxita apesar de não ser particularmente tóxico, apresenta riscos ao meio ambiente devido ao grande volume e a sua reatividade. De acordo com a tecnologia mais recente tem parte da umidade removida e é empilhado em depósitos impermeáveis especialmente construídos. Mais de 95% do resíduo de bauxita que já foi produzido no mundo (2,6 Bt até 2007) foi descartada, principalmente em depósitos em terra. Esta tese mostra o projeto, a construção e a operação de uma unidade de transferência de massa gás líquido em escala piloto com o objetivo de testar a redução da reatividade do resíduo de bauxita através da reação com gás de combustão. Como ganho adicional há a redução da emissão de dióxido de carbono e dióxido de enxofre. Esta unidade, composta por três reatores, foi projetada de modo a consumir o mínimo de energia, utilizar os efluentes da maneira mais eficiente possível e minimizar o custo de investimento. Foram realizados 25 experimentos com duração de 80 a 520 minutos cada um. Os gases foram analisados com o uso de sensores eletroquímicos e infravermelho não dispersivo na entrada e saída. O pH foi mensurado durante e após a reação de modo a avaliar os resultados curto e longo prazo bem como a estabilidade das reações. Foi demonstrada a viabilidade de reagir o resíduo de bauxita com os gases provenientes da combustão de fontes fósseis da própria refinaria sem processamento prévio com o pH de estabilização atingindo 10,5.

Abstract of Thesis presented to PRODERNA/UFPA as a partial fulfillment of the requirements for the degree of Doctor of Natural Resources Engineering (D. Eng.)

DEVELOPMENT OF GAS-LIQUID MASS TRANSFER PILOT UNIT: REACTIVITY AMENDMENT OF THE ALUMINA INDUSTRY RESIDUE THROUGH THE REACTION WITH FLUE GAS

Luis Carlos Alves Venancio

Fevereiro/2013

Advisors: Emanuel Negrão Macêdo and José Antonio da Silva Souza

Research Area: Use and Transformation of Natural Resources

The bauxite refining using the Bayer process produces 0.7 to 2.0 tons of the residue known as red mud and about 1.0 ton of CO_2 for each ton of alumina produced. The bauxite residue, although not particularly toxic, poses risks to the environment due to its large volume and reactivity. According to the latest technology, part of the moisture is removed and it is stacked on sealed areas specially constructed. More than 95% of the bauxite residue that has been produced (2.6 Bt until 2007) was discarded, especially in ponds on land. This thesis shows the design, construction and operation of a pilot scale gas liquid mass transfer unity with the objective of testing the reduction of the reactivity of the bauxite residue through a reaction with flue gas. As an additional gain, there is a reduction of carbon dioxide and sulfur dioxide emissions. This unity, with three reactors, was designed in order to consume minimal power, process the effluent as efficiently as possible and minimize the investment cost. Twenty-five experiments were realized with duration from 80 to 520 minutes each. The gases were analyzed at the entry and exit with electrochemical cells and non-dispersive infrared sensors. The pH was monitored during and after the reaction in order to evaluate the short and long-term results as well as the stability of the reactions. It was demonstrated the viability of reacting the bauxite residue with the flue gas from the refinery without previous processing with the stabilization pH reaching 10.5.

SUMÁRIO

CAPÍTULO 1 – INTRODUÇÃO	1
1.1 - APRESENTAÇÃO DO TEMA	1
1.2 - ORGANIZAÇÃO DO TRABALHO	5
CAPÍTULO 2 - REVISÃO BIBLIOGRÁFICA	7
2.1 - PROCESSO BAYER PARA PRODUÇÃO DE ALUMINA	7
2.2 - ETAPAS DO PROCESSO BAYER	10
2.3 - ETAPA VERMELHA	10
2.3.1 – Moagem	10
2.3.2 – Digestão	11
2.3.3 - Decantação e Lavagem do RB	12
2.3.4 – Filtração	12
2.4 – ETAPA BRANCA	13
2.4.1 – Precipitação	13
2.4.2 - Filtração a Vácuo	14
2.4.3 – Calcinação	15
2.5 – RESÍDUO DE BAUXITA	15
2.5.1 - Geração e Composição	15
2.5.2 – Complementos ao Processo Bayer que Afetam a Composição do RB	17
2.5.3 - Olhando o RB sob Diferentes Perspectivas	18
2.5.4 – Caracterização do RB	21
2.5.4.1 – Composição Química do RB	21
2.5.4.2 - Descrição Mineralógica do RB	21
2.5.4.3 - Características Físicas do RB	23
2.5.4.4 - Características Físico-Químicas do RB	23

2.5.4.4.1 - pH: A Variável Mais Importante	23
2.5.4.4.2 - Capacidade de Neutralização de Ácido (CNA)	24
2.6 – OPÇÕES DE USO DO RESÍDUO	26
2.6.1 – Histórico	26
2.6.2 - Riscos da Reciclagem e do Armazenamento	29
2.6.3 – Aplicação de Mecanismos de Redução da Reatividade do RB	31
2.7 – ARMAZENAMENTO E USO DO RESÍDUO	31
2.8 – ABSORÇÃO GÁS LÍQUIDO	32
2.8.1 - Considerações Preliminares Sobre Absorção de Gases	32
2.8.2 - Absorção Física	33
2.8.2.1 – Modelo de Whitman (1924)	33
2.8.2.2 - Modelo de HIGBIE (1935)	34
2.8.2.3 - Modelo de TREYBAL (1981)	34
2.8.3 - Absorção com Reação Química	35
2.8.4 - Coeficiente de Transferência de Massa	37
2.8.5 – Unidade de Transferência	40
2.8.6 - Seleção do Tipo de Equipamento Adequado ao Processo de Absorção	42
2.9 – REDUÇÃO DA ALCALINIDADE DO RB ATRAVÉS DA REAÇÃO COM DIÓXIDO DE CARBONO E OU GÁS DE COMBUSTÃO	43
2.10 – MECANISMO DE DESENVOLVIMENTO LIMPO	49
CAPÍTULO 3 - MATERIAIS E MÉTODOS	51
3.1 – CARACTERIZAÇÁO DOS MATERIAIS	51
3.1.1 - Características Físicas do RB	51
3.1.2 – Combustível	53
3.2 – EQUIPAMENTOS	53
3.2.1- Projeto, Fabricação e Montagem da Unidade de Transferência de Massa	53
3.2.1.1 - Diagrama de Blocos da Instalação Piloto	54

3.2.1.2 - Planta da Instalação e Projeto do Galpão	••••
3.2.1.3 – Caracterização e Adaptação da Caldeira Como Fonte de Gases de Combustão	<u>)</u>
3.2.1.4 – Projeto e Construção do Trocador de Calor	
3.1.2.5 – Projeto do Sistema de Manuseio de Gases	
3.2.1.6 – Projeto e Construção dos Reatores	
3.2.1.7 – Projeto e Construção do Sistema de Manuseio da Suspensão de Resíduo	•••
3.2.1.8 - Projeto e Construção de Equipamentos Destinados a Testar Variáveis Específicas	
3.2.2 – Seleção e Aquisição de Equipamentos Dedicados a Unidade Piloto.	
3.2.2.1 – Analisadores de Gases	
3.2.2.2 – Anemômetro	
3.2.2.3 – Phmetro	••
3.2.3 – Utilização de Equipamentos Disponíveis nos Laboratórios da UFPA	4
3.2.3.1 – Termômetro	
3.2.3.2 – Viscosímetro	•••
3.2.3.3 – Balança Digital	••••
3.2.3.4 – Difratômetro de Raios X	•••
3.2.3.5 – Espectrômetro de Fluorescência de Raios X	•••
3.3 – PLANEJAMENTO DOS EXPERIMENTOS	
3.3.1 - Testes Preliminares para Calibração dos Equipamentos	
3.3.2 - Experimento com Planejamento Fatorial Fracionário 2 ^k para Triage das Variáveis	m
3.3.3 - Repetição dos Experimentos Centrais com a Finalidade de Redução do Erro.) ••••
3.3.4 - Definição dos Pontos e Grandezas de Medição	
3.3.5 – Preparação da Suspensão	
3.3.6 – Cálculo da Massa de CO ₂ Absorvida em Cada Experimento	•••
3.3.7 - Monitoramento do pH de Estabilização das Amostras de RB Carbonatado	

CAPÍTULO 4 - RESULTADOS, ANÁLISES E DISCUSSÃO	78
4.1 – APRESENTAÇÃO DOS RESULTADOS DOS EXPERIMENTOS MAIS IMPORTANTES	78
4.2 – COMPARAÇÃO DOS EXPERIMENTOS	90
4.2.1 – Diferença Entre Torres Incluindo Custo Benefício	91
4.2.2 – Evolução do pH de Longo Prazo em Frasco Fechado	92
4.3 – RESULTADOS DE EXPERIMENTOS COM CARACTERÍSTICAS ESPECIAIS	95
4.3.1 – Experimento com Aquecimento	95
4.3.2 – Experimento com Baixa Temperatura	95
4.3.3 – Experimento de Absorção de SO ₂	95
4.4 – ANÁLISES DE DIFRAÇÃO E FLUORESCÊNCIA DE RAIOS X	90
4.4.1 – Difração de Raios X do RB	90
4.4.2 - Fluorescência de Raios X	9′
4.5– AVALIAÇÕES REALIZADAS PARA VIABILIZAR OS DEMAIS EXPERIMENTOS	98
4.5.1 - Comportamento Reológico da Suspensão de RB	98
4.5.2 – Decantação	9
4.6 – Uso do Programa Statistica 7 para Análise dos Resultados e Geração de Modelo Empírico	10
CAPÍTULO 5 - CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS	104
5.1 – CONCLUSÕES	104
5.2 – SUGESTÕES PARA TRABALHOS FUTUROS	100

REFERÊNCIAS BIBLIOGRÁFICAS	107
APENDICE I	113
APENDICE II	117

LISTA DE FIGURAS

 Fonte: FRANÇA <i>et al.</i> (2007) com modificações Figura 2.2 (a) Micrografia da bauxita de Paragominas (b) Mapea micrografia. Fonte: FRANÇA <i>et al.</i> (2007) Figura 2.3 Moagem da Bauxita. Fonte: Alunorte Figura 2.4 Digestores. Fonte: Alunorte Figura 2.5 Desenho esquemático da patente de espessador de últim pertencente a empresa Rio Tinto. Fonte: PELOQUIN <i>et a</i> US7,473,376 (2009) 	alumina.
 Figura 2.2 (a) Micrografia da bauxita de Paragominas (b) Mapea micrografia. Fonte: FRANÇA <i>et al.</i> (2007). Figura 2.3 Moagem da Bauxita. Fonte: Alunorte. Figura 2.4 Digestores. Fonte: Alunorte. Figura 2.5 Desenho esquemático da patente de espessador de últim pertencente a empresa Rio Tinto. Fonte: PELOQUIN <i>et a</i> US7,473,376 (2009). Figura 2.6 Eiltros de PR. Fonte: Alunorte. 	
 micrografia. Fonte: FRANÇA <i>et al.</i> (2007). Figura 2.3 Moagem da Bauxita. Fonte: Alunorte. Figura 2.4 Digestores. Fonte: Alunorte. Figura 2.5 Desenho esquemático da patente de espessador de últim pertencente a empresa Rio Tinto. Fonte: PELOQUIN <i>et a</i> US7,473,376 (2009). Figura 2.6 Eiltros do PR. Fonte: Alunorte. 	mento da
 Figura 2.3 Moagem da Bauxita. Fonte: Alunorte. Figura 2.4 Digestores. Fonte: Alunorte. Figura 2.5 Desenho esquemático da patente de espessador de últim pertencente a empresa Rio Tinto. Fonte: PELOQUIN <i>et a</i> US7,473,376 (2009). Figura 2.6 Eiltros do PR. Fonte: Alunorto. 	
 Figura 2.4 Digestores. Fonte: Alunorte. Figura 2.5 Desenho esquemático da patente de espessador de últim pertencente a empresa Rio Tinto. Fonte: PELOQUIN <i>et a</i> US7,473,376 (2009). Figura 2.6 Eiltros de PR. Fonte: Alunorte. 	11
 Figura 2.5 Desenho esquemático da patente de espessador de últim pertencente a empresa Rio Tinto. Fonte: PELOQUIN <i>et a</i> US7,473,376 (2009). Figura 2.6 Eiltros de PR. Fonte: Aluporte. 	
 pertencente a empresa Rio Tinto. Fonte: PELOQUIN <i>et a</i> US7,473,376 (2009). Figura 2.6 Filtros de PR. Fonte: Aluporte. 	a geração
US7,473,376 (2009)	ıl., patente
Figure 2.6 Filtres de DR Fonte: Alunerte	
riguia 2.0 Fillios de KD. Folite: Aluliofie.	
Figura 2.7 Precipitadores. Fonte: Alunorte.	
Figura 2.8 Filtradores à Vácuo. Fonte: Alunorte.	
Figura 2.9 Calcinadores (Alunorte).	
Figura 2.10 Fluxograma de formação do RB indicando locais de en NaOH, Ca(OH) ₂ e floculantes. As setas azuis indicam da água de lavagem contracorrente para o fluxo de re bauxita. Adotado com modificações a par WHITTINGTON (1996).	ntradas de a direção síduos de tir de 17
Figura 2.11 Visão metalúrgica da composição do RB. Fonte GRA (2009).	AFE <i>et al</i> .
Figura 2.12Visão mineralógica da composição do RB. Fonte GRA al. (2009).	ÄFE <i>et</i> 20
Figura 2.13 Curvas de capacidade de neutralização ácida do RB de diferentes refinarias da Austrália. Fonte: CARTER <i>et</i> (2008).	e nove al. 25
Figura 2.14Distribuição por categoria do total de 734 patentes de 2008. Fonte: KLAUBER (2009).	1964 a
Figura 2.15Produção anual de RB e total acumulado. Fonte: POW al. (2009).	/ER <i>et</i> 27
Figura 2.16 Evolução dos métodos de armazenamento em 17 refin representando 44% da produção mundial cujas inform são disponíveis no período 1965 – 2007. Fonte: POW (2009).	arias, ações ER <i>et al</i> .

Figura 2.17	Modelo de dois filmes Fonte: SHERWOOD e PIGFORD (1975).	33
Figura 2.18	Concentrações em um processo com reação química conforme modelo do filme duplo. Fonte: SHERWOOD e PIGFORD (1975).	36
Figura 2.19	Representação esquemática de uma torre de recheios. Fonte : BROWN, (1965).	39
Figura 2.20	Altura de unidade de transferência (HTUG) em função de mV/L para absorção de SO ₂ por H ₂ O utilizando anéis de 3 polegadas, com espiral interior	41
Figura 2.21	Coeficientes de transferência de massa para absorção de CO ₂ em solução de NaOH 4%-p utilizando diferentes recheios. Fonte: McCABE (1985).	43
Figura 2.22	Primeiro experimento de redução da reatividade de RB conforme ilustração original. Fonte: VERSIANI (1983)	44
Figura 3.1	Análise granulométrica do RB da Alunorte. Fonte: LEMOS, (2008)	52
Figura 3.2	Histograma da análise granulométrica do RB da Alunorte. Fonte: LEMOS (2008) com modificações	52
Figura 3.3	Curva da análise térmica diferencial da da lama vermelha utilizada. Fonte: HILDEBRANDO (1998)	53
Figura 3.4	Fluxograma de processo dos equipamentos incluindo a caldeira já existente utilizada para gerar os gases utilizados na reação com o RB	54
Figura 3.5	Desenho esquemático dos equipamentos com a indicação dos pontos de coleta de amostras	55
Figura 3.6	Planta baixa do galpão com 70 m ² projetado e construído para a realização dos experimentos	55
Figura 3.7	Caldeira já existente utilizada como fonte de geração de gás de combustão e ponto de captação dos gases na base da chaminé da caldeira	56
Figura 3.8	Projeto do trocador de calor tubular de contato direto em contracorrente	57

Figuras 3.9	Detalhes do trocador de calor tubular na fabricação e montagem	57
Figura 3.10	Bico gerador de névoa de água com uso de ar comprimido, selecionado entre 90000 itens para atender os requisitos de forma da pluma, vazão de água e ar	58
Figura 3.11	Bico gerador de névoa montado no topo do trocador e conectado ao regulador de pressão de ar e a alimentação de água	58
Figura 3.12	Desenho esquemático funcional do trocador de calor tubular de contato direto em contracorrente	59
Figura 3.13	Projeto do distribuidor de gases dotado de quatro válvulas tipo borboleta	59
Figura 3.14	Conjunto de manuseio de gases, a direita o trocador de calor, ao centro o ventilador centrífugo e na parte superior o distribuidor de gases com as válvulas	60
Figura 3.15	Torre de aspersão com dez bicos centrífugos em dois níveis. No detalhe, podemos ver os bicos em teste com água e com suspensão de RB	60
Figura 3.16	Projeto das torres de recheio que foram fabricadas em aço inoxidável	61
Figura 3.17	Torre de recheio que durante o processo de fabricação e montagem	61
Figura 3.18	Torre de recheio preenchida com selas distribuídas randomicamente, no detalhe as selas em aço inoxidável	62
Figura 3.19	Torre de recheio preenchida com recheio estruturado de alto desempenho, nos detalhes um módulo do recheio estruturado e as lâminas que o compõem	63
Figura 3.20	Vistas da caixa de preparação da suspensão de resíduo	64
Figura 3,21	Caixa de peneiramento pressurizado, destinada a remoção de areia	64
Figura 3.22	Bomba centrífuga autoescorvante adequada para recalque de lama	65
Figura 3.23	Conjuntos de resistências utilizados para aquecer a suspensão de RB	65

Figura 3.24	Vista do experimento com sobrenadante aquecido. À direita temos a caixa de retorno com dez saídas ajustáveis e o conjunto de resistências para aquecimento
Figura 3.25	Captador de sucção com baixa turbulência utilizado no experimento com sobrenadante de RB. A esquerda vemos o captador montado e a direita em operação
Figura 3.26	Vista da caixa de retorno com dez saídas ajustáveis destinadas
	a reduzir a reduzir a turbulência no retorno do RB
Figura 3.27	Analisador de gases por células eletroquímicas Tempest 100
Figura 3.28	Analisador de gases por infravermelho não dispersivo MRU Delta
Figura 3.29	Anemômetro e sonda de medição
Figura 3.30	Phmetro portátil Hanna
Figura 3.31	Termômetro portátil digital
Figura 3.32	Viscosímetro utilizado no experimentos para analisar o comportamento reológico e definir o uso e a dosagem do dispersante
Figura 3.33	Balança e proveta utilizadas pra controlar o teor de sólidos na suspensão de RB
Figura 3.34	Difratômetro Philips (PW 3710) do Centro de Geociências da UFPA
Figura 3.35	Pontos de medição mostrados no diagrama de processo
Figura 4.1	pH e a vazão de massa de CO ₂ absorvida durante o experimento 25
Figura 4.2	Monitoramento da evolução do pH após o experimento 25 em frasco fechado
Figura 4.3	Monitoramento da evolução do pH após o experimento 25 em frasco aberto
Figura 4.4	pH e a vazão de massa de CO ₂ absorvida durante o experimento 24
Figura 4.5	Monitoramento da evolução do pH após o experimento 24 em frasco fechado

Figura 4.6	Evolução do pH e do fluxo de absorção de CO ₂ no experimento 22	87
Figura 4.7	Gráfico da evolução do pH no experimento 2	88
Figura 4.8	Evolução do pH de longo prazo do experimento 2 em frasco fechado	89
Figura 4.9	Evolução do pH durante o experimento 11	89
Figura 4.10	Evolução do pH de longo prazo em frasco fechado do experimento 11	90
Figura 4.11	Gráfico comparativo das médias de evolução do pH por tipo de torre e CO ₂ médio absorvido	92
Figura 4.12	Gráfico da evolução do pH das amostra de RB carbonatado conservadas em frasco tampado	93
Figura 4.13	Gráfico da evolução do pH das amostra de RB carbonatado conservadas em frasco aberto	94
Figura 4.14	Evolução do pH médio após os experimentos com RB em frascos tampados e abertos	94
Figura 4.15	Difração de raios X da amostra de RB não reagido da Alunorte. Fonte: autor	96
Figura 4.16	Comparação dos difratogramas do RB não reagido e carbonatado	97
Figura 4.17	Variação da viscosidade em função do teor de defloculante	99
Figura 4.18	Experimento de decantação com diferentes teores de sulfato de alumínio	100
Figura 4.19	Gráfico de Pareto do impacto das variáveis e suas interações	100
Figura 4.20	Gráfico mostrando a superfície de resposta do pH longo	101
Figura 4.21	Perfis para valores previstos e desejabilidade, com o impacto de cada variável	102
Figura 4.22	Telas do Statistica 7 mostrando os coeficientes de regressão, o erro e os diferentes intervalos de confiança de cada termo da equação	102
Figura 4.23	Gráfico dos valores previstos versus reais utilizando a equação de simulação	103

LISTA DE TABELAS

Tabela 1.1	Consumo energético de diferentes processos de produção de	
	alumina. Fonte: SENYUTA (2012)	2
Tabela 2.1	Diferenças no tratamento entre diversos tipos de bauxitas no processo	
	Bayer. Fonte: SANTOS (1989) com modificações	8
Tabela 2.2	Etapas do processo Bayer atual	10
Tabela 2.3	Composição química e mineralógica de resíduos de bauxita.	
	Fonte: GRÄFE et al. (2009)	19
Tabela 2.4	Composição química da Lama Vermelha da Alunorte por	
	diversos métodos. Fontes: MAGALHÃES (2008 e 2012),	
	HILDEBRANDO (1999), SOUZA, (2010)	21
Tabela 2.5	Características físicas de RB. Fonte: GRÄFE et al., (2009) com	
	adaptações	23
Tabela 2.6	Reações que provocam o retorno do pH. Fonte: GUSTAFSSON	
	(2006) e STUMM (1981) apud GRAFE (2009)	47
Tabela 2.7	pH de Equilíbrio para diferentes pressões parciais de CO ₂ . Fonte:	
	KHAITAN et al., (2009)	48
Tabela 3.1	Análise granulométrica do RB da Alunorte. Fonte: LEMOS (2008)	51
Tabela 3.2	Propriedades físicas do RB	52
Tabela 3.3	Planejamento fatorial fracionário destinado a triagem	74
Tabela 3.4	Etapas para cálculo da massa de CO2 absorvida	77
Tabela 4.1	Conteúdo do corpo da folha de experimento com registro do	
	PH, composição e temperatura dos gases ao longo do	
	experimento 25	79
Tabela 4.2	Planilha de cálculo da massa de CO2 reagida no experimento	
	25	80
Tabela 4.3	Dados da folha de experimento 24	83
Tabela 4.4	Planilha de cálculo da massa de CO2 reagida no experimento 24.	84
Tabela 4.5	Dados da folha de experimento 22	86

Tabela 4.6	Planilha de cálculo da massa de CO ₂ reagida no experimento 22	87
Tabela 4.7	Cabeçalho do experimento 2, realizado em quatro etapas	88
Tabela 4.8	Compilação dos resultados dos 25 experimentos	91
Tabela 4.9	Comparação do desempenho das torres excluindo sobrenadante.	92
Tabela 4.10	Experimento de captura de SO2 em paralelo com gás de	
	combustão	95
Tabela 4.11	Resultado das análises semiquantitativas de Fluorescência de raios X	97
Tabela 4.12	Valores menores das análises semiquantitativas de fluorescência de raios X	98
Tabela I.1	Composição mineralógica dos resíduos de bauxita. Fonte:	
	GRÄFE, 2009	113
Tabela I.2	Composição dos resíduos de bauxita determinados por	
	fluorescência de raios-X. Fonte: GRÄFE et al. (2009)	115
Tabela II.1	Resultados do experimento 1	117
Tabela II.2	Resultados do experimento 2	118
Tabela II.3	Resultados do experimento 3	119
Tabela II.4	Resultados do experimento 4	120
Tabela II.5	Resultados do experimento 5	121
Tabela II.6	Resultados do experimento 6	122
Tabela II.7	Resultados do experimento 7	123
Tabela II.8	Resultados do experimento 8	124
Tabela II.9	Resultados do experimento 9	125
Tabela II.10	Resultados do experimento 10	126
Tabela II.11	Resultados do experimento 11	127
Tabela II.12	Resultados do experimento 12	128
Tabela II.13	Resultados do experimento 13	129
Tabela II.14	Resultados do experimento 14	130
Tabela II.15	Resultados do experimento 15	131
Tabela II.16	Resultados do experimento 16	132
Tabela II.17	Resultados do experimento 17	133

Tabela II.18	Resultados do experimento 18	134
Tabela II.19	Resultados do experimento 19	135
Tabela II.20	Resultados do experimento 20	136
Tabela II.21	Resultados do experimento 21	137
Tabela II.22	Resultados do experimento 22	138
Tabela II.23	Resultados do experimento 23	139
Tabela II.24	Resultados do experimento 24	140
Tabela II.25	Resultados do experimento 25	141

NOMENCLATURA

ALCOA	ALCOA ALUMÍNIO S.A.
ALUNORTE	ALUMINA DO NORTE DO BRASIL S.A.
ASER	ÁREA SUPERFICIAL ESPECÍFICA
Bt	BILHOÕES DE TONELADAS
CAN	CAPACIDADE DE NEUTRALIZAÇÃO ÁCIDA
CE	CONDUTIVIDADE ELÉTRICA
DRX	DIFRAÇÃO DE RAIOS X
FRX	FLUORESCÊNCIA DE RAIOS X
IAI	INTERNATIONAL ALUMINIUM INSTITUTE
MRON	MATERIAIS RADIOATIVOS QUE OCORREM
	NATURALMENTE
Mt	MILHÕES DE TONELADAS
PCZ	PONTO DE CARGA ZERO
PDPRS	PRODUTOS DERIVADOS DO PROCESSO DE REMOÇÃO
	DE SÍLICA
PF	PERDA AO FOGO
PST	PERCENTUAL DE SÓDIO TRCÁVEL
RAS	RAZÃO DE ABSORÇÃO DE SÓDIO
RB	RESÍDUO DE BAUXITA
TSD	TOTAL DE SÓLIDOS DISSOLVIDOS
USBM	UNITED STATES BUREAU OF MINES

CAPÍTULO 1

INTRODUÇÃO

1.1 APRESENTAÇÃO DO TEMA

A exploração predatória dos recursos naturais historicamente tem sido fonte de destruição da natureza e agressões aos biomas existentes na região amazônica. Somente a porção brasileira abriga um terço das espécies vivas do planeta. No subsolo o estoque de minérios foi estimado em 7,2 trilhões de dólares em jazidas de ouro, cobre, cassiterita, titânio, estanho, chumbo, tântalo, zinco, columbita, urânio e nióbio (MEIRELES FILHO, 2007).

Por outro lado exploração de minérios e o seu processamento, juntamente com a produção de energia hídrica e a produção de madeira em sistema de manejo rotativo, podem e devem fazer parte de um conjunto de atividades com potencial para ser uma importante fonte de recursos destinados a elevar o padrão de vida dos vinte milhões de habitantes da Amazônia de maneira sustentável. Entretanto é imprescindível criar as condições para garantir aplicação das tecnologias mais modernas de redução de impacto ambiental e monitorar a recuperação das áreas utilizadas bem como a obtenção benefícios para a sociedade como contrapartidas durante a fase de implantação e sob a forma de cobrança de impostos.

O alumínio tem grande importância nos setores de transportes, eletricidade, embalagens, construção civil entre outros. É produzido através da redução eletrolítica do óxido de alumínio conhecido como alumina. O Brasil tem grandes reservas de bauxita (3,5 bilhões de toneladas, 11% da reserva mundial), minério de alumínio de alto teor, sendo mais de 80% localizados na região amazônica de acordo com o DNPM (2007).

Noventa e seis por cento da alumina no mundo é produzida a partir do refino da bauxita pelo processo Bayer de acordo com SENYUTA (2012). Este fato não decorre da inexistência de alternativas. Existem várias dezenas de processos de extração, alguns atualmente em uso na Rússia e China. Entretanto como podemos observar na tabela 1.1 o consumo energético do processo Bayer cria uma vantagem econômica só superada em

condições muito particulares. Em algumas refinarias na China, há processos mistos, onde uma etapa de sinterização com calcário e carbonato de sódio precede o processo Bayer.

Tamplacia	Minánia	Consumo de energia	
Techologia	willerio	em GJ/t alumina	
Processo Bayer	Bauxita	8-18*	
Processos com ácido clorídrico	Argila	26-37	
Processos com H ⁺	Argila	27-40	
Processos com ácido nítrico	Argila	48-50	
Processos com ácido sulfúrico	Argila	42-46	
Processos de sinterização com carbonato	Nefelina e	40-55	
de sódio	anortósito		

Tabela 1.1 – Consumo energético de diferentes processos de produção de alumina. Fonte: SENYUTA (2012)

* ou 13-23 GJ/t incluindo a energia para a produção da soda cáustica e cal usadas no processo.

O processo Bayer consiste essencialmente na extração do óxido de alumínio através de sua dissolução em soda cáustica e na separação dos resíduos não solúveis. Este resíduo é chamado de resíduo de bauxita e também referido na literatura como lama vermelha, rejeitos do processo Bayer, ou rejeitos do processamento de bauxita. Nesta tese "resíduo de bauxita" (RB) é o termo preferido.

O RB apesar de não ser particularmente tóxico, apresenta riscos ao meio ambiente devido ao grande volume e a sua reatividade. De acordo com a tecnologia mais recente parte de sua umidade é removida e ele é empilhado em depósitos impermeáveis especialmente construídos. Até hoje a esmagadora maioria do resíduo de bauxita já produzido (2,6 Bt até 2007, CARTER, 2009) foi armazenada, não sendo integrada em industriais existentes em quantidade significativa. Isto implica processos na de assegurar que os resíduos armazenados não causem danos responsabilidade ao ambiente circundante, incluindo seres humanos e animais selvagens, nem afetem a estética da paisagem. A integridade vertical e horizontal do aterro é necessária para assegurar que resíduos de bauxita mantenham a estabilidade mecânica e que os componentes reativos permaneçam confinados. Na superfície, a formação de poeira tem de controlada para minimizar a dispersão de resíduo aerotransportado. ser Revegetação da superfície para integrar a área de disposição de resíduos de bauxita na paisagem pode simultaneamente inibir a formação de poeira e dispersão pela erosão do vento. A alta alcalinidade do RB é a questão central em relação a revegetação sustentável, prevenção de poeira e integridade do aterro. A alcalinidade dos constituintes pode impedir vegetação de se estabelecer na superfície, causar a formação de superfícies friáveis permitindo o carregamento de pó pelo vento. A alta alcalinidade também é a principal barreira para o reaproveitamento do RB em outros processos industriais.

Desde o início da produção de alumina em larga escala no final do século XIX têm sido pesquisadas em todo o mundo tecnologias para o aproveitamento do RB. Entretanto hoje, dos 120 milhões de toneladas de RB produzidos anualmente, apenas cerca de 2% é aproveitado em outros processos industriais (PANOV, 2012; EVANS, 2012).

Alguns exemplos positivos são o aproveitamento dos resíduos dos processos de produção de alumina por sinterização a partir de outros minérios na Rússia e China (PANOV, 2012) bem como a utilização de RB na produção de cimento na Índia, China e Rússia (PANOV, 2012).

Por outro lado um objetivo estratégico foi estabelecido em 2010, pelo Comitê de Alumina e Bauxita do Instituto Internacional de Alumínio (formado pela maioria das indústrias), para reutilizar 20% do RB até 2025 (Alumina Technology Roadmap, 2010). A China estabeleceu o mesmo objetivo, mas para 2015 (PANOV, 2012).

Até o final do século XX havia uma dicotomia em que cientistas e ambientalistas postulavam a necessidade de aproveitar ao máximo os recursos minerais extraídos da natureza enquanto as empresas preferiam armazenar os resíduos devido ao menor custo.

Hoje em dia é consensual a necessidade de reduzir a geração de resíduos. Por outro lado há necessidade de avaliar as alternativas de reutilização sob a ótica da quantidade de energia que será despendida no processo e quanto haverá de emissão de gases do efeito estufa (efetuando uma análise do ciclo de vida dos projetos).

Em geral grandes indústrias produzem efluentes sólidos, líquidos e gasosos. A prioridade para encontrar uma destinação adequada em geral recai sobre os dois primeiros devido a maior visibilidade.

Nesta tese foram desenvolvidos os equipamentos, e estudada a possibilidade de reduzir substancialmente a reatividade do RB através da reação com os efluentes gasosos do próprio processo de refino. Como ganho adicional há a redução das emissões de dióxido de carbono (que poderá subsidiar um futuro enquadramento no Mecanismo de

Desenvolvimento Limpo) e dióxido de enxofre. Este processo é estudado de forma a consumir o mínimo de energia e utilizar os efluentes da maneira mais eficiente possível em equipamentos de alto rendimento, baixo consumo energético e baixo custo de investimento. REBRIK et al. (2008, apud PANOV *et al*, 2012) do instituto Vami na Rússia, onde foi criado o processo de produção de alumina a partir nefelina com aproveitamento total dos rejeitos, destaca a necessidade de projetos piloto para desenvolver a base tecnológica do reaproveitamento do resíduo de bauxita em conjunto pelos fabricantes de alumina.

A redução da alcalinidade do resíduo de bauxita através da reação com os efluentes gasosos é uma oportunidade para redução do impacto ambiental do processo Bayer além de criar condições muito mais favoráveis para o reaproveitamento do resíduo de bauxita em outros processos industriais através da redução de sua reatividade. A redução da alcalinidade também melhora as características de empilhamento, compactação, geração de poeira bem como tem influência positiva na preservação da vedação das camadas de argila utilizadas como parte do sistema de vedação dos reservatórios. Neste ponto a economia e a ecologia apontam na mesma direção. Por esta razão buscamos viabilizar o uso dos efluentes do modo como são produzidos, evitando assim o uso de altas temperaturas ou processos de separação de gases que envolvem grandes quantidades de energia que multiplicadas pelos imensos volumes envolvidos, tornam inviável a aplicação prática e aumentam o impacto ambiental.

A fim de ilustrar a importância deste ponto de vista, vale a pena conhecer o resumo desta patente: "O resíduo vermelho que contém ferro, que ocorre após a digestão decanta bem e, com suficiente prática, pode ser filtrado e lavado. Devido ao seu alto teor de ferro e baixo teor de óxido de alumínio, pode ser tratado de um modo adequado, ou misturado com outros minérios de ferro ser reduzido para ferro". (patente de KARL JOSEPH BAYER, 1887). Ou seja, este é um problema que existe há 126 anos e não deixou de ser resolvido por falta de alternativas tecnológicas e sim por falta de vontade política e viabilidade econômica.

Em função das razões expostas, foram estabelecidos os objetivos:

 Avaliar de maneira continuada as opções tecnológicas para efetuar a reação entre os gases de exaustão de uma refinaria de alumina e o resíduo de bauxita de modo a reduzir a reatividade do resíduo e capturar parte do CO₂ e SO₂ emitidos. Minimizar o consumo energético da operação. Realizar um teste em escala piloto, incluindo o projeto e a construção de três reatores, que forneça subsídios para uma operação em maior escala.

Foi projetado um laboratório piloto para reação de RB e gás de combustão, produzido a partir da queima de combustíveis fósseis. Foram selecionados e adquiridos equipamentos de análise de gases de modo a medir diretamente as vazões e concentrações de CO₂, SO₂, O₂. Após o planejamento do experimento, foram realizados vinte e cinco experimentos com duração de até nove horas. Os dados coletados foram inseridos em planilhas, com o cálculo do balanço de CO₂ absorvido em cada experimento. As amostras do RB reagido foram monitoradas periodicamente em diferentes condições de modo a verificar o comportamento de longo prazo do pH, sua estabilidade, e subsidiar uma futura avaliação do processo sob a ótica do Mecanismo de Desenvolvimento Limpo.

1.2 - ORGANIZAÇÃO DO TRABALHO

No presente capítulo mostrou-se as razões e objetivos que nos levaram ao estudo do tratamento dos resíduos do processo de refino da bauxita. Procuramos também apresentar os diversos aspectos que podem influenciar a redução do impacto ambiental do processo como um todo incluindo a visão do aspecto dos gases do efeito estufa.

O Capítulo 2 apresenta uma revisão da literatura com o histórico do processo Bayer. Em seguida apresentamos o resíduo de bauxita e sua caracterização bem como estado da arte em melhoramento e alternativas de emprego como matéria prima em outros processos industriais. Abordamos também as tecnologias de armazenamento dos resíduos e monitoramento dos depósitos antigos e atuais. Na sequência temos os mecanismos de absorção gás-líquido e sua utilização no sequestro de carbono. A alcalinidade do resíduo e sua química associada é abordada e finalmente a redução desta alcalinidade através da reação com gás de combustão com concomitante sequestro de carbono e dióxido de enxofre.

No Capítulo 3 são apresentados os equipamentos projetados e adquiridos bem como as metodologias utilizadas e o planejamento experimental para realizar a reação entre o resíduo de bauxita e o gás de combustão.

As análises dos resultados e suas discussões são apresentadas no Capítulo 4 incluindo a avaliação estatística e a influência das diversas variáveis estudadas.

As conclusões são apresentadas no Capítulo 5 bem como as sugestões para trabalhos futuros.

CAPÍTULO 2

REVISÃO BIBLIOGRÁFICA

2.1 – PROCESSO BAYER PARA PRODUÇÃO DE ALUMINA

Dos 250 minerais conhecidos que contém alumínio, são considerados minérios de alumínio os bauxitos, as argilas cauliníticas, a nefelina, o anortósito e a alunita. Destes o minério mais utilizado é o bauxito (também conhecido como bauxita).

O processo Bayer leva este nome por ter sido desenvolvido pelo químico austríaco Karl Joseph Bayer entre 1886 e 1892. Anteriormente a alumina era produzida pelo método de Saint-Claire Deville, também conhecido como processo Le Chatelier. Por esse método, a bauxita era submetida à sinterização a 1000°C depois de misturada com carbonato de sódio, produzindo-se um clínquer contendo aluminato de sódio. Pela lixiviação do clínquer, o aluminato passava à solução, de onde se precipitava a alumina hidratada por injeção de CO₂. A produção em média era de 1000 t/ano.

Em 1888, Bayer patenteou o seu processo de precipitação, usando nucleação de alumina hidratada para provocar a formação de mais hidrato. Isto melhorou sua cristalinidade e pureza, tornando o produto mais facilmente lavável e filtrável. Em 1892, ele requereu uma segunda patente abrangendo o tratamento de bauxita por solução de soda cáustica sob pressão para obter uma solução de aluminato de sódio. Isto possibilitou a eliminação da etapa de sinterização e a reutilização do licor pobre, obtido após a precipitação da alumina tri-hidratada também chamada hidrato, para um novo ciclo de digestão de bauxita diminuindo o consumo de soda cáustica.

O processamento das bauxitas gibsíticas, mais comuns no Brasil, se inicia com a britagem e lavagem da bauxita em processo que ocorre no local de mineração. O processo Bayer começa com a moagem em moinho de bolas a úmido. A carga do moinho contém bauxita, solução nova de hidróxido de sódio e licor pobre recirculado da cristalização de alumina tri-hidratada. Frequentemente cal virgem é adicionada para aumentar a alcalinidade por decomposição do carbonato de sódio porventura presente. A mistura de bauxita moída (diâmetro entre 0,06mm e 0,80mm) e solução de hidróxido de sódio é

submetida a temperatura entre 105°C e 170°C e pressão de 1 a 7 atmosferas para dissolver a gibsita formando o aluminato de sódio segundo a reação reversível abaixo.

Al (OH)₃ (s)+ NaOH(aq)
$$\longrightarrow$$
 NaAlO₂ (l)+ 2H₂O(l) (2.1)

O processo de fabricação da alumina evoluiu no tempo conforme ilustram os fluxogramas na Figura 2.1.

Figura 2.1: Fluxograma dos processos históricos de fabricação de alumina. Fonte: FRANÇA *et al.* (2007) com modificações.

A digestão ou dissolução da gibsita é feita em autoclaves capazes de suportar temperaturas de 105 a 170°C, com agitação produzida por vapor de água injetado sob pressão de 1 a 7 atmosferas. Pressão e temperatura variam conforme a Tabela 2.1 abaixo.

TABELA 2.1 – Diferenças no tratamento entre diversos tipos de bauxitas no processo Bayer. Fonte: SANTOS (1989) com modificações.

Variáveis	Bauxitos	Bauxitos gibsíticos
	boemíticos e diaspóricos	
Temperatura (°C)	205 - 250	105 - 170
Pressão (atm)	15 – 35	1 - 7
Tempo de digestão (h)	2,0-2,5	1

De acordo com FRANÇA *et al.* (2007), a precipitação de gibsita da solução saturada quente do aluminato é feita pela nucleação, com cristais alumina hidratada. Adiciona-se uma quantidade de hidrato com peso variando de 25% a 100% da alumina dissolvida como aluminato. Nucleando a solução saturada e diminuindo a temperatura de 105-170°C para 40°C, o excesso de alumina dissolvida como aluminato de sódio se cristaliza como alumina tri-hidratada também chamada hidrato, restando na solução aluminato não hidrolisado e hidróxido de sódio, que são reciclados ao moinho de bauxita. O hidrato cristalizado é separado em duas frações: a grossa, que é utilizado na calcinação para produzir alumina, e a fração fina, que é usada para nuclear a precipitação de nova solução de aluminato de sódio.

A fração grossa de hidrato é calcinada em fornos aquecidos a gás ou óleo combustível em temperaturas de 950°C a 1200°C para produzir alumina. (SANTOS, 1989).

Na Figura 2.2, temos uma micrografia da bauxita produzida em Paragominas-PA, onde são identificadas a caulinita (Al₂O₃.2SiO₂.2H₂O), a gibsita (Al(OH)₃) e o quartzo (SiO₂). O objetivo do processo Bayer é a separação da gibsita dos demais.

Figura 2.2 – (a) Micrografia da bauxita de Paragominas (b) Mapeamento da micrografia. Fonte: FRANÇA *et al.* (2007).

2.2 – ETAPAS DO PROCESSO BAYER

O processo Bayer pode ser dividido em duas grandes etapas conforme mostra a Tabela 2.2.

ETAPA VERMELHA Extrai a gibsita da bauxita e separa o RB	ETAPA BRANCA Separa a alumina hidratada e remove a água
Moagem da bauxita	Precipitação da alumina hidratada
Digestão – dissolução da gibsita em soda cáustica	Filtração a vácuo
Decantação e lavagem do RB	Calcinação da alumina
Filtração	

Tabela 2.2 – Etapas do processo Bayer atual

2.3 - ETAPA VERMELHA

2.3.1 – Moagem

Compreende as operações de redução de tamanho de partículas e mistura com solução de soda cáustica formando a polpa, conforme podemos ver na Figura 2.3. O objetivo é manter sob controle a granulometria, a vazão e a percentagem de sólidos ideais para extrair a alumina durante a digestão. A polpa da bauxita gerada na moagem é bombeada para um tanque pulmão de onde é transferida para a digestão.

Figura 2.3 – Moagem da Bauxita. Fonte: Alunorte (2008).

2.3.2 – Digestão

Na digestão vista na Figura 2.4 abaixo, a gibsita contida na bauxita é dissolvida pela solução de soda cáustica formando aluminato de sódio (NaAlO₂), enquanto as impurezas que constituem o RB permanecem insolúveis.

Figura 2.4 – Digestores. Fonte: Alunorte (2008).

2.3.3 - Decantação e Lavagem do RB

A separação da solução contendo aluminato de sódio do RB, através da decantação acelerada por floculantes sintéticos, poliacrilatos e ou poliamidas em um equipamento chamado espessador cujo desenho esquemático é mostrado na Figura 2.5. Uma vez decantada, o RB e bombeado para uma série de cinco lavadores em contra corrente com água adicionada no quinto estágio de lavagem. O objetivo é retirar o máximo possível da soda cáustica presente no RB.

Figura 2.5 – Desenho esquemático da patente de espessador de última geração pertencente a empresa Rio Tinto. Fonte: PELOQUIN *et al.*, patente US7,473,376 (2009).

2.3.4 – Filtração

Consiste na separação de partículas sólidas de uma suspensão líquida mediante o escoamento desta suspensão em um meio poroso estacionário, denominado de meio filtrante. Neste processo, o sólido permanece retido sobre este meio e forma um depósito que se denomina torta de filtração cuja espessura cresce e se deforma continuamente e passa a desempenhar um papel fundamental no decorrer da operação de separação. A fase fluida que atravessa o meio poroso é denominada de filtrado.

A filtração tem como objetivo reter as partículas de RB e o filtro da empresa Alunorte pode ser visto na Figura 2.6. A solução de aluminato de sódio, produto da divisão vermelha, sai com cerca de 10mg/L de sólidos em suspensão para a etapa branca.

Figura 2.6 – Filtros de RB. Fonte: Alunorte (2008).

2.4 – ETAPA BRANCA

2.4.1 – Precipitação

A solução de aluminato de sódio, formada na digestão, é despressurizada e resfriada de modo a permitir a precipitação do produto do processo Bayer nesta etapa: a alumina tri-hidratada Al(OH)₃. A redução da temperatura acentua o grau de supersaturação. A adição da fração fina de alumina hidratada produzida previamente (chamada de semente) nucleia o processo de aglomeração.

Parte da solução contendo a alumina tri-hidratada (30%) é bombeada para precipitadores aglomeradores que recebem uma descarga de semente fina. Estes, em condições adequadas de temperatura, agitação e tempo de residência, irão promover o mecanismo de aglomeração das partículas. A Figura 2.7 mostra o conjunto de precipitadores utilizados no processo da Alunorte.

Figura 2.7 – Precipitadores. Fonte: Alunorte (2008).

2.4.2 - Filtração a Vácuo

O objetivo nesta etapa é remover o máximo de soda da alumina hidratada, reduzindo assim, a perda do circuito. O licor filtrado entra em um tanque de expansão sofrendo uma queda de pressão que provoca a evaporação de parte da água com a diminuição da temperatura. Na Figura 2.8 são mostrados os filtros a vácuo.

Figura 2.8 - Filtradores à Vácuo. Fonte: Alunorte (2008).

2.4.3 – Calcinação

É o processo que promove a eliminação da água de cristalização da partícula de alumina tri-hidratada (também chamada hidrato), de modo a se obter uma superfície específica pré-determinada.

Após a filtração, o hidrato passa por secadores tipo venturi onde, em contato com gases quentes, sofrerá uma secagem com a remoção da umidade de sua superfície. Em seguida é levado aos calcinadores. Estes são alimentados através da queima do óleo combustível ou gás natural mantendo temperaturas entre 900°C a 1100°C. Neste processo há a transformação térmica dos cristais. Na Figura 2.9 são mostrados os calcinadores utilizados pela Alunorte que utilizam óleo combustível.

Após a calcinação, a alumina passa por um resfriador de leito fluidizado até atingir uma temperatura que permita seu transporte aos silos de estocagem, sem causar danos às correias transportadoras.

Figura 2.9 – Calcinadores. Fonte: Alunorte (2008).

2.5 – RESÍDUO DE BAUXITA

2.5.1 - Geração e Composição

Resíduo de bauxita (RB) é o subproduto gerado durante o refino da bauxita usando o processo Bayer para produção de alumina. Também é referido na literatura
como lama vermelha, rejeito do processo Bayer, ou rejeitos do processamento de bauxita.

A produção total de resíduo de bauxita alcançou um bilhão de toneladas (1 Bt) em 1985, 93 anos após a primeira planta da Bayer ser criada. Levou apenas 15 anos para dobrar, e provavelmente vai dobrar novamente para 4 Bt por volta de 2015 (GRÄFE, *et al.*, 2009). Em 2011 cerca de 120 Mt de RB foram produzidos. Isto faz do RB um dos maiores subprodutos industriais não reciclados da sociedade moderna (EVANS, 2012). Dado que quase todo este material é armazenado em terra, estes números destacam a importância do armazenamento sustentável e do aumento da reutilização.

O RB apesar de não ser particularmente tóxico, apresenta riscos ao meio ambiente devido ao grande volume e a sua reatividade. É classificado como resíduo classe 2 no Brasil (resíduo não inerte) não sendo também classificado como resíduo perigoso pela agência de proteção ambiental dos Estado Unidos (EPA).

A composição do RB consiste de um conjunto de substâncias herdadas da composição da bauxita que o gerou acrescidos do que foi adicionado ou modificado durante o processo Bayer. Nesta tese trataremos os componentes do RB ou modificados durante o processo como Sólidos Característicos do Processo Bayer (SCPB). COSTA *et al.*(2012), mostraram que o processamento de bauxitas gibsíticas, com alto teor de alumina, provenientes da Amazônia geram um fator de enriquecimento dos elementos em torno de 3. Mostra também que a composição do RB e sua mineralogia são matematicamente previsíveis. PARANGURU *et al* (2005) mostraram que as propriedades químicas e físicas do RB dependem primariamente da bauxita utilizada e numa menor extensão do modo como ela é refinada pelo processo Bayer. Identifica ainda os seguintes parâmetros para o manuseio, disposição e reutilização: Umidade, reologia, área superficial, tamanho de partícula, mineralogia, conteúdo de metais valiosos, conteúdo de terras raras e presença de substâncias tóxicas.

De acordo com trabalhos publicados por PHILIPSBORN (1992); SOMLAI *et al.* (2008), alguns RB podem emitir radiações ionizantes acima das taxas de fundo naturais devido à presença de Materiais Radioativos de Ocorrência Natural (MRON): ²³⁸U e ou ²³²Th e membros de suas cadeias de decaimento. Uma vez que a composição do RB é previsível, é necessário, portanto monitorar a composição da bauxita utilizada com relação ao nível de MRON. Conforme GOLDSTEIN e REIMERS (1999), traços de metais pesados podem ser motivo de preocupação e podem exceder os níveis de regulação em certas circunstâncias.

Na Figura 2.10, vemos o fluxograma do processo industrial de produção de RB em uma refinaria de bauxita moderna.

Figura 2.10 - Fluxograma de formação do RB indicando locais de entrada de NaOH, Ca(OH)₂ e floculante. As setas cinza indicam a direção da água de lavagem em contracorrente do fluxo de RB. Adotado com modificações a partir de WHITTINGTON (1996).

2.5.2 - Complementos ao Processo Bayer que Afetam a Composição do RB

Em função de a caolinita ser solúvel em NaOH, dependendo de seu teor na bauxita, é necessária sua remoção. O processo de desilicação provoca perdas de Na⁺ e Al³⁺, devido a formação de silicatos de sódio alumínio como a sodalita. Cal hidratada (Ca(OH)₂) é adicionada antes do processo de digestão, gerando cancrinita em vez de uma

parte da sodalita. Sodalita e cancrinita são eliminados junto com o RB e geram parte significativa da sua capacidade de neutralização ácida.

Alguns aditivos têm finalidades específicas para o processo como minimizar a contaminação do licor verde por ferro solúvel e ferro coloidal com adição de MgSO₄ (POHLAND *et al*, 1985), contaminação de fosfato com adição de apatita $Ca_{10}(PO_4)_6(OH)_2$ (ROACH *et al.*, 2001) além da remoção de carbonatos, orgânicos incluído oxalato. Os sólidos provenientes destas reações, por exemplo, calcita, CaCO₃, aluminato de tricálcio (Ca₃Al₂(OH)₁₂), whewelita (CaC₂O₄.H₂O), e ou apatita $Ca_{10}(PO_4)_6(OH)_2$ se tornam parte do resíduo (POWER *et al.*, 2009).

Após a digestão da bauxita, a solução de aluminato de sódio (NaAl(OH)₄) também conhecida como licor verde, é separada do RB. O processo de separação iniciase em espessadores pressurizados com o auxílio de floculantes. Em seguida o RB é lavado sequencialmente em tanques de decantação em contracorrente. Na lavagem recuperase NaOH e Al(OH)⁴⁻, que são devolvidos ao processo Bayer. Floculantes, contendo poliacrilatos e ou poliamidas são utilizados para acelerar a separação líquido/sólido. No passo de lavagem final, o RB é espessado até formar uma pasta com uma determinada concentração de sólidos e enviado para a área de armazenamento.

2.5.3 - Olhando o RB sob Diferentes Perspectivas.

Podemos olhar o RB médio de duas diferentes perspectivas:

A primeira é o ponto de vista "metalúrgico" mostrado na Figura 2.11. Uma mistura de óxidos metálicos e outros compostos que resultariam após o aquecimento acima de 1000 ° C. A perda ao fogo (PF) decorre do carbono orgânico, inorgânico e água ligados quimicamente aos minerais. Este é uma análise obtida por fluorescência de raios X (FRX). Este ponto de vista aponta para processos piro e hidro metalúrgicos de separação dos metais a partir do RB.

A segunda é o ponto de vista "mineralógico" mostrado na Figura 2.12. Uma mistura de minerais em várias classes. Esta é uma análise obtida por difração de raios X (DRX) para os componentes cristalinos. Este ponto de vista aponta para como modificar a mistura de componentes químicos, físicos e mineralógicos do RB de modo a aproveitar as suas propriedades.

A Tabela 2.3 mostra mais detalhes de cada composto e suas quantidades.

Elemento(n)	Min	Conteudo Média ± desvio padrão	Max	Minerais	Fórmula de célula unitária
()		F		Hematita	α-Fe ₂ O ₃
Fe ₂ O ₃ (63)	6,8	40,9±15,6	71,9	Goetita	α-FeOOH
				Magnetita	Fe_3O_4
				Boemita	γ - AlOOH
Al ₂ O ₃ (62)	2,12	16,3±6,4	33,1	Gibsita	γ - Al(OH) ₃
				Diásporo	α - AlOOH
				Sodalita	$Na_6[Al_6Si_6O_{24}].[2NaOH,Na_2SO_4]^d$
SiO ₂ (63)	0,6	9,6±6,7	23,8	Cancrinita	$Na_{6}[Al_{6}Si_{6}O_{24}].2[CaCO_{3}].0[H_{2}O]^{e}$
				Quartzo	SiO_2
				outros	illita, muscovita
				Rutilo	TiO ₂
TiO ₂ (61)	2,5	8,8±4,4	22,6	Anastásio	TiO ₂
				Perovsquita	CaTi ^{IV} O ₃
				Ilmenita	${\rm Ti}^{\rm IV}{\rm Fe}^{\rm II}{\rm O}_3$
				Calcita	CaCO ₃
				Perovsquita	CaTi ^{IV} O ₃
CaO(76)	0,6	8,6±9,4	47,2	Whewellita	$CaC_2O_4{}^g$
				ATC	$Ca_3Al_2(OH)_{12}$
				Hidrocalumita	$Ca_3Al_2(OH)_{12}.CO_3.6H_2O^h$
				Sodalita	$Na_6[Al_6Si_6O_{24}].[2NaOH,Na_2SO_4]^a$
Na ₂ O(78)	0,1	4,5±3,3	12,4	Cancrinita	$Na_{6}[Al_{6}Si_{6}O_{24}].2[CaCO_{3}].0[H_{2}O]^{b}$
				Dawsonita	NaAl(OH) ₂ CO ₃
PF(46)	4,4	10,0±2,8	21,1		

Tabela 2.3 – Composição química e mineralógica de resíduos de bauxita. Fonte: <u>GRÄFE et al. (2009).</u> **Conteúdo**

n= número de amostras

Figura 2.11 – Visão metalúrgica da composição do RB. Fonte GRÄFE et al. (2009)

Figura 2.12 – Visão mineralógica da composição do RB. Fonte GRÄFE et al. (2009)

2.5.4 – Caracterização do RB

2.5.4.1 - Composição Química do RB

A Tabela 2.4 mostra diversas análises por fluorescência de raios X em diferentes amostras do RB da Alunorte. Na segunda coluna dados obtidos por MAGALHÃES (2012) Os dados da terceira coluna foram obtidos por SOUZA, 2010, os dados da quarta coluna foram obtidos por MAGALHÃES (2008). Na quinta coluna o resultado provém de HILDEBRANDO *et al.* (1999).

O resultado nos mostra que dos constituintes presentes na RB, a sílica, a alumina e o ferro são os que apresentam os maiores teores, sendo este último o constituinte majoritário. Também se observa que a RB apresenta alto teor de sódio.

Constituintes de DD	1	2	3	4
	% - p	% - p	% - p	% - p
Fe ₂ O ₃	29, 54	39,00	34,9	38,00
SiO ₂	17, 24	17,89	18,3	19,90
CaO	1, 08	0,91	1,32	0,87
Al ₂ O ₃	22, 54	18,00	22,6	19,00
TiO ₂	4,56	4,56	5,56	3,80
Na ₂ O	12, 51	9,97	9,31	8,50
V_2O_5	0,28	0,13	0,28	0,28
MgO	0, 15	-	0,04	0,04
K ₂ O	0, 03	0,18	0,13	0,12
PF (Perda ao Fogo)	12,07	9,36	7,56	9,49

Tabela 2.4 - Composição química de diferentes amostras de RB da Alunorte por FRX. Fontes: MAGALHÃES (2008, 2012), SOUZA (2010), HILDEBRANDO *et al.* (1999).

Os elementos químicos V, Ga, P, Mn, Zn, Zr, Th, Cr e Nb estão presentes como traços.

1 - MAGALHÃES, 2012; 2- SOUZA, 2010; 3 - MAGALHÃES, 2008; 4 - HILDEBRANDO, 1999.

2.5.4.2 - Descrição Mineralógica do RB

RB é uma mistura sólido-líquido. O teor de sólidos varia de 20 a 80 %-p, dependendo do método de espessamento da refinaria. A parte sólida do RB tem uma média de cerca de 70%-p de fases cristalinas e 30%-p de materiais amorfos (Apêndice I.1). Hematita está presente em todos RB numa faixa de concentração de 7% a

29%. Goetita é prevalente em alguns. Magnetita está presente em RB proveniente de bauxitas ricas em boehmita ou diásporo que necessitam sinterização com soda para possibilitar a extração dos compostos de alumínio. Boehmita, gibsita, anatásio, rutilo, ilmenita, perovsquita, e SiO₂ são os outros minerais normalmente presentes no resíduo de bauxita. De acordo com CASTALDI *et al.* (2008) a análise por difração de raios X mostra a presença de oito fases diferentes. Entretanto apenas três correspondem a 78% (cancrinita 33%-p, hematita 29%-p e sodalita 16%-p). De acordo com COSTA *et al.*(2012), a composição do RB é dominado por Fe₂O₃, Al₂O₃, SiO₂ e Na₂O que juntos correspondem a cerca de 80% do peso total. As duas afirmações não são incompatíveis uma vez que a Sodalita é composta de Al, Si e Na.

Os sólidos característicos do processo Bayer (SCPBs), formados durante o processamento, contêm minerais incluindo sodalita, cancrinita, silicatos de cálcio hidratados, aluminatos de tricálcio, hidrocalumitas, calcita / aragonita e carbonatos de sódio (GRÄFE et al., 2009)). Sodalita é o produto mais comum formando durante o processo de remoção de sílica, enquanto cancrinita pode formar-se na presenca de Ca. Concentrações de sodalita de 16-24% (CASTALDI et al., 2008) medida em RB da Eurallumina (Itália), que processa bauxita Weipa. Na China, onde as bauxitas processadas contém um teor substancial de Si, 90% das refinarias usam um processo de calcinação ou mais frequentemente uma combinação de calcinação com cal ou carbonato de sódio seguido do processo Bayer (LIU et al., 2006). Este processo gera um RB com mais de 50% de perovsquita (CaTiO₃) e calcita / aragonita (CaCO₃ ambos). Em RB de diversas procedências, silicatos de cálcio hidratados, aluminatos de tricálcio e hidrocalumitas se formam em decorrência da adição de cal hidratada durante a digestão e causticização.

A composição química e mineralógica do RB comparado com a bauxita mostram que o Fe, Ti e Si têm um fator de concentração que depende do teor de Al extraído da bauxita. Bauxitas com alto teor de Al tem um fator de concentração maior. Minerais como caulinita foram convertidos em sodalita e cancrinita, no processo de desilicação. Na é um componente substancial do RB, porque é adicionado durante o processo de Bayer. Já a quantidade de Ca varia dependendo da qualidade da bauxita e do seu teor de sílica A adição de cal hidratada durante a pré-desilicação, digestão e filtração provoca a formação de minerais contendo Ca (calcita, aluminato de tricálcio, cancrinita, hidrocalumita e perovsquita) que se incorporam ao RB.

2.5.4.3 - Características Físicas do RB

A distribuição de tamanho de partículas e consequentemente a área superficial específica influenciam as taxas de reações de dissolução. A densidade aparente tem relação com a condutividade hidráulica. Algumas características físicas são mostradas na Tabela 2.5. O tamanho de partícula do resíduo de bauxita depende da bauxita de origem e do processo de moagem de cada refinaria. De acordo com PARANGURU et al. (2005), RB tem um tamanho médio de partícula <10 com poucas partículas > 20 µm. RIVAS MERCURY, 2008 reportou 90% < 100 µm no RB da Alumar em São Luis. ROACH et al. (2001), reportaram um tamanho médio de partícula variando de 2 a 100 µm. Fica portanto em média na classe de textura entre o silte e a areia fina.

A densidade aparente média do RB é relatada como 2.5 ± 0.7 g cm⁻³. A Área Superficial Específica (ASE) média do resíduo de bauxita é $32.7 \pm 12.2 \text{ m}^2 \text{ g}^{-1}$.

Tabela 2.5 – Características físicas de RB. Fonte: GRAFE <i>et al.</i> (2009) com adaptações.						
	Média	Desvio	Max.	Min.	n ° de	
		padrão			amostras	
Densidade aparente [g/cm ³]	2,5	0,7	3,5	1,6	13	
Área superficial específica [m ² /g]	32,7	12,2	58,0	15,0	30	

2.5.4.4 - Características Físico-Químicas do RB

2.5.4.4.1 - pH: A Variável Mais Importante

De acordo com EVANS et al.(2012), a alta alcalinidade da maior parte do resíduo de bauxita estocado nas fábricas existentes e na continuidade do fluxo de RB para armazenamento é a principal barreira para a remediação, a reutilização e a sustentabilidade de longo prazo do gerenciamento de BR. De acordo com SUCHITA et al. (2012), a neutralização do RB vai ajudar a reduzir o impacto ambiental causado pelo armazenamento e reduzir significativamente o esforço de gerenciamento dos depósitos depois de fechados. Também abrirá oportunidades de reutilização que foram impedidas devido ao alto pH. A necessidade de redução da alcalinidade do RB é também uma das

prioridades definidas pelo trabalho de GRÄFE *et al.* em 2009 que faz parte da Parceria Ásia Pacífico pelo Desenvolvimento Limpo e Clima. Esta parceria une os governos de Austrália, Canadá, China, Índia, Japão, Coréia e Estados Unidos. A alcalinidade tem profundas implicações em todos os aspectos do RB incluindo os requisitos de armazenagem e o uso como matéria prima.

De acordo com GRÄFE *et al.*, (2009), o pH em soluções do RB é de 11,3 \pm 1,0 e varia entre 9,7 e 12,85. Os ânions alcalinos em solução de resíduo de bauxita são OH⁻, CO₃²⁻/HCO₃⁻, Al(OH)₄⁻/Al (OH)₃ (aq) e H₂SiO₄²⁻/H₃SiO₄⁻. THORNBER *et al.* (1999) lavaram sequencialmente RB com água e mostraram que a liberação de Na⁺, Al (OH)₄⁻ , CO₃²⁻ e OH⁻ estava relacionada com a alcalinidade total da solução extraída após a lavagem. Estes íons eram liberados a partir de SCPB e PDPRS e com a continuidade das sucessivas lavagens o peso dos sólidos foi diminuindo, mas o pH e a concentração de íons ficaram inalterados na solução. Desta forma o pH da solução de RB foi estabilizado alcalino pelos sólidos, e só se alterou quando estes sólidos foram totalmente dissolvidos.

Levando-se em conta haver uma quase unanimidade entre os principais estudiosos do assunto que a alcalinidade está concentrada na parte sólida do RB, o monitoramento do comportamento do pH de estabilização ao longo do tempo é a forma mais precisa de medir a evolução da reatividade do RB.

2.5.4.4.2 - Capacidade de Neutralização Ácida (CNA)

A capacidade de neutralização ácida (CNA) mede a quantidade de ácido mineral que é necessário para alcançar um valor de pH específico. CARTER *et al.* (2008), mostraram que estas curvas variam de uma refinaria para outra, como podemos ver na Figura 2.13 onde são mostradas as curvas do RB de nove diferentes refinarias da Austrália. O CNA para pH 7 variou de 1 a 3,5 mol H^+ kg⁻¹

Figura 2.13 - Curvas de capacidade de neutralização ácida do RB de nove diferentes refinarias da Austrália. Fonte: CARTER, C., VAN DER SLOOT, H. *et al.* (2008).

Pontos de inflexão nas curvas de CNA indicam que a dissolução de um mineral se completa e uma nova fase assume o papel de estabilização. LIU *et al.* (2006), utilizando RB proveniente de um processo combinado de calcinação seguido de Bayer, após vários experimentos com adição de alíquotas em intervalos mais curtos, obteve um CNA para pH 5,5 de 10 mol H⁺ kg⁻¹, adicionando cada alíquota de ácido com um intervalo de dois dias. O experimento foi terminado após 780 dias. THORNBER *et al.* (1986) mostraram que quando o intervalo de adição das alíquotas variou de minuto a cinco dias a variação no pH aumentou significativamente. Desta forma, a curva de CNA foi dependente do tempo de equilíbrio. Mostraram também que quando não são limitadas pela difusão a reação do líquido foi instantânea, enquanto que as reações de neutralização dos sólidos obedeceram as taxas de dissolução dos sólidos.

Fica claro, portanto, que o processo de neutralização dos RB é bastante complexo, controlado por múltiplos sólidos, por diversas reações que interagem e são dependentes da velocidade de adição de ácido. As curvas de CNA do RB são bastante diferentes das de minerais puros.

2.6 – OPÇOES DE USO DO RESÍDUO

2.6.1 - Histórico

O processo patenteado por Bayer em 1892 representou um grande progresso no processamento de minério de alumínio permitindo a extração de alumina a partir da bauxita em grande escala e baixo custo. O hoje chamado "processo Bayer", tornou-se a base da indústria do alumina que desde então tem crescido exponencialmente.

O próprio Bayer observou que o seu processo produzia quantidades significativas de resíduos que poderiam ser utilizados para a produção de ferro: "O resíduo vermelho que contém ferro, que ocorre após a digestão decanta bem e, com suficiente prática, pode ser filtrado e lavado. Devido ao seu alto teor de ferro e baixo teor de óxido de alumínio, pode ser tratado de um modo adequado, ou misturado com outros minérios de ferro ser reduzido para ferro " (patente registrada por KARL JOSEPH BAYER, 1887).

Ou seja, este é um problema que existe há 126 anos, foi testado por um sem número de cientistas e não deixou de ser resolvido por falta de alternativas tecnológicas e sim por falta de vontade política e viabilidade econômica.

O procedimento seguido foi sempre lidar com o RB da forma mais barata e conveniente quanto possível para o local. Até 1980, a destinação da indústria era principalmente pela criação de lagos de lama vermelha, Uma parte menor era eliminada pela descarga marítima ou em rios.

Durante a Segunda Guerra Mundial RB foi usado nos EUA como matéria prima para obter alumina em função das dificuldades do tráfego marítimo para aquisição de bauxita. Após o fim da guerra os processos de sinterização foram abandonados. Em 1966, o Ministério de Minas dos EUA (USBM) iniciou um programa de investigação "para determinar as utilizações possíveis de lama vermelha... desenvolver métodos para utilizar diretamente ou para recuperar valores minerais a partir de lama vermelha... RB apresenta um problema de armazenamento onde acumulado em lagoas de lama e um problema de poluição onde lançado nos rios" (FURSMAN, 1970). Apesar de ter identificado diversos usos como fonte de metais, aditivo em materiais de construção e agricultura, gerado um conjunto de patentes, vasta literatura acadêmica, do ponto de vista prático nenhuma reciclagem foi iniciada. Por outro lado o exame das patentes relacionadas ao RB nas últimas décadas nos fornece uma fotografia bastante interessante do andamento das pesquisas ao redor do mundo como podemos ver na Figura 2.14.

Figura 2.14 – Distribuição por categoria do total de 734 patentes de 1964 a 2008. Fonte: KLAUBER, 2009.

De acordo com POWER *et al.*, (2009), o estoque global de resíduo de bauxita tem continuado a aumentar em proporção direta com a produção de alumina, de modo que a quantidade total de resíduo de bauxita armazenado em terra em 2008 era estimado em mais de 2,7 bilhões toneladas (Figura 2.15).

Figura 2.15 – Produção anual de RB e total acumulado. Fonte: POWER et al., 2009.

Por outro lado, uma tecnologia para a produção de alumina livre de resíduos foi implementada em escala industrial na URSS desde 1952, quando o método para a sinterização nefelina com calcário, para a produção de alumina, soda, materiais de potássio, cimento, materiais de construção e gálio foi desenvolvido (SMIRNOV, 1996). Atualmente, a tecnologia é utilizada em Pikalevo e refinarias de alumina em Átchinsk. "O alto custo de produção do produto básico, alumina, é mais do que compensada pela produção dos subprodutos. De fato, o uso complexo de recursos garante produção de alumina de nefelina com menor custo do que o processamento da bauxita pelo processo Bayer" (TIKHONOV et al., 2010). Tecnologia para produção de cimento Portland com resíduo de nefelina como um componente mistura crua foi implementado nas plantas de cimento próximas às refinarias de Pikalevo e Átchinsk. Atualmente investigações estão em progresso para a utilização de resíduo de belita como um aditivo mineral ativo em outras fábricas de cimento (até 20% de lama pode ser adicionado ao clínquer após a moagem) e como um material de carga ativo em argamassas de construção secas (até a 15% da massa), com resultados mostrando novas perspectivas nessa direção. Desenvolvimentos similares ocorreram na China, onde o governo estabeleceu uma meta de reciclagem de 20% do RB já em 2015 e RB é usado nestas e outras aplicações, com crescente sucesso industrial (LIU et al., 2006). Deve-se destacar que 80% das refinarias da China usam um processo misto em que a sinterização com calcário ou carbonato de sódio precede o processo Bayer gerando um resíduo de diferente composição, mais rico em Ca e com maior CNA (LIU et al., 2006).

Alguns autores ressaltam a necessidade de iniciar a avaliação dos projetos de reutilização de RB com uma análise técnico econômica global. Nossa opinião, entretanto é que a avaliação deve ser muito mais abrangente. A cada ano as legislações vão se tornando mais severas em relação aos rejeitos produzidos pelo homem. Por exemplo, diversos países da Europa e na América do Norte cobram taxas por tonelada armazenada em aterro de US\$60 a US\$100 por ano (PANOV *et al*, 2012). Esta é uma tendência que deve crescer em outros países. A China contribuiu com 78% da expansão de 55 Mt para 92 Mt da produção global de alumina nos últimos dez anos. Entretanto 80% das refinarias chinesas processam bauxitas de alta sílica e outras que exigem um processo de sinterização prévio que evidentemente tem um custo adicional considerável, já que os grandes depósitos de bauxita gibsítica estão disponíveis somente nas regiões tropicais e subtropicais. Outro aspecto a ser levado em conta na avaliação de processos de reciclagem é o aspecto energético e de geração de gases do efeito estufa, O uso de

processos intensivos em energia pode não fazer sentido nem do ponto de vista econômico nem do ambiental. Outro aspecto importante a ser analisado são melhorias no processo Bayer por exemplo na remoção de soda do RB, seja através de filtros hiperbáricos e ou espessadores de alto desempenho que tem ganhos econômicos pela redução da perda de soda cáustica e ao mesmo tempo reduzem a reatividade do RB facilitando a sua reutilização.

2.6.2 - Riscos da Reciclagem e do Armazenamento

Os principais riscos relacionados a reciclagem são três:

O primeiro é a alcalinidade do RB que precisa ser equacionado industrialmente de diversas maneiras. A lavagem do RB nas refinarias é feita com água o que é extremamente ineficiente (THORNBER,1999) para a recuperação da soda e portanto uma melhoria nesta área traria retorno financeiro pela redução da perda de soda. O processo de desaguamento do RB vem tendo avanços técnicos substanciais nas últimas décadas com o melhoria dos equipamentos de espessamento e filtragem e dos floculantes. Entretanto o consumo de energia ainda é muito alto (PARAMGURU, 2005) para atingir os níveis ideais de sólidos o que dificulta e aumenta o risco do transporte.

Já a presença de metais pesados e ou Material Radioativo de Ocorrência Natural (MRON), com exceção de alguns casos específicos como na Hungria (SOMLAI *et al.*, 2008) na imensa maioria dos casos não tem justificativa técnica já que os valores são muito pequenos embora pela própria natureza do risco necessita monitoramento constante (PHILIPSBORN, 1992). Entretanto há um componente de risco social que é a aceitação pela comunidade da opção de utilização. De acordo com a ONU (UNSCEAR, 2000) a exposição anual média humana a partir de fontes de fundo é de 2,0mSv. Entretanto dependendo da localização geográfica, a exposição local pode ser de 1 a 10 mSv.

Os riscos envolvidos no armazenamento envolvem o extravasamento da contenção do material através do rompimento dos diques ou a contaminação do lençol freático pela lixiviação. Além destes fatores há a poeira carreada pelo vento na superfície que afeta plantas e animais vizinhos.

Embora haja uma enorme quantidade de RB sendo armazenada globalmente, isso não significa que seja um problema similar a outros poluentes (gases do efeito estufa, CFCs, ou sacos de plástico, por exemplo). A distinção fundamental é que o RB não é espalhado de forma descontrolada, mas armazenado em depósitos que são geralmente controlados e sujeitos a regulação.

A redução da reatividade do RB reduz os riscos tanto para o armazenamento como para a reciclagem.

Apesar de haver mais de 1000 patentes e 3000 artigos técnicos abordando a utilização de RB globalmente, a falta de implementação, claramente mostra a necessidade de um critério para obter sucesso. De acordo com REBRIK *et al.* (2008, apud PANOV *et al*, 2012) do instituto Vami onde foi criado o processo de nefelina na Rússia, os critérios deverão ser:

- A possibilidade de processar todo o RB de pelo menos uma refinaria.
- Assegurar que a desempenho da refinaria e do consumidor de RB não está deteriorada.
- A tecnologia utilizada é provada em escala industrial.
- Há contratos de consumidores para todos os produtos gerados.
- Todas as licenças ambientais estão disponíveis.
- A necessidade de projetos piloto para desenvolver a base tecnológica em conjunto pelos fabricantes de alumina.
- A necessidade de projetos de demonstração para inspeção por grupos de pesquisa e autoridades.
- Desenvolvimento de pequenas aplicações com alto valor agregado ajudando a viabilizar as aplicações em larga escala.
- Implantação em etapas autossuficientes que gerem produtos comercializáveis.
- O consumidor deverá estar envolvido em todas as etapas, da pesquisa a industrialização. O fornecedor de RB deverá ser responsável pela continuidade do fornecimento. O interesse econômico do fornecedor pode ser prejudicial.
- Há necessidade do envolvimento das autoridades para financiamento de pesquisa, isenções de impostos, licenciamentos para produção e transporte e ajuda na formação da percepção da reciclagem como uma evolução tecnológica benéfica para todos.

De acordo com VENANCIO *et al.* (2010), uma das premissas para obter sucesso em processos de reciclagem de alta complexidade, é o estabelecimento de parcerias de longo prazo entre o produtor do resíduo, o potencial usuário, as autoridades regulatórias e instituições de pesquisa.

A alternativa é a afirmação de THAKUR *et al.* (1974), "Apesar da pesquisa prolongada e um número de patentes disponíveis, nenhuma grande indústria surgiu com base na utilização da lama vermelha", e "exceto para pequeno uso em cimento e estradas, lama vermelha quase não vem sendo utilizada ... como matéria-prima importante " continuar a ser tão verdadeira no futuro como há 38 anos.

2.6.3 – Aplicação de Mecanismos de Redução da Reatividade do RB

A redução da reatividade é benéfica para o armazenamento pela redução do risco de contaminação das águas subterrâneas e ou derramamento de RB. Da mesma forma que é benéfica para a reciclagem, pela eliminação do principal risco do RB que é a sua alta reatividade.

Diversos métodos vêm sendo utilizados para reduzir o pH do RB e do sobrenadante. Os mais consolidados envolvem: (1) A mistura com água do mar para precipitar íons de hidróxido, carbonato e aluminato com magnésio e cálcio. (2) A reação com dióxido de carbono para produzir carbonatos de cálcio /magnésio e carbonatos de alumínio /cálcio (EVANS, 2012). A neutralização com ácidos minerais tem tido menos sucesso pela influência dos hidróxidos sólidos e da piora das propriedades dos RB.

Em outros casos RB é filtrado até atingir baixa umidade como, por exemplo, em Renukoot na Índia com 70%-p sólidos (DAS *et al.*, 2003).

2.7 - ARMAZENAMENTO E USO DO RESÍDUO

Como podemos ver na Figura 2.16, em 2007, a maioria (~ 65%) dos produtores de alumina utilizava empilhamento a seco dos resíduos de bauxita em áreas terrestres (WAGH *et al.*, 1986). Um segundo grupo menor utilizava disposição em lagos (com cerca de 20-30 %-p sólidos) como seu método de disposição, mais recentemente este método foi proibido na China que produziu em 2011 34 Mt ou 37% da produção global de alumina (SUCHITA *et al.*, 2012). Pelo menos dois (Gardanne na França e Aluminium de Greece na Grécia), eliminavam seus resíduos para o ambiente marinho a certa distância da costa (SUCHITA *et al.*, 2012).

Figura 2.16 – Evolução dos métodos de armazenamento em 17 refinarias, representando 44% da produção mundial cujas informações são disponíveis no período 1965 – 2007. Fonte: POWER *et al.*, 2009.

Apesar das metas de reciclagem ousadas na China e menos ousadas no ocidente, certamente teremos de conviver com armazenamento por bastante tempo.

2.8 – ABSORÇÃO GÁS-LÍQUIDO

2.8.1 - Considerações Preliminares Sobre Absorção de Gases

A absorção de gases é um processo em que um ou mais componentes de uma mistura gasosa são dissolvidos em uma corrente líquida relativamente não volátil. Este processo pode ser puramente físico ou ser seguido de reação química com um ou mais constituintes no meio líquido (PERRY, 1997). Na maioria dos casos a reação química aumenta a velocidade de absorção e a capacidade do líquido (solvente) em dissolver o gás (soluto), em comparação com sistemas onde a absorção é puramente física.

A velocidade de absorção do gás é determinada pelas condições físico-químicas (solubilidade; difusividades; cinética da reação) e pelas condições hidrodinâmicas do

sistema (vazão e geometria do equipamento). Apresentamos a seguir, os principais conceitos referentes à absorção física e química.

2.8.2 - Absorção Física

A absorção física de um gás em um líquido pode ser dividida em três etapas: a) Difusão e convecção do gás na direção da superfície líquida;

- b) Solubilização no líquido;
- c) Difusão e convecção do gás dissolvido da superfície para o restante do líquido.

2.8.2.1 – Modelo de Whitman (1924)

Considera a existência de dois filmes estagnados, representados na Figura 2.17. Sendo um na fase gasosa e outro na fase líquida. Estes formam a interface gás – líquido, através da qual a transferência de massa ocorre por difusão. No filme líquido, de espessura δ_L , a concentração do gás solúvel decresce de C_{A_i} até C_{A_b} , permanecendo igual a C_{A_b} no seio do líquido.

Figura 2.17 – Modelo de dois filmes Fonte: SHERWOOD e PIGFORD (1975)

O coeficiente de transferência de massa é expresso por:

$$k_{\rm L} = \frac{D_{\rm A-B}}{\delta_{\rm L}} \tag{2.2}$$

Este modelo mostra $\,k_L\,$ proporcional à difusividade de A em B dividido pela espessura do filme (δ_L) .

2.8.2.2 - Modelo de HIGBIE (1935)

Considera frações de líquido transportadas continuamente do líquido até a interface, onde ficam em contato com o gás durante o tempo de contato, t_c , no qual ocorre a transferência de massa por difusão. Voltam então para o líquido, onde se misturam. Todos os elementos atingem a interface, e contatam o gás pelo mesmo intervalo de tempo, t_c , e absorvem a mesma quantidade de gás por unidade de superfície. Neste modelo, o coeficiente k_L é expresso por (FLORES, 2011):

$$k_{\rm L} = 2 \sqrt{\frac{D_{\rm A-B}}{\pi . t_{\rm c}}} \tag{2.3}$$

Portanto k_L é proporcional à $D_{A-B}^{1/2}$.

2.8.2.3 - Modelo de TREYBAL (1981)

O fluxo de transferência do componente A do gás para o líquido é:

$$N_{A} = k_{G}' P(y_{A_{b}} - y_{A_{i}}) = k_{L} (C_{A_{i}} - C_{A_{b}})$$
(2.4)

Onde;

 $y_{A_b} \; e \; y_{A_i}$ são a fração molar do componente A no gás e na interface.

 C_{A_i} a concentração molar do componente A na interface.

 C_{A_b} a concentração molar de A dissolvido no líquido.

 k_{G}' , é o coeficiente de transferência de massa individual no gás.

 k_L é o coeficiente de transferência de massa individual no líquido.

P é a pressão total do sistema.

O fluxo de transferência de massa também pode ser expresso pelo coeficiente global de transferência de massa, K_G , e a fração molar do componente A, y_{A_*} que está em equilíbrio com a fase líquida:

$$N_{A} = K_{G} P (y_{A_{h}} - y_{A_{*}})$$
(2.5)

 y_{A_b} e y_{A_*} são as frações molares de A no gás em equilíbrio com o líquido.

Nestas teorias as variáveis: δ_L e t_C, , dependem das condições hidrodinâmicas do sistema. Estão relacionadas com o coeficiente de transferência de massa individual referente à fase líquida: k_L.

2.8.3 - Absorção com Reação Química

Quando ocorre reação química na fase líquida, somam-se as seguintes etapas:

d) Reação química do soluto com os componentes presentes na fase líquida;

e) Difusão dos produtos, na fase líquida.

A ocorrência de reação química na fase líquida gera um aumento da velocidade de absorção do gás. Supondo-se que o soluto A é absorvido por uma solução líquida de uma sustância B reagindo de acordo com a reação:

$$A + B \rightarrow C \tag{2.6}$$

O componente A difunde-se até a interface, onde se dissolve. Deste ponto em diante A se difunde no líquido em sentido inverso à difusão de B, com a formação de C se difundindo na direção do restante do líquido. O rápido consumo de B em razão da reação química próximo à superfície permite que o soluto A difunda-se em uma parte do filme líquido, reagindo rapidamente com B. Esta região onde acontece a reação entre A e B, próximo da interface gás – líquido, ocupa uma posição estacionária segundo o modelo do filme duplo. Deste modo a velocidade de difusão de A é igual à velocidade de difusão de B (SHERWOOD e PIGFORD, 1975).

A Figura 2.18 mostra um esquema simplificado do perfil das concentrações dos diferentes componentes que participam da absorção com reação química.

Figura 2.18 – Concentrações em um processo com reação química conforme modelo do filme duplo. Fonte: SHERWOOD e PIGFORD (1975).

- A ordenada pode representar tanto a pressão ou os componentes A, B e C.
- A abscissa mostra a posição dentro do filme.
- PQ mostra o plano da interface entre a fase do gás e a fase líquida.
- VW e UT mostram os limites dos filmes do gás e do líquido.
- SR representa a área de reação, onde A e B reagem formando C.

O componente A difunde-se através do filme do gás devido à força motriz (p - p'), e do filme líquido devido a força motriz $(C_{a_i} - C_{a_b})$. A concentração C_{A_b} é igual a zero, por causa da reação química instantânea. O componente B difunde-se para a zona de reação, pela força motriz q; e, o produto da reação, C, difunde-se para o líquido, pelo efeito da força motriz m-(n-q). (SHERWOOD e PIGFORD, 1975).

Em geral, o fluxo molar do componente transferido para a fase líquida é igual ao produto do coeficiente de transferência de massa pela força motriz:

$$N_a = k_L (C_{A_i} - C_{A_b}) \tag{2.7}$$

A relação entre a velocidade de absorção com reação química e a velocidade de absorção física é denominada "fator de aumento", E:

$$\frac{(N_{A})_{qui}}{(N_{A})_{fis}} = \frac{(k_{L})_{qui}(C_{A_{i}} - C_{A_{b}})}{(k_{L})_{fis}(C_{A_{i}} - C_{A_{b}})} = \frac{(k_{L})_{qui}}{(k^{\circ}_{L})_{fis}} \qquad e \qquad (2.8)$$

$$E = \frac{(k_L)_{qui}}{(k^{\circ}_L)_{fis}}$$
(2.9)

Portanto o fluxo de transferência de massa NA, passa a ser expresso por:

$$N_{A} = E k_{L}^{\circ} (C_{A_{i}} - C_{A_{b}})$$
(2.10)

O fator de aumento é uma função do processo reativo e de difusão na fase líquida, ou seja dos fatores concentração, constante cinética, difusividade e o coeficiente de transferência de massa (ZARZYCKI e CHACUK, 1993).

2.8.4 - Coeficiente de Transferência de Massa

A velocidade da absorção do gás é função das condições físico-químicas. A equação 2.11 relaciona o coeficiente global de transferência de massa e os coeficientes individuais de transferência de massa:

$$\frac{1}{K_{\rm G}} = \frac{1}{k_{\rm G}} + \frac{\rm H}{k_{\rm L}}$$
(2.11)

- H, a constante da lei de Henry
- k_L, o coeficiente de transferência de massa no lado do líquido
- K_G, o coeficiente global de transferência de massa
- K_G o coeficiente de transferência de massa individual na fase gasosa

Quando há reação química, tal como absorção de CO_2 em soluções, o coeficiente global pode ser representado como uma função do fator de aumento E:

$$\frac{1}{K_{G}} = \frac{1}{k_{G}} + \frac{H}{Ek_{L}^{\circ}}$$
(2.12)

k_L^o é o coeficiente de transferência de massa sem reação química.

Em equipamentos de absorção como as torres de recheio, a área de interface efetiva (a) é também um importante parâmetro. Assim, podemos apresentar as taxas de absorção como coeficientes de transferência em unidades de volume da torre de recheio:

$$\frac{1}{K_{G}a} = \frac{1}{k_{G}a} + \frac{H}{Ek_{L}^{\circ}a}$$
(2.13)

As condições hidrodinâmicas são representada pelas velocidades de transferência de massa no líquido e no gás bem como pela área de interface efetiva (a). Para uma determinada condição hidrodinâmica, estes parâmetros puderam ser obtidos a partir de correlações semi-empíricas disponíveis na literatura (PERRY, 1997).

Aparentemente, o coeficiente global (K_Ga) pode ser diretamente obtido da equação (2.13). Entretanto a determinação experimental dos coeficientes individuais de transferência não é trivial. Por esta razão, uma abordagem mais direta é usada para determinar o coeficiente global. Por exemplo, com a medição o perfil de concentração do absorvido ao longo da torre ou a medição da concentração do soluto nas fases gasosa e líquida, na entrada e na saída da torre. Desta forma, considerando-se um elemento de volume diferencial da torre com área de seção transversal constante e altura dz, o balanço de massa do componente A na fase gasosa pode ser expresso por:

$$N_{A} \cdot dA_{i} = \widetilde{G}_{I} \cdot A \cdot d\left(\frac{y_{A}}{1-y_{A}}\right)$$
(2.14)

$$N_A . a. A. dz = \widetilde{G}_I . A. d\left(\frac{y_A}{1-y_A}\right)$$
 (2.15)

Onde \tilde{G}_{I} é a vazão molar do inerte na corrente do gás. Utilizando-se a equação (2.9), para o fluxo de transferência de massa em função do coeficiente volumétrico global de transferência de massa, tem-se:

$$K_{G} a. P. (y_{A} - y_{A}^{*}). dz = \widetilde{G}_{I}. d. \left(\frac{y_{A}}{1 - y_{A}}\right)$$
 (2.16)

Explicitando-se, o coeficiente de transferência de massa global por unidade de volume do recheio (K_G a) tem-se:

$$K_{G}a = \frac{\widetilde{G}_{I}}{P(y_{A,G} - y_{A,G}^{*})} \frac{d\left(\frac{y_{A}}{1 - y_{A}}\right)}{dz}$$
(2.17)

Desta forma, a equação 2.17 mostra o coeficiente volumétrico global de transferência de massa em função da fração molar do gás ao longo da torre.

Segundo BROWN (1965), devem-se empregar torres de recheio para aumentar a superfície e o contato das fases entre as quais tem lugar o fluxo de massa. Considerando a absorção de um soluto de uma fase gasosa em um solvente não volátil, o coeficiente de transferência de massa em torres de recheio é mostrado de forma esquemática na Figura 2.19.

Figura 2.19 – Representação esquemática de uma torre de recheios. Fonte: BROWN G.G., (1965)

$$dV=dL$$
 (2.18)

$$d(Vy) = d(Lx) \tag{2.19}$$

- V e L são as vazões de gás e liquido (moles/h).
- y e x são as frações molares de soluto nos fluxos de gás e líquido.

Admitindo o gás não solúvel e o líquido não volátil:

- V' e L' são as vazões de gás e liquido isentos de soluto (moles/h).
- Y e X são a composição das fases gasosa e líquida (moles de soluto /mol)

A velocidade de absorção também pode ser expressa em função da fugacidade:

Velocidade de absorção = K.a.S.dZ(
$$f_g$$
- f_l) (2.21)

- K é o coeficiente global de transferência de massa (moles/h.m².atm).
- a é a área superficial de contato gás líquido (m^2/m^3) .
- S é a seção transversal da torre (m^2) .
- Z é a altura da torre (m).
- f_g e f_l são a fugacidade do soluto no gás e no líquido.

Supondo V' e L' constantes, temos portanto:

$$-V' dY = -L' dX = K.a.S.dZ(f_g-f_l)$$
(2.22)

Supondo que $k_g e k_l$ são proporcionais a V e L:

$$-\int \frac{dy}{(1-y)(f_g - f_l)} = \frac{k_g.a.S.Z}{V}$$
(2.23)

Supondo que K é constante para pequenas variações de L e V:

$$-\int \frac{dy_j}{(1-y_j)(f_g - f_l)} = \frac{K.a.S.Z}{V}$$
(2.24)

 $K_j = y_j/x_j = constante de volatilidade de equilíbrio.$

2.8.5 - Unidade de Transferência

Supondo um gás ideal, o número de unidades de transferência ng é definido por:

$$n_g = -\int \frac{dy}{(1-y)(y-y_i)} = \frac{k_g.a.P.S.Z}{V}$$
(2.25)

A altura de um elemento da unidade de transferência referente à fase gasosa é dada por:

$$(\text{HTU})_g = \frac{Z}{n_g} = \frac{V/S}{k_g.a.P} = \frac{G_g}{k_g.a.P.M_{med}}$$
 (2.26)

De maneira análoga:

$$n_l = -\int \frac{dx}{(1-x)(x_i - x)}$$
(2.27)

$$-L'dX = k'_{l}. a. C(x_{i} - x)S. dZ$$
(2.28)

- k_l'a é o coeficiente de transferência em unidades de concentração [(moles/h.m3.(moles/m3)].
- C é a concentração molar média (moles totais/m³ de solução)

 y* é a fração molar de soluto no gás em equilíbrio com o líquido que contém a fração molar x de soluto.

Portanto:

$$n_{l} = -\int \frac{dx}{(1-x)(x_{l}-x)} = \frac{k'_{l}.a.C}{L_{/S}}Z$$
(2.29)

$$(HTU)_{l} = \frac{Z}{n_{l}} = \frac{L/S}{k'_{l}.a.C}$$
(2.30)

$$(HTU)_l = \frac{L/S}{k_l.a.P.m}$$
(2.31)

Onde m é a inclinação média da curva de equilíbrio $y=\phi(x)$ entre x_i , y e x.

Na Figura 2.20 podemos obter dados experimentais para HTU.

Figura 2.20 – Altura de unidade de transferência (HTU_G) em função de mV/L para absorção de SO₂ por H₂O utilizando anéis de 3 polegadas, com espiral interior. Fonte: BROWN, G.G. (1965).

2.8.6 - Seleção do Tipo de Equipamento Adequado ao Processo de Absorção

A definição do parâmetro controlando o processo de absorção é fundamental para a escolha do equipamento de reação. Podemos ter essencialmente três situações: o processo pode ser controlado pela resistência da fase gasosa, pela resistência da fase líquida ou por um misto das duas (CREMASCO, 2002).

Na situação em que a resistência da fase gasosa controla o processo, utilizam-se as torres de aspersão. As torres aspersão são reatores dentro dos quais escoam a fase líquida, que é distribuída por meio de atomizadores, caindo por gravidade, e a fase gasosa, também chamada fase contínua, em contracorrente com o líquido. Quanto menores as gotas, maior a área superficial de contato na qual ocorre a absorção. Se as gotas forem muito pequenas, serão arrastadas pela corrente gasosa.

Na situação em que a resistência da fase líquida controla o processo, utilizam-se as torres de borbulhamento que operam de maneira inversa às torres de aspersão. O gás é borbulhado na base do reator e ascende enquanto o líquido é introduzido pela parte superior do reator saindo pela inferior. A absorção se dá na superfície das bolhas em movimento (WELTY *et al.*, 1976).

As torres de recheios são utilizadas quando o processo de absorção é controlado pelas duas fases ou quando há uma elevada taxa de gás em relação ao líquido. A configuração deste reator é de um leito fixo recheado por peças de formas produzidas com o objetivo de aumentar a superfície de contato líquido gás.

2.8.6.1 - Correlações para Cálculo do Coeficiente de Transferência de Massa Individual do Gás

De acordo com McCABE (1985), diversos recheios foram testados para absorção de CO₂ em solução de NaOH, um sistema onde o filme líquido tem o controle da resistência mas o filme gasoso tem uma resistência não desprezível. Os valores de K_g.a são de 20 a 40 vezes os valores normais de absorção do CO₂ em água, porque a reação química entre o CO₂ e o NaOH ocorre muito perto da superfície tornando o gradiente de concentração do CO₂ muito acentuado. Na Figura 2.21 são mostradas curvas experimentais para absorção de CO₂ em solução de NaOH a 4%-p, com diversos tipos de recheios.

Figura 2.21- Coeficientes de transferência de massa para absorção de CO_2 em solução de NaOH 4%-p utilizando diferentes recheios. Fonte: McCABE (1985).

2.9 – REDUÇÃO DA ALCALINIDADE DO RB ATRAVÉS DA REAÇÃO COM DIÓXIDO DE CARBONO E OU GÁS DE COMBUSTÃO

A primeira notícia que se conhece no mundo do uso de um processo para reação de resíduo de bauxita com gás de combustão contendo dióxido de carbono em escala industrial foi o experimentado pela empresa Alcan na fábrica de Saramenha (a mais antiga refinaria de alumina do Brasil), mostrado em trabalho apresentado no congresso do TMS (VERSIANI, 1983). Este experimento pioneiro consistia de borbulhar o gás proveniente da exaustão da caldeira da refinaria no RB com a finalidade de reduzir o seu pH conforme a Figura 2.22.

Figura 2.22 – Primeiro experimento de redução da reatividade de RB conforme ilustração original. Fonte: VERSIANI, 1983.

Posteriormente o conceito de carbonatação do RB tem sido desenvolvido com o uso de dióxido de carbono concentrado proveniente de uma planta química vizinha, pela refinaria de Kwinana (Alcoa, Austrália) como um meio de reduzir o pH do RB antes do empilhamento (COOLING *et al.*, 2002). Após testes em escala piloto, foram feitos ensaios de campo, onde RB carbonatado, produzido através do borbulhamento de CO₂ concentrado em tanques especiais, foi depositado em camadas sucessivas de modo que seu comportamento em longo prazo fosse estudado em condições reais de empilhamento a seco. A taxa de adição de 25kg de CO₂ por m³ de RB 48%-p foi considerada ideal. O pH do lixiviado, coletado pelo sistema de drenagem de fundo, do material carbonatado se estabilizou em 10,5 comparado com 13 do material não carbonatado. Em função destes resultados a referida refinaria estendeu a carbonatação para 100% do RB produzido.

- COOLING, *et al.* (2002) enumeraram ainda os seguintes benefícios da carbonatação de RB.
- Redução do risco de danos ao material de vedação (argila ou sintético) e, portanto, redução do risco de contaminação das águas subterrâneas.

- Melhoria no escoamento da água e drenagem.
- Redução do potencial de geração de poeira.
- Captura gases de efeito estufa.
- Redução do risco de futura classificação do RB como resíduo perigoso.
- Facilitação do desenvolvimento de usos produtivos para o resíduo no futuro.
- Redução do impacto do RB no custo total do ciclo de vida da produção de alumínio.

COOLING et al. (2002) identificaram as seguintes reações durante a carbonatação:

 $NaAlOH_4 + CO_2 \leftrightarrow NaAlCO_3(OH)_2 + H_2O$ (2.32)

$$NaOH + CO_2 \leftrightarrow NaHCO_3$$
 (2.33)

$$Na_2CO_3 + CO_2 + H_2O \leftrightarrow 2NaHCO_3$$
 (2.34)

$$3Ca(OH)_2 + 2Al(OH)_3 + 3 CO_2 \leftrightarrow 3CaCO_3 + Al_2O_3 + 3H_2O + 3H_2O$$
(2.35)

 $Na_6(AlSiO_4)_6.2NaOH + 2CO_2 \leftrightarrow Na_6(AlSiO_4)_6 + NaHCO_3$ (2.36)

NIKRAZ *et al.* (2007), compararam as propriedades físicas de RB não tratado e tratado com carbonatação e ou adição de água do mar concentrada. O RB carbonatado sem adição de concentrado aumentou a resistência mecânica mais rapidamente e atingiu valores finais maiores, obtendo uma eficiência de armazenamento maior. Concluiu entretanto que há espaço para o uso de carbonatação e água do mar concentrada no armazenamento a longo prazo com a continuidade das pesquisas e otimização dos métodos de homogeneização.

GUILFOYLE *et al.* (2005) relataram diversos experimentos em escala piloto na refinaria de Kwinana, na Austrália, com o objetivo de viabilizar a carbonatação utilizando gás de combustão obtido na chaminé da caldeira com 9,4%-v de CO₂. Foram testados borbulhadores de gás de combustão em uma suspensão de RB e torres de recheio com diversos enchimentos trabalhando com gás de combustão e o sobrenadante do RB que em seguida retornava para ser novamente misturado ao RB.

De acordo com JONES *et al.* (2006), que avaliaram a capacidade de captura de dióxido de carbono do RB, foram identificadas as seguintes reações durante a carbonatação do RB:

$$\text{CO}_{2(aq)} + \text{OH}^{-} \leftrightarrow \text{HCO}_{3}^{-}$$
 (2.37)

$$HCO_{3}(aq) \leftrightarrow H^{+} + CO_{3}^{2}(aq)$$
(2.38)

$$(AlOH_4)^{-}_{(aq)} \leftrightarrow Al(OH)_{3(s)} + OH^{-}_{(aq)}$$

$$(2.39)$$

$$NaAl(OH)_{4(aq)} + CO_{2(aq)} \leftrightarrow NaAl (OH)_2 CO_{3(s)} + H_2O_{(l)}$$
(2.40)

$$Ca_{3}Al_{2}(OH)_{12(s)} + 3CO_{2(aq)} \leftrightarrow 3CaCO_{3(s)} + 2Al(OH)_{3(s)} + 3H_{2}O_{(l)}$$
(2.41)

Foi identificado ainda que o aluminato tricálcico (ATC) é o componente alcalino dominante do RB e que durante a carbonatação este se dissolve combinando com o dióxido de carbono e reprecipitando como calcita e hidróxido de alumínio. A quantidade de CO₂ reagida foi calculada em 7,84 g de CO₂ para cada 10 g de RB ou 784kg /ton.

JOHNSTON *et al.* (2010) avaliaram a geoquímica de três diferentes processos de redução da reatividade do RB. A carbonatação, o processo Basecon (este é um processo patenteado similar ao tratamento com água do mar porém usa brines artificiais ricos em Ca e Mg para aumentar a eficiência e favorecer a precipitação mineral) e a carbonatação seguida do Basecon. Segundo Johnston *et al.* (2010) os dados indicam que as técnicas de neutralização formam dois grupos geoquímicos distintos: tratamentos com ou sem precipitação da alcalinidade. No caso da carbonatação eles identificaram as seguintes reações:

$$OH^{-}_{(aq)} + CO_{2(aq)} \rightarrow HCO_{3^{-}(aq)}$$
(2.42)

$$OH^{-}_{(aq)} + HCO_{3}^{-}_{(aq)} \rightarrow CO_{3}^{2-}_{(aq)} + H_{2}O$$

$$(2.43)$$

$$H_2O + CO_{2(aq)} \rightarrow HCO_{3(aq)} + H^+_{(aq)}$$
(2.44)

$$[AlOH_4]_{(aq)} + CO_{2(aq)} + Na^+_{(aq)} \rightarrow Al(OH)_{3(s)} + Na^+_{(aq)} + HCO_3_{(aq)}$$
(2.45)

$$2[AlOH_4]_{(aq)} + CO_{2(aq)} + 2Na_{(aq)}^+ \rightarrow 2Al(OH)_{3(s)} + 2Na_{(aq)}^+ + CO_3^{2-}_{(aq)} + H_2O$$
(2.46)

Ainda segundo Johnston as duas últimas equações sugerem que carbonatação afeta principalmente a especiação da alcalinidade ao invés da sua solubilidade. Desta forma a combinação da carbonatação com o processo Basecon tem possibilidade de precipitar a alcalinidade residual de acordo com a equação:

$$2CO_{3}^{2-}(aq) + Ca^{2+}(aq), Mg^{2+}(aq) \to MgCO_{3(s)} + CaCO_{3(s)}$$
(2.47)

Johnston *et al.* (2010) discordam de Jones *et al.* (2006) quanto a precipitação de 80% da alcalinidade sob a forma de Dawsonita (NaAlCO₃(OH)₂) e concluem que as diferentes técnicas de redução da reatividade do RB formam dois grupos geoquímicos distintos: os que precipitam alcalinidade que são o Basecon e a carbonatação seguida do Basecon e os que não precipitam que é a carbonatação simples. Todas as alternativas produzem a redução da reatividade de diferentes formas e a carbonatação consome 17g de CO₂ por kg de RB seco (17kg /ton). De acordo com GUSTAFSSON (2006) e STUMM (1981) apud GRÄFE (2009), a principal contribuição para o retorno do pH do RB após a sua redução está na capacidade dos sólidos manterem a concentração de ânions alcalinos na solução. Acima de pH 10,2, na ausência de excesso de Ca²⁺, Na₂CO₃ controla a reação HCO_3^+/CO_3^{2-} na solução porque a calcita (CaCO₃) é insolúvel. O retorno do pH é provocado pelas seguintes reações com diferentes constantes de dissociação ácida, mostradas na Tabela 2.6:

Reação	Constantes de acidez	Nº eq.
$OH^- + H_3O^+ \leftrightarrow 2H_2O$	$pK_{w} = 14,0$	(2.48)
$Al(OH)_4 \overline{} 2H_2O + H_3O^+ \leftrightarrow Al(OH)_3 \overline{} 3H_2O(s) + 2H_2O$	pK _a 4 ~ 10,2	(2.49)
$\text{CO}_3^{2-} + \text{H}_2\text{O} \leftrightarrow \text{HCO}_3^{-} + \text{OH}^{-}$	$pK_{a}2 = 10,2$	(2.50)
$HCO_3^- + H_3O^+ \leftrightarrow H_2CO_3 + OH^-$	$pK_{a}1 + 6,35$	(2.51)
$H_2SiO_4^{2-} + H2O \leftrightarrow H_3SiO_4^{-}$	$pK_a 2 = 12,95$	(2.52)
$H_3SiO_4^- + H_2O \leftrightarrow H_4SiO_4$	$pK_{a}1 = 9,85$	(2.53)
$PO_4^{3-} + H_2O \leftrightarrow HPO_4^{2-} = OH^{-}$	$pK_a3 = 12,35$	(2.54)
$H_2PO_4{}^{2-} + H_2O \leftrightarrow H_2PO_4 + OH^-$	$pK_{a}2 = 7,2$	(2.55)
$H_2PO_4^- + H_2O^+ \leftrightarrow H_3PO_4 + OH^-$	$pK_{a}1 = 2,25$	(2.56)

Tabela 2.6 – Reações que provocam o retorno do pH. Fonte: GUSTAFSSON (2006) e STUMM (1981) apud GRÄFE (2009).

De acordo com SMITH *et al.*, (2003), o pH do RB está geralmente na região de 13, equivalente a uma concentração de OH⁻ de 0,1 molar. A carbonatação de soluções cáusticas de aluminato ocorre de acordo com as seguintes equações:

$$\mathrm{CO}_{2}(\mathrm{g}) + \mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{HCO}_{3}^{-1}(\mathrm{aq})$$

$$(2.57)$$

$$HCO_3^{-1}(aq) \leftrightarrow H^{+1}(aq) + CO_3^{-2}(aq)$$
 (2.58)

$$Al(OH)_4^{-1}(aq) \leftrightarrow Al(OH)_3(s) + OH^-(aq)$$

$$(2.59)$$

$$NaAl(OH)_4(aq) + CO_2(aq) \leftrightarrow NaAl(OH)_2CO_3(s) + H_2O(l)$$

$$(2.60)$$

A equação 2.57 indica que o equilíbrio bicarbonato/carbonato existe, porém no pH em que a reação ocorre é favorecida a formação do íon bicarbonato. Bicarbonato então pode ser cisto como um estoque de CO₂ que participa das reações seguintes.

SAHU *et al.* (2010) conduziram uma pesquisa em laboratório para investigar a neutralização do RB utilizando três ciclos de cinco horas de reação com CO₂ concentrado em pressão e temperatura ambiente. O pH foi reduzido de 11,8 para 8,45 ao final do

terceiro ciclo. O CO₂ saturado foi transformado em Na₂CO₃, NaHCO₃ e H₂CO₃ como componentes sólidos ou estáveis.

DILMORE *et al.* (2008), pesquisaram a capacidade de sequestro de CO₂ proveniente de fontes industriais utilizando uma mistura de RB com água salobra proveniente de poços de petróleo. Utilizando uma mistura de RB e água salobra 90/10 em volume, a capacidade de sequestro de CO₂ ultrapassou 9,5 g/L, utilizando CO₂ puro a 0,689 MPa e 20°C. Foi realizado um modelamento geoquímico que previu a formação de calcita e dawsonita como produtos dominantes da carbonatação da mistura. Foi demonstrado que a captura de CO₂ foi ampliada com a adição de RB como agente cáustico à água salobra ácida e a captura é obtida através de solubilização e mineralização.

Uma das características da carbonatação do RB é que o pH cai durante a reação e depois volta a subir lentamente até se estabilizar em determinados patamares. Isto é explicado pela presença de hidróxidos sólidos na suspensão de RB que não reagem imediatamente com o dióxido de carbono, mas começam a dissolver-se quando o pH da solução na qual eles estão em contato é reduzido. Estas observações são consistentes com um trabalho recente de KHAITAN *et al.*, (2009). Neste trabalho, foram avaliados os mecanismos de neutralização do RB em amostras de 5 g de RB em atmosferas com diferentes pressões parciais de CO₂ variando de $10^{-3.5}$ até 1 atm. Foram obtidos pH de equilíbrio conforme a tabela 2.7.

Pressão parcial de CO ₂	pH de Equilíbrio	
10-3,5	9,8	
0,01	9,3	
0,1	8,6	
1	7,7	

Tabela 2.7 – pH de Equilíbrio para diferentes pressões parciais de CO₂. Fonte: KHAITAN *et al.*, (2009a)

(KHAITAN *et al.*, 2009a) apresentaram uma modelagem do equilíbrio da capacidade de neutralização ácida (CNA) de longo prazo, demonstrando que a maior parte da CNA provém da parte sólida do RB e somente uma pequena parte da fase líquida, principalmente devido a OH⁻ e Al(OH)₄⁻. A capacidade de captura de CO₂ via carbonatação foi estimada em 21 mg/g de RB sólido que equivale a 21kg /ton., considerando o uso de CO₂ com pressão parcial de 1 atm. Foi também observado que a

quantidade de aluminato tricálcico (ATC) presente é um fator importante na determinação da capacidade de sequestro de carbono de um resíduo de bauxita (KHAITAN *et al.*, 2009). Ao longo do tempo, o ATC se dissolve para liberar hidróxido de sódio e íons de aluminato para a solução. ATC está presente em RB como resultado da utilização de cal no processo Bayer. ATC é um hidróxido de alumínio-cálcio com a fórmula estequiométrica Ca₃Al₂ (OH)₁₂. A dissolução do ATC resulta na liberação de íons OH⁻ para à solução, aumentando assim o pH. Isto é acompanhado pela formação de novas fases sólidas, incluindo carbonato de cálcio (calcita), hidroxi-carbonato de alumínio sódio (dawsonita) e hidróxido de alumínio (gibsita). Deve-se ressalvar que o percentual de Ca nos diferentes RB varia bastante e outros compostos podem estar influenciando esta reação.

Por outro lado a disponibilidade de dióxido de carbono concentrado é uma condição excepcional se considerarmos as demais refinarias de alumina em todo o mundo. Os processos em uso industrial de separação de CO₂ de outros gases, especialmente o de amina, são intensivos em consumo de energia e consequentemente inadequados do ponto de vista ambiental e de custo. As refinarias em geral produzem cerca de 1 tonelada de CO₂ para cada tonelada de alumina de acordo com o IAI (2012). Portanto, foi decidido investigar a reação de gás de combustão contendo CO₂ em diferentes tipos de reatores a fim de verificar primeiro a viabilidade desta reação e em seguida quais os fatores mais importantes que influenciam os resultados.

2.10 – MECANISMO DE DESENVOLVIMENTO LIMPO

O Mecanismo de Desenvolvimento Limpo (MDL) foi criado pela Conferência das Nações Unidas sobre mudança climática (UNFCCC - United Nations Framework Convention on Climate Change) com a finalidade de viabilizar o cumprimento das metas do Protocolo de Quioto. A proposta de MDL consiste na implantação de projetos em países em desenvolvimento com o objetivo de reduzir as emissões de gases do efeito estufa e contribuir para o desenvolvimento sustentável local. Cada tonelada de CO₂ equivalente não emitida ou retirada da atmosfera se transforma em uma unidade de crédito de carbono, chamada Redução Certificada de Emissão (RCE), que poderá ser negociada no mercado mundial.

Considerando que estamos lidando com um processo que reage dióxido de carbono com RB, estamos capturando carbono. A questão básica que se coloca para permitir o

enquadramento de um projeto deste tipo no MDL, e portanto permitir sua habilitação a créditos de carbono, consiste de ponto críticos: mensuração de captura de carbono apresentada nos resultados de cada um dos experimentos de número cinco a vinte e cinco e estabilidade desta captura. Ou seja, conforme mostrado no item 2.9, a reação de carbonatação é reversível. A medição da quantidade de CO₂ que é liberada durante o processo de estabilização do pH exige uma maior compreensão do complexo processo de redução da alcalinidade e sua posterior estabilização de modo a permitir a medição da quantidade do dióxido de carbono capturado na carbonatação que foi transformado em compostos estáveis e a quantidade que retornou à atmosfera no processo de equilíbrio das equações reversíveis. Com o nível de conhecimento atual destes componentes não é possível estabelecer com a necessária precisão a capacidade de sequestro de carbono de modo a enquadrá-lo no MDL.

CAPÍTULO 3

MATERIAIS E MÉTODOS

3.1 – CARACTERIZAÇÁO DOS MATERIAIS

3.1.1 - Características Físicas do RB

Na Tabela 3.1, mostrada em gráficos nas Figuras 3.1, Figura 3.2 podemos observar as características físicas do material utilizado com destaque para cerca de 90% do material menor que #300.

# Tyler	Diâmetro Médio Dp (µm)	Massa retida (g)	%Retida	%Passante	%Retida Acumulada	% Passante Acumulada
+30	500	0,00	0,00	100,00	0,00	100,00
-30+42	413	0,09	0,09	99,91	0,09	99,91
-42+60	283	1,07	1,07	98,93	1,16	98,84
-60+100	205	2,10	2,10	97,90	3,26	96,74
-100+115	143	2,35	2,35	97,65	5,61	94,39
-115+150	113	1,23	1,23	98,77	6,84	93,16
-150+170	90	0,40	0,40	99,60	7,24	92,76
-170+200	76	0,00	0,00	100,00	7,24	92,76
-200+250	67	1,10	1,10	98,90	8,34	91,66
-250+270	58	0,50	0,50	99,50	8,84	91,16
-270+325	49	2,90	2,90	97,10	11,74	88,26
-325+400	41	0,15	0,15	99,85	11,89	88,11
-400	37	88,11	88,11		100,00	0,00
		100g	100%			

Tabela 3.1 – Análise granulométrica do RB da Alunorte. Fonte: LEMOS, 2008.

Figura 3.1 - Análise granulométrica do RB da Alunorte. Fonte: LEMOS, 2008.

Figura 3.2 – Histograma da análise granulométrica do RB da Alunorte. Fonte: LEMOS, 2008 (modificado).

Na Tabela 3.2 podemos observar outras propriedades físicas do RB como umidade, densidade real e área superficial.

Tabela 5.2 - 110 predades insteas do KD. 10 inte. 500 ZA (2010).									
Umidade (%-p)	Densidade real (g/cm ³)	Área superficial (m ² /g)							
48	2,13	13							

Tabela 3.2 - Propriedades físicas do RB. Fonte: SOUZA (2010).

A análise termodiferencial do RB da ALUNORTE, mostrada na Figura 3.3, apresenta uma grande banda endotérmica na região de 100 a 280°C, a qual pode ser atribuída até 150°C à perda de água de umidade. A região da banda endotérmica entre 150 e 280°C pode ser atribuída à perda de água zeolítica e a desidroxilação dos compostos de ferro presentes na lama vermelha. O pico endotérmico a 310°C corresponde à temperatura de decomposição do hidróxido de alumínio gibsita (HILDEBRANDO, E. A., SOUZA, J. A. S., 1998).

Figura 3.3 - Curva da análise térmica diferencial do RB da Alunorte. Fonte: HILDEBRANDO, 1998

3.1.2 – Combustível

Óleo diesel Petrobras S 500, adquirido no varejo.

3.2 – EQUIPAMENTOS

3.2.1 – Projeto, Fabricação e Montagem da Unidade de Transferência de Massa

3.2.1.1 - Diagrama de Blocos da Instalação Piloto

A concepção da instalação de experimentação surgiu a partir da necessidade de dispor de uma fonte de gás de combustão abundante e barata. Esta necessidade foi uma consequência natural da opção de fazer experimentos em escala piloto (cada experimento processava cerca de 37kg de lama seca). Esta opção foi escolhida com a finalidade de obter resultados mais realistas, reduzindo a margem de erro e preparar as condições para projetar um reator em escala industrial no futuro.

A fonte de gás disponível foi uma caldeira integrante da usina de biodiesel pertencente ao ITEC-UFPA. A partir destas premissas definimos o fluxograma do processo (Figura 3.4), o desenhos esquemático (Figura 3.5) e projetamos um galpão industrial (Figura 3.6) bem como os equipamentos mostradas nos itens seguintes.

Figura 3.4 – Fluxograma de processo dos equipamentos incluindo a caldeira já existente utilizada para gerar os gases utilizados na reação com o RB.

Figura 3.5 – Desenho esquemático dos equipamentos com a indicação dos pontos de coleta de amostras.

3.2.1.2 - Planta da Instalação e Projeto do Galpão

Com a finalidade de montar uma instalação piloto de absorção que permitisse a utilização de gases de caldeira já existente na usina piloto de biodiesel, foi projetado e construído pelo autor um galpão de 70m²com estrutura de madeira, piso em concreto e cobertura de fibrocimento cuja planta baixa é vista na Figura 3.6.

Figura 3.6 – Planta baixa do galpão com 70 m^2 projetado e construído para a realização dos experimentos. Fonte: autor.

3.2.1.3 – Caracterização e Adaptação da Caldeira Como Fonte de Gases de Combustão

A caldeira utilizada como fonte dos gases de combustão era um equipamento já existente, pertencente a usina se biodiesel do Laboratório de Engenharia Química da UFPA. Conforme pode ser visto na Figura 3.7, trata-se de uma caldeira aquotubular, vertical, dotada de um sistema de atomização e queima de óleo diesel. Foi criada uma derivação na chaminé dotada de uma válvula de controle.

Figura 3.7 – Caldeira já existente utilizada como fonte de geração de gás de combustão e ponto de captação dos gases na base da chaminé da caldeira.

3.2.1.4 – Projeto e Construção do Trocador de Calor

A finalidade do trocador de calor é resfriar os gases produzidos na caldeira de modo a torná-los compatíveis com os materiais dos reatores. Foi projetado um trocador de calor de contato direto, de forma tubular, construído em chapa de aço carbono de 1/8", com geração de névoa de água através de um bico aspersor com ar comprimido na parte superior. Este bico deve gerar uma pluma de água atomizada em gotículas que deve ser contida pelo casco do trocador. É importante que a pluma não contate as paredes, pois provocaria o escorrimento da água, dificultando sua evaporação. O bico foi selecionado entre 90.000 itens da empresa Spraying Systems. O fluxo de gases percorre o trocador em contracorrente com a pluma, transformando as gotículas em vapor e consequentemente

sendo resfriado pela perda de calor decorrente da evaporação. A construção do trocador e o desenho esquemático são mostrados nas Figuras 3.8, 3.9, 3.10, 3.11 e 3.12. A concepção do trocador é baseada em gerar um volume de névoa tal que o calor de evaporação seja suficiente para o resfriamento do fluxo de gases para uma temperatura igual ou menor que a suportada pelos reatores e não reste nenhum resíduo.

Figura 3.8 – Projeto do trocador de calor tubular de contato direto em contracorrente.

Figura 3.9 – Detalhes do trocador de calor tubular na fabricação e montagem.

Figura 3.10 – Bico gerador de névoa de água com uso de ar comprimido, selecionado entre 90000 itens para atender os requisitos de forma da pluma, vazão de água e ar.

Figura 3.11 – Bico gerador de névoa (a) montado no topo do trocador e conectado ao regulador de pressão de ar (b) e a alimentação de água.

Figura 3.12 – Desenho esquemático do trocador de calor de contato direto em contracorrente.

3.2.1.5 – Projeto do Sistema de Manuseio de Gases

Foi projetado um sistema de manuseio de gases, mostrado nas Figuras 3.13 e 3.14, destinado a succionar o gás da chaminé da caldeira e direcioná-lo ao reator desejado. Foi utilizado um soprador já existente. Na admissão do soprador foi colocada uma placa de orifício com a finalidade de regular a quantidade de gás succionado. A jusante do soprador foi projetada e construída um distribuidor de gases dotado de válvulas tipo borboleta.

Figura 3.13 – Projeto do distribuidor de gases dotado de quatro válvulas tipo borboleta.

Figura 3.14 – Conjunto de manuseio de gases, a direita o trocador de calor, ao centro o ventilador centrífugo e na parte superior o distribuidor de gases com as válvulas.

3.2.1.6 – Projeto e Construção dos Reatores

Foi montado um conjunto de reatores. Uma torre de aspersão mostrada na Figura 3.15 que já existia, foi aperfeiçoada com a instalação de bicos de aspersão em dois níveis.

Figura 3.15 – Torre de aspersão com dez bicos centrífugos em dois níveis (a). No detalhe (b), podem ser vistos os bicos em teste com água e com suspensão de RB (c).

Duas torres de recheio foram projetadas e construídas conforme mostrado nas Figuras 3.16 e 3.17, cada uma com um volume de recheio de $0,13m^3$.

Figura 3.16 – Projeto das torres de recheio que foram fabricadas em aço inoxidável.

Figura 3.17 – Torre de recheio que durante o processo de fabricação e montagem.

Uma delas foi preenchida com selas randomicamente distribuídas com área superficial de $232,7m^2/m^3$, conforme a Figura 3.18. A outra torre foi preenchida por um recheio estruturado de alto desempenho com área superficial de $500m^2/m^3$. Ela é mostrada com detalhes do recheio na Figura 3.19.

Figuras 3.18– Torre de recheio preenchida com selas distribuídas randomicamente, no detalhe as selas em aço inoxidável.

Figura 3.19 – Torre de recheio preenchida com recheio estruturado de alto desempenho, nos detalhes um módulo do recheio estruturado e as lâminas que o compõem e geram uma hidrodinâmica mais eficiente.

3.2.1.7 – Projeto e Construção do Sistema de Manuseio da Suspensão de Resíduo

O sistema de manuseio de suspensão consiste de uma caixa de fibrocimento de 500 L que pode ser observada na Figura 3.20, uma caixa de peneiramento projetada e confeccionada em aço carbono, dotada de duas telas e uma boca de vista, destinada a remoção de areia grossa através de peneiramento pressurizado, vista na Figura 3.21, uma bomba centrífuga autoescorvante marca Thebe modelo AE1 vista na Figura 3.22, além de tubulações e válvulas de recalque e retorno.

Figura 3.20 – Vistas da caixa de preparação da suspensão de resíduo.

Figura 3.21 – Caixa de peneiramento pressurizado, destinada a remoção de areia.

Figura 3.22 – Bomba centrífuga autoescorvante adequada para recalque de lama.

3.2.1.8 - Projeto e Construção de Equipamentos Destinados a Testar Variáveis Específicas

Foram projetados e construídos alguns equipamentos destinados a possibilitar o teste de algumas das variáveis que faziam parte do processo de triagem, descrito nos itens 3.3.2 e 3.3.3 em seguida.

Conforme se pode observar nas Figuras 3.23 e 3.24 foram construídos três quadros de resistências elétricas, cada um composto de quatro resistências de 700 W cada. A capacidade total de aquecimento, portanto atingiu 8,4 kW.

Figura 3.23 – Conjuntos de resistências utilizados para aquecer a suspensão de RB.

Figura 3.24 – Vista do experimento com sobrenadante aquecido. À direita temos a caixa de retorno com dez saídas ajustáveis e o conjunto de resistências para aquecimento.

Foram projetados e construídos um sistema de captação de sobrenadante de baixa turbulência visto na Figura 3.25, utilizado na captação da bomba e uma caixa de retorno com dez saídas ajustáveis vista na Figura 3.26 para permitir o retorno do sobrenadante sem agitação ao tanque. Estes equipamentos foram utilizados durante os testes com sobrenadante de RB.

Figura 3.25 – Captador de sucção com baixa turbulência utilizado no experimento com sobrenadante de RB. A esquerda vemos o captador montado e a direita em operação.

Figura 3.26 – Vista da caixa de retorno com dez saídas ajustáveis destinadas a reduzir a reduzir a turbulência no retorno do RB.

3.2.2 - Seleção e Aquisição de Equipamentos Dedicados a Unidade Piloto

3.2.2.1 – Analisadores de Gases

Em função da necessidade de controlar a combustão em tempo real, houve a opção pelo o uso de analisadores eletrônicos de gases. Com a finalidade de obter a leitura do conteúdo em volume do fluxo de gases na entrada e na saída dos reatores foram selecionadas duas tecnologias. A primeira, mais tradicional é a das células eletroquímicas. Foi então selecionado e adquirido o equipamento Telegan modelo Tempest 100 dotado de células eletroquímicas que permitem a leitura de O₂ de 0 à 25% \pm 0,2%, NO de 0 à 1000 PPM \pm 5%, NO_x de 0 à 200 PPM \pm 5°% e SO₂ de 0 à 2000 PPM \pm 5%. e mostrado na Figura 3.27.

Figura 3.27 – Analisador de gases por de células eletroquímicas Tempest 100.

Entretanto para a medição do teor de CO₂ os medidores eletroquímicos trabalham de forma indireta. O uso desta tecnologia introduziria uma imprecisão nos resultados, pois estes dependeriam da composição do combustível utilizado o que introduziria uma variável adicional no processo. Por estas razões buscamos um analisador que pudesse realizar a medição do CO₂ diretamente. Foi escolhido o princípio da medição da absorção do facho infravermelho não dispersivo. Como requisito adicional, o equipamento necessitava ser equipado com um sistema de separação de condensado e filtragem de gases capaz de suportar as condições operacionais com a presença de umidade, fuligem e partículas de RB. Foi selecionado o equipamento MRU modelo Delta 1600 S, com capacidade de medição de CO₂ de 0 à 16% \pm 5% e O₂ de 0 à 22% \pm 5% visto na Figura 3.28.

Figura 3.28 – Analisador de gases por infravermelho não dispersivo MRU Delta.

3.2.2.2 – Anemômetro

Com a finalidade de obter a vazão volumétrica instantânea, foi selecionado e adquirido um anemômetro TSI modelo Velocicalc 9545 mostrado na Figura 3.29 Este equipamento permite a leitura direta da vazão nas tomadas de medição que foram instaladas na saída dos reatores, obedecendo a norma que preconiza um mínimo do equivalente a seis diâmetros de trecho reto a montante e a jusante do ponto de medição.

Figura 3.29 – Anemômetro e sonda de medição.

3.2.2.3 – Phmetro

Com a finalidade de medição portátil de pH foi adquirido o equipamento Hanna modelo pHep+ com faixa operacional de 0 à 14 pH \pm 0,1 pH. Este equipamento (mostrado na Figura 3.30) foi calibrado com soluções tampão de pH 10 e 7, regularmente antes do início das medições de cada dia e excepcionalmente sempre que havia algum resultado fora do padrão (por exemplo quando o pH voltava a subir durante um experimento).

Figura 3.30 – Phmetro portátil Hanna

3.2.3 - Utilização de Equipamentos Disponíveis nos Laboratórios da UFPA

3.2.3.1 — Termômetro

Foi utilizado um termômetro digital FTG FT–266C com faixa operacional de - 50 à 750°C \pm (0,75% da leitura + 2°C) visto na Figura 3.31.

Figura 3.31 – Termômetro portátil digital.

3.2.3.2 - Viscosímetro

Foi utilizado um viscosímetro Haake Viscotester modelo 6L, com faixa operacional 3 - 6.000.000 mPas $\pm 1\%$ visto na Figura 3.32.

Figura 3.32 – Viscosímetro utilizado nos experimentos para analisar o comportamento reológico e definir o uso e a dosagem do dispersante.

3.2.3.3 – Balança Digital

Foi utilizada uma balança digital marca GEHAKA, modelo BG 2000, carga máxima 2.020g, sensibilidade: $0,01g \pm 0,02$ g mostrada na Figura 3.33.

Figura 3.33 – Balança e proveta utilizadas pra controlar o teor de sólidos na suspensão de RB.

3.2.3.4 – Difratômetro de Raios X

As análises por difração de raios X (DRX) utilizaram difratômetro Philips (PW 3710), com fonte de radiação de Cu (K α) = 1,54 e ângulo de difração (2 θ) variando de 4 a 60°, no Centro de Geociências da UFPA que pode ser visto na Figura 3.34.

Figura 3.34 - Difratômetro Philips (PW 3710) do Centro de Geociências da UFPA

3.2.3.5 – Espectrômetro de Fluorescência de Raios X

As análises por Espectrometria de Fluorescência de Raios-X (FRX) utilizaram o espectrômetro WDS sequencial, modelo Axios Minerals da marca Panalytical, com tubo de raios-X cerâmico, anodo de ródio (Rh) e máximo nível de potência 2,4 KW. Este equipamento pertence e foi operado pelo no Centro de Geociências da UFPA.

As amostras foram analisadas em dois modos de preparação:

a) Disco Fundido: 1 g de amostra + 6 g de fundente (Tetraborato de Lítio - Li2B4O7), mistura fundida a 1000 °C por 10 min.

b) Pastilha Prensada: 3 g de amostra + 0,9 g de aglomerante (cera de parafina), mistura prensada com uma carga de 20 toneladas.

As aquisições e tratamento dos dados foram realizados através do software "Super Q Manager da Panalytical".

3.3 – PLANEJAMENTO DOS EXPERIMENTOS

Foi realizado um planejamento de experimentos composto por três fases descritas nos itens 3.3.1, 3.3.2 e 3.3.3. Os itens 3.3.4, 3.3.5 e 3.3.6 descrevem a escolha dos pontos de medição, a metodologia de preparo da suspensão de RB e a forma de cálculo da quantidade de CO₂ absorvida em cada experimento.

3.3.1 - Testes Preliminares para Calibração dos Equipamentos

Foram realizados testes preliminares de acionamento da caldeira e medições de CO₂, O₂, NO_x e SO₂. Em seguida foram realizados seis experimentos para calibração do sistema piloto incluindo a determinação da vazão ótima de gases que permitia a resolução mais adequada na medição da quantidade de gases absorvidos. Com esta finalidade foram projetadas, fabricadas e testadas cinco placas de orifício com áreas de 10%, 20%, 40%, 60% e 80% destinadas a restringir a admissão de gases na entrada do ventilador e desta forma atingir a máxima resolução na diferença da composição dos gases na entrada e saída, tendo sido selecionada a placa de 10%. Estes experimentos preliminares permitiram também a definição dos procedimentos padronizados de preparação e medição. Permitiram também definição dos pontos de coleta e o teste e definição das faixas operacionais dos equipamentos que haviam sido projetados para o experimento.

Nesta fase observou-se que a entrada livre da suspensão de RB nas torres de recheio permitia uma melhor distribuição hidrodinâmica no topo dos recheios e uma vazão na mesma faixa da torre de aspersão (entre 0,8 e 1,1 L/s).

3.3.2 - Experimento com Planejamento Fatorial Fracionário 2^k para Triagem das Variáveis

Os fatoriais fracionários tem uso importante nos experimentos de seleção. Esses são experimentos em que muitos fatores são considerados com a finalidade de identificar aqueles que têm efeitos significativos (RODRIGUES, 2009).

A primeira variável escolhida no início do projeto foi o tipo de torre.

A segunda o uso do sobrenadante em comparação com o uso da suspensão de RB, uma vez ter esta opção sido escolhida em alguns experimentos em escala piloto em refinarias da Austrália (GUILFOYLE, 2005).

A terceira tem por objetivo a investigação da sensibilidade do processo em relação a temperatura. Ela foi selecionada por processo Bayer envolver calor e a reação de carbonatação em outros processos industriais utilizar o recurso de reduzir a temperatura para aumentar a solubilidade do CO₂.

A quarta variável consistiu de dois diferentes posicionamentos geométricos dos bicos na torre de aspersão com o objetivo de verificar a sensibilidade no resultado.

- Temperatura rebaixada com 80 kg de gelo e elevada com aquecimento de 8,4 kw/h.
- Posição dos bicos em um e dois níveis na torre de aspersão.
- Reação com RB em suspensão ou com sobrenadante.
- Torres de recheio com selas randômicas ou recheio estruturado

Cada grupo de três variáveis com duas alternativas (mostrados na Tabela 3.3) possibilita um máximo de 2^3 ou oito experimentos. Entretanto é possível obter uma boa resolução com $2^{3-1}=4$ experimentos. Foram realizados dois grupos de quatro, totalizando oito experimentos (números de 7 à 14). Posteriormente foi feita a opção de analisar estes experimentos em conjunto com os demais 17, utilizando um modelo misto para duas e três variáveis.

Tabela 3.3 - Planejamento fatorial fracionario destinado a triagem.									
EXPERIMENTO 1 – TORRE ASPERSÃO									
Temperatura	rebaixada	elevada							
Meio absorção RB	suspensão	sobrenadante							
Posição dos bicos	1 nível	2 níveis							
EXPERIME	ENTO 2 – TORRES DE R	ECHEIOS							
Temperatura	rebaixada	elevada							
Meio absorção RB	suspensão	sobrenadante							
Recheio	randômico	estruturado							

3.3.3 - Repetição dos Experimentos Centrais com a Finalidade de Redução do Erro

Na terceira fase foram realizados onze experimentos. Estes incluíram três experimentos com injeção de SO₂ a fim de verificar a compatibilidade da absorção de SO₂ simultaneamente ao CO₂. Os demais tiveram como objetivo a redução do erro nos dados coletados anteriormente bem como a obtenção de dados em períodos de tempo mais longos.

3.3.4 - Definição dos Pontos e Grandezas de Medição

Foram definidos três pontos de medição mostrado no diagrama da Figura 3.35.

Figura 3.35 - Pontos de medição mostrados no desenho esquemático do processo.

- No ponto 1, retorno da suspensão reagida a caixa de mistura, foram medidas a vazão de suspensão com o uso de uma proveta e um cronômetro, a temperatura da suspensão e a evolução do pH ao longo de cada experimento.
- No ponto 2, saída dos gases de exaustão do trocador de calor, foram medidas a composição química %-v e a temperatura dos gases a montante dos reatores.
- No ponto 3, saída dos gases dos reatores foram medidos a temperatura, a vazão e a composição química dos gases.

3.3.5 – Preparação da Suspensão

Em experimentos preliminares foi constatado que o maior teor de sólidos em suspensão que o sistema permitia sem decantação e entupimento era de 27%-p. Com a finalidade de padronizar a preparação da suspensão, definimos um processo de duas etapas:

- Adição de 80 litros de água na caixa de mistura.
- Adição de RB até que 1 litro de suspensão atingisse o peso de 1207 ± 3 g.

Com o uso desta metodologia, foram eliminadas as variações decorrentes de diferenças do teor de umidade do RB ao mesmo tempo em que deixou de ser necessária a secagem do RB que não agregaria valor ao processo. Em cada experimento foram preparados aproximadamente 103 litros de suspensão. Uma vez completado o processo de preparação da suspensão, a mesma era circulada através da caixa de peneiramento pressurizado para a remoção dos grãos de areia grossa presentes. Quando a caixa ficava obstruída, o processo era paralisado e era feita a limpeza da caixa através da janela de visita. Normalmente eram feitas de duas a três ciclos de limpeza até completar a remoção da areia grossa.

3.3.6 – Cálculo da Massa de CO₂ Absorvida em Cada Experimento

O cálculo da massa de CO₂ absorvida em cada experimento foi realizado em seis etapas:

 Cálculo da vazão mássica de CO₂ na saída: A partir do percentual de CO₂ na saída (medida), da vazão volumétrica na saída (medida) e da temperatura dos gases na saída (medida), consultando uma tabela de densidades obtemos.

$$\dot{m}_{\rm CO_{2sai}} = \% \rm CO_{2sai} \times \dot{Q}_{sai} \times \rho_{(t)\rm CO_{2sai}}$$
(3.1)

 Cálculo da vazão mássica de N₂ na saída: Desprezando-se o volume dos demais gases, subtraímos da vazão volumétrica da saída (medida) a soma dos percentuais na saída de CO₂ e do O₂ (medidos) e consultando uma tabela de densidades obtemos.

$$\dot{m}_{N_{2sai}} = \left(1 - \frac{\% CO_{2sai} + \% O_{2sai}}{100}\right) \times \dot{Q}_{sai} \times \rho_{(t)N_{2sai}}$$
(3.2)

 Cálculo da vazão volumétrica na entrada: Como N₂ não participa da reação, a partir da vazão mássica de N₂ na saída (calculado no item 2), dos percentuais de CO₂ e O₂ e da temperatura na entrada, calculamos calcula-se a vazão volumétrica na entrada.

$$\dot{Q}_{ent} = \frac{m_{N_{2sai}}}{\left(1 - \frac{\% CO_{2ent} + \% O_{2ent}}{100}\right) \times \rho_{(t)N_{2ent}}}$$
(3.3)

4. Cálculo da vazão mássica de CO₂ na entrada: A partir da vazão volumétrica na entrada (calculada no item 3), do percentual de CO₂ na entrada e da temperatura dos gases na entrada (medida), consultando uma tabela de densidades obtemos.

$$\dot{m}_{\rm CO_{2ent}} = \% \rm CO_{2ent} \times \dot{Q}_{ent} \times \rho_{(t)\rm CO_{2ent}}$$
(3.4)

 Cálculo da vazão mássica de CO₂ absorvida no reator: Subtraímos a vazão mássica de CO₂ na saída (obtida no item 1) da vazão mássica de CO₂ na entrada (obtida no item 4).

$$\dot{m}_{\rm CO_{2abs}} = \dot{m}_{\rm CO_{2ent}} - \dot{m}_{\rm CO_{2sai}} \tag{3.5}$$

6. Cálculo da integral da vazão mássica absorvida ao longo do experimento, resolvida pela aplicação da regra do trapézio: Calculamos a média aritmética da vazão mássica de CO₂ absorvida em cada intervalo de tempo multiplicado pelo tempo de cada intervalo.

$$m_{CO_{2abs}} = \int_{t_1}^{t_2} \dot{m}_{CO_{2abs}} dt = \sum \frac{\dot{m}_{CO_{2abs1}} + \dot{m}_{CO_{2abs2}}}{2} \times t_2 - t_1 \quad (3.6)$$

Estas seis etapas foram programadas em uma planilha Excel de modo a fazer o cálculo da massa total de CO_2 absorvida em cada experimento.

1	2	3	4	5	6
[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
ṁ _{СО2sai}	m _{N2sai}	Q _{ent}	m _{CO2ent}	ṁ _{СО2аbs}	$\int_{t_1}^{t_2} \dot{m}_{CO_{2abs}} dt$

Tabela 3.4 – Etapas para cálculo da massa de CO₂ absorvida.

3.3.7 - Monitoramento do pH de Estabilização das Amostras de RB Carbonatado

Em todos os experimentos foram retiradas amostras de cerca de 1L de suspensão de RB Carbonatado. Estas amostras foram conservadas em frascos com tampa roscada. Nos experimentos 18; 19 e 20 foram retiradas duas amostras adicionais, uma de 150 ml e outra de 300 ml foi que foram conservadas em béqueres, portanto sem tampa. Nos experimentos 21 a 25 foi retirada uma amostra adicional de cerca de 150ml, Estas amostras foram submetidas ao monitoramento periódico do pH de modo a se obter o pH de estabilização de cada uma.

CAPÍTULO 4

RESULTADOS, ANÁLISES E DISCUSSÃO

4.1 – RESULTADOS DOS EXPERIMENTOS

Os resultados de cada um dos 25 experimentos realizados com duração variando de 80 a 520 minutos são apresentados no anexo II, com todos os dados de cada experimento agrupados conforme mostrado a seguir:

No cabeçalho da folha de experimento, mostrada na Tabela 4.1, são registrados o número do experimento, a temperatura ambiente, a torre utilizada, neste caso a de aspersão, o meio de absorção, a forma de distribuição do meio de absorção na torre, a quantidade de distribuidores, a vazão de gás, a vazão de suspensão e o pH da suspensão no início do experimento. No corpo da folha de experimento, compilada de uma forma mais didática, são registrados, durante o experimento, as medições de pH, temperatura e composição dos gases em volume na entrada e na saída do reator que está sendo utilizado no decorrer do experimento. No início do experimento há uma frequência maior de medição a fim de captar com mais precisão as alterações que ocorrem nesta fase. Neste experimento específico, foram medidos apenas o O_2 e o CO_2 . Em outros experimentos foram medidos também SO_2

Carbonatação de Resíduos de Bauxita Experimento 25									
DATA 06/0	06/	2012	-	Temp.	27°C	Forre Spray			
	l	_ama		Dist. Liq. Bi	Dist. Liq. Bicos cone ôco Quant				
Vazão gás	0,0	02035 m ³ /s	5	Vazão (Vazão de lig. 0.8 L/s			cio 11,7	
			ENTRAD	A		SAÍ	DA		
		М	 RU		Hanna	M	 RU		
Tempo(mi	in)	%CO2	%O2	T (°C)	pH	%CO2	% O 2	T (°C)	
0	,	7.3	10.8	45	11.7	6.5	11.57	29	
10		7.7	10.14	49	10.3	7.1	10.68	32	
20		, 7,6	10,13	51	10,0	7,1	10,62	38	
30					9,7				
40		7,5	10,31	51	9,5	6,8	10,88	39	
50					9,4				
60		6,5	11,75	48	9,2	6,0	12,14	41	
70					9,2				
80		7,1	10,9	49	9,1	6,6	11,27	42	
90					8,9				
100		7,2	10,52	49	8,8	6,9	10,88	43	
110					8,7				
120		7,3	10,51	49	8,7	7,0	10,77	43	
140		7,6	10,01	49	8,7	6,9	10,79	44	
160		7,9	9,74	49	8,9	7,4	10,12	44	
180		8,0	9,4	49	8,8	7,7	9,79	43	
200		7,5	10,07	52	8,7	7,2	10,22	46	
220		7,9	9,76	52	8,7	7,6	10,07	46	
240		6,9	11,09	51	8,7	6,6	11,34	46	
260		6,8	11,27	49	8,7	6,4	11,51	46	
280		6,9	11,08	49	8,7	6,7	11,11	46	
300		6,8	10,73	49	8,7	6,5	11,11	46	
320		7,1	10,77	49	8,7	6,8	10,84	46	
340		7,1	11,07	49	8,7	6,8	11,38	47	
360		6,4	12,15	49	8,7	6,1	12,42	46	
380		6,5	12,12	48	8,7	6,2	12,44	44	
400		6,6	11,95	48	8,7	6,3	12,29	44	
420		6,3	12,34	48	8,7	6,1	12,5	44	
440		6,0	12,83	47	8,7	5,8	12,97	44	
460		6,0	12,89	47	8,7	5,7	13,32	43	
480		5,7	13,16	45	8,7	5,5	13,44	41	
500		6,2	12,57	46	8,7	6,0	12,9	41	
520		5,3	13,86	44	8,7	5,3	13,91	40	

Tabela 4.1 – Conteúdo do corpo da folha de experimento com registro do pH, composição e temperatura dos gases ao longo do experimento 25.

Na planilha de cálculo da massa de CO_2 reagida mostrada na Tabela 4.2, a partir dos dados constantes do cabeçalho e do corpo da folha de experimento, com o uso da metodologia mostrada no item 3.3.7 e uma planilha programada em Excel, é calculada em seis etapas a massa de CO_2 absorvida no experimento. Como cada experimento utiliza 37 kg de RB em base seca, é calculado a seguir o equivalente em kg de CO_2 por tonelada de RB em base seca.

Cálculo da massa de CO ₂ reagida										
[min]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]				
Тетро	m	m N₂sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO₂∗min				
0	0,00236	0,01884	0,02144	0,00265	0,00029					
10	0,00255	0,01872	0,02150	0,00277	0,00022	0,15179				
20	0,00250	0,01837	0,02120	0,00268	0,00018	0,11742				
40	0,00239	0,01832	0,02117	0,00264	0,00025	0,25455				
60	0,00209	0,01810	0,02083	0,00227	0,00018	0,25551				
80	0,00229	0,01810	0,02084	0,00247	0,00018	0,21245				
100	0,00239	0,01806	0,02072	0,00249	0,00010	0,16728				
120	0,00243	0,01807	0,02075	0,00253	0,00010	0,12380				
140	0,00238	0,01803	0,02065	0,00262	0,00024	0,20610				
160	0,00256	0,01806	0,02070	0,00273	0,00018	0,24903				
180	0,00267	0,01813	0,02071	0,00277	0,00010	0,16597				
200	0,00247	0,01797	0,02077	0,00258	0,00011	0,12452				
220	0,00261	0,01792	0,02073	0,00271	0,00010	0,12555				
240	0,00227	0,01786	0,02068	0,00237	0,00010	0,12369				
260	0,00220	0,01787	0,02058	0,00234	0,00014	0,14740				
280	0,00230	0,01789	0,02058	0,00237	0,00007	0,12898				
300	0,00223	0,01793	0,02052	0,00233	0,00010	0,10429				
320	0,00233	0,01792	0,02060	0,00244	0,00011	0,12603				
340	0,00233	0,01775	0,02047	0,00243	0,00010	0,12705				
360	0,00209	0,01773	0,02055	0,00220	0,00010	0,12345				
380	0,00214	0,01782	0,02060	0,00224	0,00010	0,12381				
400	0,00218	0,01783	0,02060	0,00228	0,00010	0,12299				
420	0,00211	0,01783	0,02062	0,00218	0,00007	0,10324				
440	0,00200	0,01779	0,02056	0,00207	0,00007	0,08416				
460	0,00198	0,01779	0,02057	0,00208	0,00010	0,10247				
480	0,00192	0,01792	0,02059	0,00199	0,00007	0,10075				
500	0,00209	0,01793	0,02064	0,00216	0,00007	0,08008				
520	0,00185	0,01792	0,02060	0,00185	0,00000	0,03875				
					[kg]	3,79				
					kg CO ₂ /ton	102,5				

Tabela 4.2 - Planilha de cálculo da massa de CO₂ reagida no experimento 25.

No gráfico do experimento mostrado na Figura 4.1, são mostrados o comportamento do pH e da vazão de massa de CO₂ absorvida em cada momento. É interessante observar que este experimento foi estendido até que esta vazão de massa chegasse a zero. O pH se estabiliza em 8,7 aos 200 minutos entretanto a vazão de massa absorvida de CO₂ permanece positiva até os 500 minutos. Este comportamento evidencia a dissolução contínua na parte líquida da suspensão de RB da alcalinidade que se encontrava em forma sólida que imediatamente reage com o CO₂. Somente após cinco horas a disponibilidade de íons alcalinos se esgota temporariamente.

Figura 4.1 - pH e a vazão de massa de CO₂ absorvida durante o experimento 25.

Uma vez que o pH do RB reagido, armazenado em frascos fechados continua a se modificar após o experimento, foi feito o monitoramento desta evolução e confeccionado o respectivo gráfico conforme pode ser observado na Figura 4.2. Este resultado mostra que a dissolução de íons alcalinos que se esgotou temporariamente durante o experimento, superada pelo consumo em maior velocidade na reação com CO₂ volta a ocorrer após o experimento elevando o pH até sua estabilização.

Figura 4.2 – Monitoramento da evolução do pH após o experimento 25 em frasco fechado.

Com a finalidade de investigar a possibilidade de reversão parcial da reação de carbonatação estar sendo inibida pelo aumento da pressão parcial de CO_2 nos frascos tampados, passou-se a monitorar o pH do RB reagido em frascos abertos. Nestes foi necessário acréscimo de água para as medições. O resultado é mostrado na Figura 4.3 onde podemos observar o pH 0,9 acima do frasco fechado.

Figura 4.3 – Monitoramento da evolução do pH após o experimento 25 em frasco aberto.

Na Tabela 4.3, são mostrados o cabeçalho e os dados do experimento 24, com registro da evolução do pH, composição e temperatura dos gases na entrada e saída do reator, realizado na torre de recheios preenchida com selas distribuídas randomicamente.

Este experimento da mesma forma que o anterior foi estendido até que a absorção de CO_2 fosse reduzida a zero. Este ponto foi atingido ao fim de 400 minutos, o que é coerente com a maior eficiência da torre de recheios em relação à torre de aspersão do experimento 25.

Carbonatação de Resíduos de Bauxita Experimento 24									
DATA 31/05,	/ 2012		Temp. 27°C Torre de Recheio Ranc				dômico		
	Lama		Dist. Liq. Ent. Livre 1/2" Quant.						
Vazão gás 0,01507 m ³ /s			Vazão d	Vazão de lig. 0,8 L/s pH início			cio 12,8		
		ENTRAD	4		SAÍ	DA			
	M	RU		Hanna	M	รบ			
Tempo(min)	%CO2	%02	T (°C)	Ηα	%CO2	%02	T (°C)		
0	8,7	8,87	47	12,8	7,6	9,56	28		
10	8,4	9,22	47	10,1	7,3	9,95	31		
20	8,2	9,47	48	9,4	7,3	10,23	33		
30				9,3					
40	8,3	9,34	49	9,0	7,2	10,05	38		
50				8,8					
60	8,4	8,92	49	8,7	7,4	10,11	41		
70				8,5					
80	8,1	9,31	48	8,5	7,7	9,78	44		
90				8,5					
100	7,7	10,19	49	8,6	7,2	10,37	45		
110				8,5					
120	8,6	8,77	50	8,5	7,6	9,91	45		
140	8,1	9,30	50	8,6	7,7	9,8	46		
160	7,4	10,29	49	8,5	7,0	10,83	46		
180	7,7	10,07	49	8,5	7,2	10,37	47		
200	7,7	9,77	49	8,5	7,3	10,28	48		
220	7,9	9,42	51	8,6	7,6	9,9	49		
240	7,6	9,80	50	8,5	7,5	10,01	49		
260	7,2	10,37	51	8,5	6,9	10,86	49		
280	7,9	9,44	53	8,5	7,6	9,78	51		
300	7,5	10,13	51	8,5	7,2	10,46	50		
320	7,4	10,01	50	8,5	7,2	10,22	49		
340	7,4	9,95	51	8,5	7,2	10,25	49		
360	7,4	10,78	50	8,5	7,2	11,02	47		
380	7,6	10,46	50	8,5	7,3	10,7	47		
400	7,8	10,23	51	8,6	7,8	10,3	46		

Tabela 4.3 – Dados da folha de experimento 24.

Na Tabela 4.4 pode ser observada a planilha de cálculo da massa de CO_2 absorvida no experimento 24. Um fato interessante é que os dois maiores valores de CO_2 absorvido ocorreram nos experimentos mais longos.

Cálculo da massa de CO ₂ reagida									
[min]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]			
Tempo	m	m N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO _{2*} min			
0	0,00205	0,01415	0,01610	0,00236	0,00031				
10	0,00195	0,01400	0,01594	0,00225	0,00030	0,18281			
20	0,00194	0,01386	0,01584	0,00218	0,00024	0,16317			
40	0,00188	0,01368	0,01568	0,00217	0,00030	0,32262			
60	0,00191	0,01351	0,01542	0,00216	0,00025	0,32948			
80	0,00197	0,01338	0,01525	0,00207	0,00010	0,21182			
100	0,00184	0,01333	0,01532	0,00197	0,00013	0,14111			
120	0,00194	0,01334	0,01528	0,00219	0,00025	0,23150			
140	0,00196	0,01330	0,01524	0,00206	0,00010	0,20993			
160	0,00178	0,01324	0,01519	0,00188	0,00010	0,11834			
180	0,00182	0,01324	0,01520	0,00196	0,00013	0,13776			
200	0,00184	0,01320	0,01510	0,00194	0,00010	0,13781			
220	0,00191	0,01317	0,01513	0,00198	0,00007	0,10168			
240	0,00189	0,01317	0,01510	0,00191	0,00002	0,05620			
260	0,00174	0,01313	0,01513	0,00181	0,00007	0,05630			
280	0,00190	0,01311	0,01516	0,00198	0,00007	0,08715			
300	0,00181	0,01311	0,01511	0,00188	0,00007	0,08913			
320	0,00181	0,01318	0,01512	0,00186	0,00005	0,07479			
340	0,00181	0,01318	0,01515	0,00186	0,00005	0,05885			
360	0,00182	0,01314	0,01520	0,00187	0,00005	0,05854			
380	0,00185	0,01317	0,01522	0,00193	0,00008	0,07609			
400	0,00198	0,01320	0,01529	0,00198	0,00000	0,04513			
					[kg]	2,89			
					kg CO ₂ /ton	78,1			

Tabela 4.4 - Planilha de cálculo da massa de CO₂ reagida no experimento 24.

 $\label{eq:linear} Na\ Figura\ 4.4\ podem\ ser\ observados\ os\ gráficos\ de\ evolução\ do\ pH\ e\ do\\ fluxo\ de\ massa\ de\ CO_2\ reagido\ durante\ o\ experimento\ 24.$

Figura 4.4 - pH e a vazão de massa de CO₂ absorvida durante o experimento 24.

Na Figura 4.5 pode ser observada a evolução do pH de estabilização do experimento 24 após o experimento com frasco fechado.

Figura 4.5– Monitoramento da evolução do pH após o experimento 24 em frasco fechado.

Na Tabela 4.5 são apresentados o cabeçalho os dados do experimento 22, realizado na torre de recheio estruturado. Podemos observar que neste caso o fluxo de massa de CO₂ absorvido chega a zero em 220 minutos.

Carbonatação de Resíduos de Bauxita Experimento 22										
DATA 26/04 / 2012					Temp. 27°C Torre de Re			cheio estruturado		
Lama				1	Dist	t. Liq. Ent.	Livre 1/2	2"	Qua	nt. 1
Vazão gás	0,	01566	m³/s	5		Vazão de	liq. 0,	8 L/s	pH inío	io 11,7
			E	ENTRA	DA			SA	ÍDA	-
			MR	U			Hanna	M	RU	
Tempo(mi	in)	%CO	2	%02	2	T (°C)	pН	%CO2	%02	T (°C)
0		8,4		9,42	2	53	11,7	7,0	10	28
10		8,0		9,68	3	56	9,3	7,1	10,23	34
20		7,9		9,66	5	54	8,7	7,2	10,10	38
30							8,6			
40		8,0		9,71	L	53	8,6	7,2	10,40	42
50							8,5			
60		7,7	'	9,77	7	50	8,5	7,6	9,90	45
70							8,6			
80		7,8		9,72	2	51	8,7	7,2	10,27	44
90							8,7			
100		7,1		10,5	2	50	8,7	6,4	11,47	45
120		7,3		10,4	3	49	8,4	7,0	10,6	44
140		7,2		10,5	0	48	8,4	6,9	11,62	45
160		7,3		10,2	7	47	8,4	6,9	11,23	45
180		7,1		10,4	0	47	8,4	7,0	10,49	45
200		7,3		10,4	0	45	8,4	7,1	10,5	45
220		7,0		10,2	7	45	8,4	7,1	10,49	45
240		7,0		11,0	0	45	8,4	7,0	10,79	45
250		7,0		10,6	9	45	8,4	7,0	11,8	45

Tabela 4.5 – Dados da folha de experimento 22.

Na Tabela 4.6, pode ser observada a planilha de cálculo da quantidade de CO₂ absorvido durante o experimento 22.

Cálculo da massa de CO2 reagida.									
[min]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]			
Tempo	m	m N ₂ sai	Q ent	m CO ₂ ent	m CO ₂ abs	∫∆MCO _{2*} min			
0	0,00196	0,01473	0,01713	0,00237	0,00041				
10	0,00195	0,01439	0,01686	0,00220	0,00025	0,20061			
20	0,00195	0,01421	0,01652	0,00215	0,00020	0,13510			
40	0,00193	0,01398	0,01623	0,00214	0,00022	0,24690			
60	0,00201	0,01386	0,01590	0,00204	0,00003	0,14492			
80	0,00191	0,01391	0,01602	0,00207	0,00016	0,11141			
100	0,00170	0,01380	0,01586	0,00188	0,00018	0,20385			
120	0,00186	0,01389	0,01593	0,00194	0,00008	0,15718			
140	0,00183	0,01369	0,01565	0,00189	0,00006	0,08567			
160	0,00183	0,01375	0,01565	0,00192	0,00009	0,09182			
180	0,00186	0,01386	0,01576	0,00188	0,00003	0,07161			
200	0,00188	0,01384	0,01568	0,00194	0,00006	0,04918			
220	0,00188	0,01384	0,01560	0,00185	-0,00003	0,01301			
240	0,00186	0,01381	0,01570	0,00186	0,00000	-0,01736			
250	0,00186	0,01364	0,01545	0,00183	-0,00003	-0,00608			
					[kg]	1,5			
					kg CO ₂ /ton	40,2			

Tabela 4.6 - Planilha de cálculo da massa de CO₂ reagida no experimento 22.

Na Figura 4.6 pode ser observada a evolução do pH e do fluxo de massa de CO_2 absorvido durante o experimento 22.

Figura 4.6 – Evolução do pH e do fluxo de absorção de CO₂ no experimento 22.
Outro experimento bastante esclarecedor foi o de número 2, realizado na fase preliminar de ajuste dos equipamentos. A singularidade foi o desenvolvimento em quatro etapas em sequência com interrupções variando de dois a sete dias com um tempo total de reação de 315 minutos. Pode ser visto seu cabeçalho na Tabela 4.7.

Carbonatação de Resíduos de Bauxita Experimento 2										
DATA 21/9/2011		Temperatura 27°C	Тс	orre de spray						
LAMA/Água 27	′%pp	BICO CENTRÍF	UGO	Quant. 4						
Vazão gás 0,0293 m ³ /s Vazão de liq. 0,44 L/s pH início 12,3										

Tabela 4.7 – Cabeçalho do experimento 2, realizado em quatro etapas.

Podemos observar na Figura 4.7 que, ao ser interrompida a carbonatação, o pH sobe mas para um patamar abaixo do original. Observando sob outro ponto de vista, pode ser considerado que o experimento foi realizado ao longo de 13 dias e isto permitiu um maior consumo dos íons alcalinos como podemos observar no comportamento do pH de estabilização em frasco fechado, mostrado na Figura 4.8, que se estabiliza a partir de 275 dias.

Figura 4.7 – Gráfico da evolução do pH durante o experimento de número 2.

Figura 4.8 – Evolução do pH de longo prazo do experimento 2 em frasco fechado.

Outro experimento que pode ser destacado é o de número 11, realizado com o sobrenadante do RB. Neste experimento realizado na torre de recheios randômicos ao longo de 80 minutos, o pH se estabiliza rapidamente a partir dos 20 minutos conforme mostra a Figura 4.9.

Figura 4.9 – Evolução do pH durante o experimento 11.

Após o experimento, como pode ser observado na Figura 4.10 o pH volta ao ponto de origem ao fim de 68 dias.

Figura 4.10 – Evolução do pH de estabilização em frasco fechado do experimento 11.

4.2 - COMPARAÇÃO DOS EXPERIMENTOS

Na Tabela 4.8 podemos observar um resumo dos dados colhidos durante os vinte e cinco experimentos. Na terceira e quarta coluna a partir da esquerda, temos o pH inicial e final de cada experimento. Na quinta coluna temos a última medição de pH da amostra do material reagido conservada em frasco fechado. Na sexta coluna a quantidade de minutos que durou a carbonatação. Na sétima a quantidade de CO₂ capturado em kg. Na oitava a conversão da sétima coluna para kg CO₂ por tonelada de RB seco.

	Experimento	pH ini	pH fim	pH longo	minutos	∫∆MCO _{2*} min	kg CO ₂ /ton	E-D	E-D s/sobr
1	Recheio, Sela, T. amb., Suspensão	12,0	8,8	10,8	120			2	2
2	Aspersão, Suspensão, 1 nivel, T. amb.	12,3	8,8	10,0	315			1,2	1,2
3	Recheio, Sela, Suspensão, T. amb.	12,5	8,7	10,4	100			1,7	1,7
4	Aspersão, Suspensão, 1 nivel, T. amb.	12,0	9,5	10,7	140			1,2	1,2
5	Aspersão, Suspensão, 1 nivel, T. amb.	12,5	8,9	10,7	140	1,22	33,0	1,8	1,8
6	Recheio, Sela, Suspensão, T. amb.	12,6	8,5	10,5	120	1,26	33,9	2	2
7	Aspersão, Sobrenadante, 1 nível, T. amb.	12,8	8,4	11,7	90	1,40	37,9	3,3	
8	Aspersão, Suspensão, 1 nivel, T. aquecida.	12,3	8,9	10,6	100	2,21	59,7	1,7	1,7
9	Aspersão, Suspensão, 2 níveis, T. amb.	12,3	9,1	10,7	120	1,97	53,3	1,6	1,6
10	Aspersão, Sobrenadante, 2 níveis, T. aquecida.	12,8	8,8	12,9	90	0,59	16,1	4,1	
11	Recheio, Sela, Sobrenad,ante, T. amb.	12,7	8,2	13,1	80	1,13	30,6	4,9	
12	Recheio, Sela, Suspensão, T. aquecida.	12,6	9,2	10,8	90	1,84	49,8	1,6	1,6
13	Recheio, Estruturado, Suspensão, T. amb.	12,6	8,6	10,4	80	1,70	45,9	1,8	1,8
14	Recheio, Estruturado, Sobrenadante, T. aquecida.	12,5	8,3	12,3	90	0,88	23,9	4	
15	Recheio, Estruturado, Suspensão, T. amb.	12,9	8,5	10,6	90	1,66	44,9	2,1	2,1
16	Recheio, Estruturado, Suspensão, T. amb.	12,9	7,8	10,6	90	1,32	35,6	2,8	2,8
17	Recheio, Estruturado, Suspensão, T. resfriada.	12,7	8,2	10,6	90	1,69	45,7	2,4	2,4
18	Recheio, Estruturado, Suspensão, T. amb.	12,4	8,1	10,2	100	1,33	35,9	2,1	2,1
19	Aspersão, Suspensão, 2 níveis, T. amb.	12,7	8,3	10,6	100	1,76	47,6	2,3	2,3
20	Recheio, Sela, Suspensão, T. amb.	13,1	7,2	10,6	100	1,27	34,2	3,4	3,4
21	Recheio, Sela, Suspensão, T. amb.	12,4	8,4	10,3	180	1,94	52,4	1,9	1,9
22	Recheio, Estruturado, Suspensão, T. amb.	11,7	8,4	10,5	250	1,49	40,2	2,1	2,1
23	Recheio, Sela, Suspensão, T. amb.	12,9	8,6	10,3	240	2,00	54,0	1,7	1,7
24	Recheio, Sela, Suspensão, T. amb.	12,8	7,8	10,3	400	2,89	78,1	2,5	2,5
25	Aspersão, Suspensão, 2 níveis, T. amb.	11,7	8,7	9,9	520	3,79	102,5	1,2	1,2
	Experimentos co	m sus	spens	ão de F	RB				
	Experimentos co	m sol	rena	dante	de RB				
	Experimentos es	olimi	naroc	com ci					
	Experimentos pr	ennn	nares	CONSU	ispensa				
	Torre de aspersã	0							

Tabela 4.8 – Compilação dos resultados dos 25 experimentos.

4.2.1 - Diferença Entre Torres Incluindo Custo Benefício

Torre de selas randômicas Torre de recheio estruturado

Conforme pode ser observado na tabela comparativa dos experimentos (Tabela 4.9), na comparação do desempenho das torres (Tabela 4.9) e no gráfico comparativo das médias de cada torre (Figura 4.11), há uma evolução mais rápida na reação na torre de recheio estruturado seguido pela torre de recheio de selas randômicas. Entretanto este fato não se reflete no pH de longo prazo. Apesar de haver uma vantagem de três décimos de ponto de pH esta diferença se encontra dentro do desvio padrão. De acordo com a análise estatística a influência da variável tipo de torre está no limite do erro para uma confiança de 95%. Sob o aspecto de custo benefício, as torres de recheio têm custo substancialmente mais elevado além de necessitarem de limpeza química o que gera outro resíduo a ser tratado e, portanto um maior impacto ambiental.

Tabela 4.) – Comparação do desempenho das torres exclutido sobrenadante.											
Torre	pH longo	pH longo – pH	Desvio padrão								
		final experim.									
Aspersão	10,5	1,6	0,4								
Selas randômicas	10,5	2,0	0,6								
Recheio estruturado	10,5	2,2	0,3								

Tabela 4.9 - Comparação do desempenho das torres excluindo sobrenadante.

Figura 4.11 – Gráfico comparativo das médias de evolução do pH por tipo de torre e CO₂ médio absorvido.

4.2.2 – Evolução do pH de Estabilização em Frasco Fechado

Na Figura 4.12, pode ser observado na linha verde mais baixa, o experimento de número 2, cujo gráfico de reação foi mostrado na Figura 4.7. Este foi um experimento único que foi desenvolvido em diversas etapas em sequência com intervalos variando de dois a sete dias. Este experimento claramente tem um comportamento diferenciado do pH, com sua estabilização em um patamar cerca de 0,7 pontos abaixo da média.

Nos demais experimentos, mostrados na mesma Figura 4.12, podemos observar claramente dois grupos de experimentos:

 No primeiro, composto de quatro experimentos na parte superior do gráfico, temos as quatro carbonatações realizadas com o sobrenadante do RB. Uma vez que a maior parte da alcalinidade do RB se encontra na parte sólida, o pH praticamente volta ao ponto original. Fica evidente que a não circulação dos sólidos do RB juntamente com o sobrenadante dificulta substancialmente a reação do CO₂ com os íons alcalinos presentes na parte sólida.

 O segundo, composto dos demais vinte experimentos tem comportamento bastante similar entre si, mostrando poucas diferenças em relação ao tipo de equipamento e ao tempo de reação. O pH médio se mostra estabilizado em 10,5.

Figura 4.12 – Gráfico da evolução do pH das amostra de RB carbonatado conservadas em frasco fechado.

Após o início da observação do comportamento das amostras de RB reagido, foi decidido começar a monitorar uma segunda amostra, conservada em frasco aberto, em contato livre com a atmosfera. Este procedimento foi adotado a partir do experimento 18 até o 25. Podemos observar que o pH tem uma subida inicial acentuada e tende a estabilizar após cerca de 200 dias.

Figura 4.13 – Gráfico da evolução do pH das amostra de RB carbonatado conservadas em frasco aberto.

Por outro lado, podemos observar na Figura 4.14 o gráfico da evolução média do pH após a carbonatação, das 21 amostras com suspensão de RB em frasco fechado comparado com a evolução média do pH após a carbonatação das sete amostras em frasco aberto. A estabilização se dá em um patamar superior na média das amostras em frasco aberto em relação ao fechado. Consideramos que a justificativa deste comportamento se dá pela reversão da reação de carbonatação. No frasco fechado forma-se uma pressão parcial de CO₂ maior e esta inibe a reversão. No frasco aberto não há esta restrição e a estabilização se dá num patamar superior.

Figura 4.14 - Evolução do pH médio após os experimentos com RB em frascos tampados e abertos.

4.3 – RESULTADOS DE EXPERIMENTOS COM CARACTERÍSTICAS ESPECIAIS

4.3.1 – Experimento com Aquecimento

Foram realizados quatro experimentos com aumento da temperatura conforme descrito no item 3.3.3. Para este fim foram utilizadas resistências elétricas num total de 8,4 kW, imersas na suspensão de RB, permitindo a troca de calor através de convecção. A temperatura atingida variou entre 46 e 75°C, entretanto não foi observada alteração no pH de estabilização. A análise estatística também não indicou influência significativa. Dentro das faixas pesquisadas temperatura (26°±2; 35±7°C ou 50±7°C), não foi observada influência acima do erro na variável de controle.

4.3.2 – Experimento com Baixa Temperatura

Foi planejado um experimento (17) com baixa temperatura. Para este fim foram utilizados cerca de 90 kg de gelo, sendo uma parte substituindo a água da suspensão (80 L) e outra parte em contato com a suspensão para troca de calor através de convecção. Devido a temperatura ambiente, a temperatura atingida permaneceu entre 23 e 27°C, o que foi acima do planejado originalmente. Nestas condições não foi observado impacto no pH de estabilização.

4.3.3 – Experimento de Absorção de SO₂

Foi realizada uma avaliação da captura de SO₂ em paralelo com os experimentos 18, 19 e 20 (uma em cada tipo de torre). Foi injetado SO₂ engarrafado em quantidades variando de 100 a 700 ppm e as torres tiveram o desempenho mostrado na Tabela 4.10.

^	SO ₂ médio	Desvio	SO ₂ médio	Desvio	%
	na entrada	padrão	na exaustão	padrão	Capturado
Torre	(ppm)	(ppm)	(ppm)	(ppm)	
Aspersão	246	88	15	5	94
Recheio Selas	134	84	21	13	84
Recheio Estruturado	488	203	82	10	83

Tabela 4.10 – Experimento de captura de SO₂ em paralelo com gás de combustão.

Conforme pode ser observado na tabela 4.10, a torre de aspersão apresentou os melhores resultados na captura de SO₂, seguida pela torre de selas randômicas e em terceiro lugar a torre de recheio estruturado. É importante destacar que as três torres capturaram o SO₂ de maneira bastante eficiente.

4.4 – ANÁLISES DE DIFRAÇÃO E FLUORESCÊNCIA DE RAIOS X

4.4.1 - Difração de Raios X do RB

Na Figura 4.15 pode ser visto o difratograma do RB da Alunorte, utilizado nesse trabalho. De um modo geral, podemos identificar e classificar os minerais presentes na amostra de RB em duas categorias. Na primeira, aqueles provenientes da própria bauxita, tais como: a gibsita (G), hematita (He), goetita (Go), anatásio (A), quartzo (Qz) e pequenos traços do argilomineral caulinita (Ka). Na segunda categoria aqueles formados durante o processo Bayer, tais como o aluminato de tricálcio (C3A), a sodalita (So) e a cancrenita (Ca), que são zeólitas do sódio.

Figura 4.15 - Difração de raios X da amostra de RB não reagido da Alunorte. Fonte: autor.

Foram comparadas as análises por difração de raios X de amostras de RB carbonatado e não reagido, mostradas na Figura 4.16.

Figura 4.16 - Comparação dos difratogramas do RB não reagido e carbonatado.

Podemos observar na comparação dos difratogramas mostrados na Figura 4.16 a diminuição dos picos de aluminato de tricálcio identificado pelos picos em 21°; 33.2°; 41° e 47.6°. Este fato indica a dissolução do aluminato de tricálcio durante o processo de carbonatação. Observamos também o aumento dos picos referentes a dawsonita picos ~18° e 34,4° e carbonato de cálcio (calcita) 29,3777° 2 θ [3,04034 Å] mostrando a formação destes cristais. Estas mudanças estão de acordo com o descrito por Khaitan *et al.* (2009).

4.4.2 - Fluorescência de Raios X

Foram realizadas três análises semiquantitativas de RB carbonatado e uma do RB não reagido conforme as Tabelas 4.11 e 4.12.

Tubela IIII	Resultado aus une	inses sennquantituti	vus de l'idoreseene	
	RB não reagido	RB Experim. 12	RB Experim. 15	RB Experim. 25
	(%)	(%)	(%)	(%)
P_2O_5	0,10	0,11	<0,1	<0,1
ZrO ₂	0,69	0,84	0,20	0,16
CaO	1,08	1,31	1,36	1,07
TiO ₂	4,16	4,64	3,41	2,90
Na ₂ O	14,37	13,90	15,72	14,51
SiO ₂	18,30	18,95	19,57	18,13
Al ₂ O ₃	25,43	25,58	26,48	23,12
Fe ₂ O ₃	29,98	31,27	28,22	25,73
PF	5,50	3,00	4,70	14,00
Outros	0,40	0,41	0,25	0,28

Tabela 4.11 - Resultado das análises semiquantitativas de Fluorescência de raios X

Tabela 4.12 - Valores menores das análises semiquantitativas de fluorescência de raios X										
	RB não reagido	Experim. 12	Experim. 15	Experim. 25						
	PPM	PPM	PPM	PPM						
Cr	315	245	396	418						
Со	252	212	189	124						
Ni	11	12	<10	15						
Cu	120	128	46	241						
Zn	13	78	39	85						
Rb	<10	<10	-	-						
Sr	77	70	124	127						
Y	12	17	24	24						
Zr	2183	2309	760	872						
Nb	135	138	117	116						
Ba	162	175	189	175						
Pb	70	69	84	84						
Mn	593	599	454	392						
Ga	59	54	71	79						
U	11	11	<10	<10						

Podemos observar a presença de Ca sempre em valores menores que 1,5%.

Devemos observar a ausência completa de Th e a presença de U abaixo ou ligeiramente acima do limite de detecção, o que confirma a avaliação da inexistência do problema de radioatividade, descrito por Somlai *et al.*(2008), no RB utilizado. Esta é uma avaliação importante uma vez que em alguns RB provenientes de outros países foram encontrados níveis acima dos limites o que impede determinados usos do RB.

4.5 – AVALIAÇÕES REALIZADAS PARA VIABILIZAR OS DEMAIS EXPERIMENTOS

4.5.1 - Comportamento Reológico da Suspensão de RB

Para determinar o teor ideal de dispersante hexametafosfato de sódio capaz de reduzir a decantação da suspensão de água em RB e diminuir a potência do bombeamento foram realizados ensaios de defloculação da RB, foram realizados ensaios em rotações de 3 a 200 RPM para minimizar o efeito de parede.

A figura 4.17 mostra a variação da viscosidade da RB em função do teor de defloculante para as rotações de 4 e 5 RPM. Os resultados estão de acordo com a literatura (FARIAS *et al.*, 1997 e SANTOS, 1975), que mostra que o defloculante a base de

hexametafosfato de sódio tem um mínimo de viscosidade, para materiais como oxido de ferro, argila, sílica e alumina em torno de 1g/ton, para ambas as rotações.

Figura 4.17 – Variação da viscosidade em função do teor de defloculante.

De acordo com Farias *et al.* (1997) utilização de hexametafosfato também se caracteriza pela ação inerte do defloculante, que não modifica as propriedades químicas do RB.

A ação do hexametafosfato de sódio como defloculante no RB é evidente mesmo para concentração muito baixa.

4.5.2 – Decantação

Foi realizado um experimento de decantação com a adição de diferentes teores de sulfato de alumínio (0,0; 5,0 e 10,0 g/ton de RB base seca) a fim de facilitar a realização do experimento de carbonatação com o sobrenadante do RB. A Figura 4.18 mostra o resultado após 12 horas de decantação.

Figura 4.18 – Experimento de decantação com diferentes teores de sulfato de alumínio

4.6 – USO DO PROGRAMA STATISTICA 7 PARA ANÁLISE DOS RESULTADOS E GERAÇÃO DE MODELO EMPÍRICO

No gráfico de Pareto mostrado na Figura 4.19 fica bastante clara a influência predominante da variável meio de absorção no resultado do pH de longo prazo. Ou seja, o fato de utilizar a suspensão de RB como um todo ou somente o sobrenadante é o principal fator que tem impacto significativo no resultado que é o pH de longo prazo.

Figura 4.19 – Gráfico de Pareto mostrando o impacto das variáveis e suas interações.

No gráfico da superfície de resposta, mostrado na Figura 4.20 é possível observar que o meio de absorção apresenta impacto significativo enquanto a duração do experimento permanece o tempo todo na cor verde. Uma outra maneira de analisar a influência de cada variável são os perfis para valores previstos e desejabilidade mostrados na Figura 4.21. Nela é possível observar que o gráfico referente ao meio de absorção apresenta inclinação bastante acentuada mostrando o impacto de sua alteração.

Figura 4.20 – Gráfico mostrando a superfície de resposta do pH longo.

Figura 4,21 – Perfis para valores previstos e desejabilidade, com o impacto de cada variável.

	-										
	Effect Estimates; Var.:pH longo; R-sqr=,9431; Adj:,89496 (Dez28 2012.sta)										
	12-level fa	ctors, 33-l	evelfactors	s, 25 Runs							
	DV:pH lon	go; MS Pur	e Error=,0'	18							
	Effect	Std.Err.	t(10)	р	-99,%	+99,%	Coeff.	Std.Err.	-99,%	+99,%	
Factor		Pure Err			Cnf.Limt	Cnf.Limt		Coeff.	Cnf.Limt	Cnf.Limt	
Mean/Interc.	11,33631	0,102593	110,4982	0,000000	11,01117	11,66146	11,33631	0,102593	11,01117	11,66146	
(1)Tipo torre(L)	0,73199	0,164681	4,4449	0,001245	0,21007	1,25391	0,36599	0,082341	0,10503	0,62695	
Tipo torre(Q)	0,16970	0,062353	2,7217	0,021499	-0,02791	0,36732	0,08485	0,031177	-0,01396	0,18366	
(2)Meio abs(L)	2,15336	0,136724	15,7497	0,000000	1,72004	2,58668	1,07668	0,068362	0,86002	1,29334	
(3)Temp (L)	0,52689	0,227126	2,3198	0,042787	-0,19294	1,24671	0,26344	0,113563	-0,09647	0,62336	
Temp (Q)	0,32972	0,144295	2,2851	0,045394	-0,12759	0,78703	0,16486	0,072148	-0,06379	0,39352	
(4)Dur experimL)	-0,26900	0,082255	-3,2703	0,008425	-0,52969	-0,00831	-0,13450	0,041128	-0,26485	-0,00416	
Dur experim(Q)	0,37446	0,079612	4,7036	0,000837	0,12215	0,62678	0,18723	0,039806	0,06108	0,31339	
1L by 2L	0,53065	0,146149	3,6309	0,004606	0,06746	0,99383	0,26532	0,073074	0,03373	0,49692	
1L by 3L	-1,33871	0,292297	-4,5800	0,001011	-2,26508	-0,41234	-0,66935	0,146149	-1,13254	-0,20617	
1L by 4L	0,17955	0,106318	1,6888	0,122148	-0,15740	0,51650	0,08977	0,053159	-0,07870	0,25825	
21 by 31	0 1 6 0 7 2	0 1 0 2 0 0 1	0 0 200	0 4 26 4 75	0 45275	0 77510	0 08036	0.006042	-0 22687	0 2 0 7 6 0	
~, ~.	0,10072	0,193004	0,6290	0,420475	-0,45575	0,77519	0,00030	0,030342	-0,22007	0,36700	
	Effect Esti	mates; Var.	:pH longo;	0,420473 R-sar=,943	-0,45375 31; Adi:,894	96 (Dez28	2012.sta)	0,090942	-0,22007	0,38700	
	Effect Esti 1 2-level fa	mates; Var. actors, 33-l	:pH longo; evel factors	R-sqr=,943 s, 25 Runs	-0,45375 81; Adj:,894	96 (Dez28	2012.sta)	0,090942	-0,22007	0,38700	
	Effect Esti 1 2-level fa DV: pH lor	mates; Var. actors, 3 3-l igo; MS Pur	:pH longo; evel factors e Error=,0	0,420473 R-sqr=,943 s, 25 Runs 18	-0,43373 31; Adj:,894	96 (Dez28	2012.sta)	0,090942	-0,22007	0,38700	
	Effect Esti 1 2-level fa DV: pH lor Effect	mates; Var. actors, 3 3-l go; MS Pur Std.Err.	:pH longo; evel factors e Error=,0 [°] t(10)	0,420473 R-sqr=,943 s, 25 Runs 18 p	-0,45375 1; Adj:,894 -95,%	96 (Dez28	2012.sta)	Std.Err.	-95,%	+95,%	
Factor	Effect Esti 1 2-level fa DV: pH lor Effect	mates; Var. actors, 3 3-l ago; MS Pur Std.Err. Pure Err	:pH longo; evel factors e Error=,0 ² t(10)	0,420473 R-sqr=,943 s, 25 Runs 18 p	-95,% Cnf.Limt	96 (Dez28 +95,% Cnf.Limt	Coeff.	Std.Err. Coeff.	-95,% Cnf.Limt	+95,% Cnf.Limt	
Factor Mean/Interc.	Effect Esti 1 2-level fa DV: pH lor Effect 11,33631	mates; Var. actors, 3 3-l ago; MS Pur Std.Err. Pure Err 0,102593	:pH longo; evel factors e Error=,07 t(10) 110,4982	0,420473 R-sqr=,943 s, 25 Runs 18 p 0,000000	-95,% Cnf.Limt 11,10772	+95,% Cnf.Limt 11,56490	Coeff.	Std.Err. Coeff. 0,102593	-95,% Cnf.Limt 11,10772	+95,% Cnf.Limt 11,56490	
Factor Mean/Interc. (1)Tipo torre(L)	Effect Esti 1 2-level fa DV: pH lor Effect 11,33631 0,73199	mates; Var. actors, 3 3-l ago; MS Pur Std.Err. Pure Err 0,102593 0,164681	:pH longo; evel factors e Error=,0° t(10) 110,4982 4,4449	0,420473 R-sqr=,943 s, 25 Runs 18 0,000000 0,001245	-95,% Cnf.Limt 11,10772 0,36505	+95,% Cnf.Limt 11,56490 1,09892	Coeff. 11,33631 0,36599	Std.Err. Coeff. 0,102593 0,082341	-95,% Cnf.Limt 11,10772 0,18253	+95,% Cnf.Limt 11,56490 0,54946	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q)	Effect Esti 1 2-level fa DV: pH lor Effect 11,33631 0,73199 0,16970	0,193644 mates; Var. actors, 3 3-l go; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353	0,8290 :pH longo; evel factors e Error=,0' t(10) 110,4982 4,4449 2,7217	R-sqr=,943 s, 25 Runs 18 0,000000 0,001245 0,021499	-95,% Cnf.Limt 11,10772 0,36505 0,03077	+95,% Cnf.Limt 11,56490 1,09892 0,30864	Coeff. 11,33631 0,36599 0,08485	Std.Err. Coeff. 0,102593 0,082341 0,031177	-95,% Cnf.Limt 11,10772 0,18253 0,01539	+95,% Cnf.Limt 11,56490 0,54946 0,15432	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q) (2)Meio abs(L)	Effect Esti 1 2-level fa DV: pH lor Effect 11,33631 0,73199 0,16970 2,15336	mates; Var. actors, 3 3-l go; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353 0,136724	0,8290 :pH longo; evel factors e Error=,07 t(10) 110,4982 4,4449 2,7217 15,7497	R-sqr=,943 s, 25 Runs 18 0,000000 0,001245 0,021499 0,000000	-95,% Cnf.Limt 11,10772 0,36505 0,03077 1,84872	+95,% Cnf.Limt 11,56490 1,09892 0,30864 2,45800	Coeff. 11,33631 0,36599 0,08485 1,07668	Std.Err. Coeff. 0,102593 0,082341 0,031177 0,068362	-95,% Cnf.Limt 11,10772 0,18253 0,01539 0,92436	+95,% Cnf.Limt 11,56490 0,54946 0,15432 1,22900	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q) (2)Meio abs(L) (3)Temp (L)	Effect Esti 1 2-level fa DV: pH lor Effect 11,33631 0,73199 0,16970 2,15336 0,52689	mates; Var. actors, 3 3-l go; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353 0,136724 0,227126	0,8290 :pH longo; evel factors e Error=,07 t(10) 110,4982 4,4449 2,7217 15,7497 2,3198	R-sqr=,943 s, 25 Runs 18 0,000000 0,001245 0,021499 0,000000 0,042787	-95,% Cnf.Limt 11,10772 0,36505 0,03077 1,84872 0,02082	+95,% Cnf.Limt 11,56490 1,09892 0,30864 2,45800 1,03296	Coeff. 11,33631 0,36599 0,08485 1,07668 0,26344	Std.Err. Coeff. 0,102593 0,082341 0,031177 0,068362 0,113563	-95,% Cnf.Limt 11,10772 0,18253 0,01539 0,92436 0,01041	+95,% Cnf.Limt 11,56490 0,54946 0,15432 1,22900 0,51648	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q) (2)Meio abs(L) (3)Temp (L) Temp (Q)	Effect Esti 1 2-level fa DV: pH lor Effect 11,33631 0,73199 0,16970 2,15336 0,52689 0,32972	mates; Var. actors, 3 3-l go; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353 0,136724 0,227126 0,144295	0,829 :pH longo; evelfactors e Error=,0' t(10) 110,4982 4,4449 2,7217 15,7497 2,3198 2,2851	R-sqr=,943 s, 25 Runs 18 p 0,000000 0,001245 0,021499 0,000000 0,042787 0,045394	-95,% Cnf.Limt 11,10772 0,36505 0,03077 1,84872 0,02082 0,00821	96 (Dez28 +95,% Cnf.Limt 11,56490 1,09892 0,30864 2,45800 1,03296 0,65123	Coeff. 11,33631 0,36599 0,08485 1,07668 0,26344 0,16486	Std.Err. Coeff. 0,102593 0,082341 0,031177 0,068362 0,113563 0,072148	-95,% Cnf.Limt 11,10772 0,18253 0,01539 0,92436 0,01041 0,00411	+95,% Cnf.Limt 11,56490 0,54946 0,15432 1,22900 0,51648 0,32562	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q) (2)Meio abs(L) (3)Temp (L) Temp (Q) (4)Dur experim(L)	Effect Esti 1 2-level fa DV: pH lon Effect 11,33631 0,73199 0,16970 2,15336 0,52689 0,32972 -0,26900	mates; Var. actors, 3 3-l go; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353 0,136724 0,227126 0,144295 0,082255	0,829 :pH longo; evelfactors e Error=,0' t(10) 110,4982 4,4449 2,7217 15,7497 2,3198 2,2851 -3,2703	R-sqr=,943 s, 25 Runs 18 p 0,000000 0,001245 0,021499 0,000000 0,042787 0,045394 0,008425	-95,% Cnf.Limt 11,10772 0,36505 0,03077 1,84872 0,02082 0,00821 -0,45228	96 (Dez28 +95,% Cnf.Limt 11,56490 1,09892 0,30864 2,45800 1,03296 0,65123 -0,08573	Coeff. 11,33631 0,36599 0,08485 1,07668 0,26344 0,16486 -0,13450	Std.Err. Coeff. 0,102593 0,082341 0,031177 0,068362 0,113563 0,072148 0,041128	-95,% Cnf.Limt 11,10772 0,18253 0,01539 0,92436 0,01041 0,00411 -0,22614	+95,% Cnf.Limt 11,56490 0,54946 0,15432 1,22900 0,51648 0,32562 -0,04286	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q) (2)Meio abs(L) (3)Temp (L) Temp (Q) (4)Dur experim(L) Dur experim(Q)	Effect Esti 1 2-level fa DV: pH lon Effect 11,33631 0,73199 0,16970 2,15336 0,52689 0,32972 -0,26900 0,37446	mates; Var. actors, 3 3-l ago; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353 0,136724 0,227126 0,144295 0,082255 0,079612	0,829 :pH longo; evelfactors e Error=,0' t(10) 110,4982 4,4449 2,7217 15,7497 2,3198 2,2851 -3,2703 4,7036	R-sqr=,943 s, 25 Runs 18 p 0,000000 0,001245 0,021499 0,000000 0,042787 0,045394 0,008425 0,000837	-95,% Cnf.Limt 11,10772 0,36505 0,03077 1,84872 0,02082 0,00821 -0,45228 0,19708	96 (Dez28 +95,% Cnf.Limt 11,56490 1,09892 0,30864 2,45800 1,03296 0,65123 -0,08573 0,55185	Coeff. 11,33631 0,36599 0,08485 1,07668 0,26344 0,16486 -0,13450 0,18723	Std.Err. Coeff. 0,102593 0,082341 0,031177 0,068362 0,113563 0,072148 0,041128 0,039806	-95,% Cnf.Limt 11,10772 0,18253 0,01539 0,92436 0,01041 0,00411 -0,22614 0,09854	+95,% Cnf.Limt 11,56490 0,54946 0,15432 1,22900 0,51648 0,32562 -0,04286 0,27592	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q) (2)Meio abs(L) (3)Temp (L) Temp (Q) (4)Dur experim(L) Dur experim(Q) 1L by 2L	Effect Esti 1 2-level fa DV: pH lor Effect 11,33631 0,73199 0,16970 2,15336 0,52689 0,32972 -0,26900 0,37446 0,53065	mates; Var. actors, 3 3-l ago; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353 0,136724 0,227126 0,144295 0,082255 0,079612 0,146149	0,829 :pH longo; evelfactors e Error=,0' t(10) 110,4982 4,4449 2,7217 15,7497 2,3198 2,2851 -3,2703 4,7036 3,6309	R-sqr=,943 s, 25 Runs 18 p 0,000000 0,001245 0,021499 0,000000 0,042787 0,045394 0,008425 0,00837 0,004606	-95,% Cnf.Limt 11,10772 0,36505 0,03077 1,84872 0,02082 0,00821 -0,45228 0,19708 0,20501	96 (Dez28 +95,% Cnf.Limt 11,56490 1,09892 0,30864 2,45800 1,03296 0,65123 -0,08573 0,55185 0,85629	Coeff. 11,33631 0,36599 0,08485 1,07668 0,26344 0,16486 -0,13450 0,18723 0,26532	Std.Err. Coeff. 0,102593 0,082341 0,031177 0,068362 0,113563 0,072148 0,072148 0,041128 0,039806 0,073074	-95,% Cnf.Limt 11,10772 0,18253 0,01539 0,92436 0,01041 0,00411 -0,22614 0,09854 0,10250	+95,% Cnf.Limt 11,56490 0,54946 0,15432 1,22900 0,51648 0,32562 -0,04286 0,27592 0,42814	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q) (2)Meio abs(L) (3)Temp (L) Temp (Q) (4)Dur experim(L) Dur experim(Q) 1L by 2L 1L by 3L	Effect Esti 1 2-level fa DV: pH lon Effect 11,33631 0,73199 0,16970 2,15336 0,52689 0,32972 -0,26900 0,37446 0,53065 -1,33871	mates; Var. actors, 3 3-l ago; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353 0,136724 0,227126 0,144295 0,082255 0,079612 0,146149 0,292297	0,829 :pH longo; evelfactors e Error=,0' t(10) 110,4982 4,4449 2,7217 15,7497 2,3198 2,2851 -3,2703 4,7036 3,6309 -4,5800	R-sqr=,943 s, 25 Runs 18 p 0,000000 0,001245 0,021499 0,000000 0,042787 0,045394 0,008425 0,00837 0,004606 0,001011	-95,% Cnf.Limt 11,10772 0,36505 0,03077 1,84872 0,02082 0,00821 -0,45228 0,19708 0,20501 -1,98999	96 (Dez28 +95,% Cnf.Limt 11,56490 1,09892 0,30864 2,45800 1,03296 0,65123 -0,08573 0,55185 0,85629 -0,68743	Coeff. 11,33631 0,36599 0,08485 1,07668 0,26344 0,16486 -0,13450 0,18723 0,26532 -0,66935	Std.Err. Coeff. 0,102593 0,082341 0,031177 0,068362 0,113563 0,072148 0,072148 0,041128 0,039806 0,073074 0,146149	-95,% Cnf.Limt 11,10772 0,18253 0,01539 0,92436 0,01041 0,00411 -0,22614 0,09854 0,10250 -0,99499	+95,% Cnf.Limt 11,56490 0,54946 0,15432 1,22900 0,51648 0,32562 -0,04286 0,27592 0,42814 -0,34371	
Factor Mean/Interc. (1)Tipo torre(L) Tipo torre(Q) (2)Meio abs(L) (3)Temp (L) Temp (Q) (4)Dur experim(L) Dur experim(Q) 1L by 2L 1L by 3L 1L by 4L	Effect Esti 1 2-level fa DV: pH lor Effect 11,33631 0,73199 0,16970 2,15336 0,52689 0,32972 -0,26900 0,37446 0,53065 -1,33871 0,17955	mates; Var. actors, 3 3-l go; MS Pur Std.Err. Pure Err 0,102593 0,164681 0,062353 0,136724 0,227126 0,144295 0,082255 0,079612 0,146149 0,292297 0,106318	0,829 :pH longo; evelfactors e Error=,0' t(10) 110,4982 4,4449 2,7217 15,7497 2,3198 2,2851 -3,2703 4,7036 3,6309 -4,5800 1,6888	R-sqr=,943 s, 25 Runs 18 p 0,000000 0,001245 0,021499 0,000000 0,042787 0,045394 0,008425 0,00837 0,004606 0,001011 0,122148	-95,% Cnf.Limt 11,10772 0,36505 0,03077 1,84872 0,02082 0,00821 -0,45228 0,19708 0,20501 -1,98999 -0,05734	96 (Dez28 +95,% Cnf.Limt 11,56490 1,09892 0,30864 2,45800 1,03296 0,65123 -0,08573 0,55185 0,85629 -0,68743 0,41644	Coeff. 11,33631 0,36599 0,08485 1,07668 0,26344 0,16486 -0,13450 0,18723 0,26532 -0,66935 0,08977	Std.Err. Coeff. 0,102593 0,082341 0,031177 0,068362 0,113563 0,072148 0,072148 0,041128 0,039806 0,073074 0,146149 0,053159	-95,% Cnf.Limt 11,10772 0,18253 0,01539 0,92436 0,01041 0,00411 -0,22614 0,09854 0,10250 -0,99499 -0,02867	+95,% Cnf.Limt 11,56490 0,54946 0,15432 1,22900 0,51648 0,32562 -0,04286 0,27592 0,42814 -0,34371 0,20822	

Na Figura 4.22, é mostrada a tela do cálculo dos coeficientes de regressão que permitem montar a equação do modelo empírico (equação 4.1).

Figura 4.22 – Telas do Statistica 7 mostrando os coeficientes de regressão, o erro e os diferentes intervalos de confiança de cada termo da equação.

Portanto a equação do modelo empírico fica:

$$y = 11,34 + 0,732X_1 + 0,170X_1^2 + 2,153X_2 + 0,527X_3 + 0,330X_3^2 - 0,269X_4 + 0,374X_4^2 + 0,531X_1X_2 - 1,339X_1X_3 + 0,180X_1X_4 + 0,161X_2X_3$$
(4.1)

Onde:

 $X_1 \rightarrow$ Tipo de torre: -1 para aspersão, 0 para recheio de selas e 1 para recheio estruturado.

 $X_2 \rightarrow$ Meio de absorção: -1 para suspensão de RB e 1 para sobrenadante.

 $X_3 \rightarrow$ Temperatura: -1 para rebaixada, 0 para ambiente e 1 para aquecida.

X4 \rightarrow Duração do Experimento \rightarrow -1 para experimentos de 80 à 100 minutos, 0 para 120 à 160 minutos e -1 para 160 à 520 minutos.

Na Figura 4.23 pode-se observar o gráfico dos valores previstos pelo modelo comparados aos valores reais com um erro de 0,018, sendo portanto bastante adequado.

Figura 4.23 – Gráfico dos valores previstos versus reais utilizando a equação de simulação.

CAPÍTULO 5

CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

5.1 – CONCLUSÕES

- Em futuras aplicações industriais desta tecnologia o uso do sobrenadante separado deve ser descartado. Seu uso implicaria na necessidade de misturar novamente o sobrenadante com o decantado diversas vezes, gerando um desperdício de energia no processo.
- Os sólidos presentes na suspensão são preponderantes na reação com os gases.
 Este fato fica evidenciado devido ao pH ter subido em média 4.1 pontos (desvio padrão 0.7) após os experimentos com sobrenadante comparado com 1,96 pontos (desvio padrão 0,7) nos experimentos com a suspensão de lama.
- O meio de absorção é claramente a principal variável do processo. A duração do experimento e o tipo de torre ficaram próximos do limite de significância dependendo do intervalo de confiança escolhido.
- Comparando os experimentos das torres de aspersão, recheios randômicos e recheio estruturado, observamos os seguintes resultados de pH de longo prazo: aspersão, média 10.5 (desvio padrão 0,4); recheios randômicos, média 10,5 (desvio padrão 0,6); recheio estruturado, média 10,5 (desvio padrão 0,3). Devido a maior área de contato, a reação ocorre mais rapidamente na torre de recheio estruturado, seguida pela de recheio randômico e por último na de aspersão. A torre de aspersão possui um custo global de capital substancialmente menor para construção, operação e manutenção. Sua manutenção é muito mais simples e do ponto de vista ambiental, ela possui a vantagem de não necessitar limpeza química, o que evita a geração de um novo resíduo. Portanto a torre de aspersão apresenta as melhores características para este processo.
- O fato do pH de longo prazo ter um desvio padrão (0,27) muito menor do que o valor do desvio padrão ao final dos experimentos (0,49) indica claramente que o pH de longo prazo está sendo determinado pela liberação lenta de determinados íons da parte sólida do RB. Ao contrário de exemplos da literatura em outros

experimentos o aluminato de tricálcio não demonstra ser o principal fator pelo baixo teor de Ca mostrado na fluorescência de raios X.

- Os experimentos de suspensão de RB com aquecimento apresentaram uma média para o pH no final de 9,1 e pH de longo prazo 10,4 com um desvio padrão de 0,3. Estes valores estão significativamente acima da média dos experimentos provavelmente causado pela reversão da reação de carbonatação, indicam a necessidade de resfriamento do RB para a temperatura ambiente em uma futura aplicação industrial.
- A comparação do pH de longo prazo com a quantidade de CO₂ absorvido durante o experimento não mostra uma correlação direta. Por outro lado, os experimentos de maior duração coincidem com maior massa de CO₂ absorvida. Estes dois fatores podem ser explicados pelo efeito da reação reversível de carbonatação.
- O principal objetivo deste projeto que foi demonstrar a viabilidade de reagir o RB com os gases provenientes da combustão de fontes fósseis da própria refinaria sem nenhum processamento prévio. Este objetivo foi atingido plenamente com o pH de estabilização atingindo 10,5 comparado com o experimento de KHAITAN (2009) que obteve 9,8 como o pH de equilíbrio para a concentração de CO₂ existente no ambiente.
- Uma suspensão de RB pode ser utilizada para remoção de SO₂ em fluxos gasosos em substituição de outras soluções alcalinas.
- A absorção de SO₂ pode se dar de maneira simultânea com a carbonatação. Este fato pode permitir o uso de combustíveis com maior teor de enxofre, com custo menor, compensando parte do custo da carbonatação.
- A diferença na evolução do pH de longo prazo mostrado no gráfico 4,18 é causada pela diferença da pressão parcial de CO₂ nos frascos abertos e tampados. Isto demonstra a reversão parcial da carbonatação. Num sistema real de armazenamento com empilhamento a seco, a pressão parcial provavelmente vai estar em uma situação intermediária entre a condição de frasco fechado e aberto. As razões para esta avaliação são a reversão lenta da carbonatação e a sucessiva deposição de novas camadas de RB que deverão aumentar a pressão parcial nas camadas inferiores.
- Uma das premissas para obter sucesso em processos de reciclagem de alta complexidade, como este, é o estabelecimento de parcerias de longo prazo entre

o produtor do resíduo, o potencial usuário, as autoridades regulatórias e instituições de pesquisa.

5.2 – SUGESTÕES PARA TRABALHOS FUTUROS

- Realizar um modelamento das reações químicas para identificar quais reações estão controlando o pH.
- Simulação do processo nas torres por elementos finitos.
- Construção de dois reservatórios para RB carbonatado e não carbonatado de modo a analisar o comportamento do pH sobrenadante e de fundo ao longo do tempo e submetido a chuva e sol.
- Experimentar a adição de fontes de Ca e Mg para permitir a precipitação da alcalinidade sob a forma de compostos estáveis no RB carbonatado.
- Realizar experimentos com RB submetido a diferentes níveis de desaguamento.

REFERÊNCIAS BIBLIOGRÁFICAS

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2004, "NBR 10004: Resíduos sólidos - Classificação", Rio de Janeiro.

ACAA, AMERICAN COAL ASH ASSOCIATION, 2007 **Coal Combustion Product** (CCP) Production & Use Survey Results (Revised). http://www.acaa-usa.org/(7/5/2009).

ALUMINA TECHNOLOGY ROADMAP - 2010, International Aluminium

Association, disponível em http://www.worldaluminium.org/media/filer/2012/06/12/fl0000422>.pdf Acessado em 30 de julho de 2012, 18:36:23.

ALUNORTE, Folder, Rio de Janeiro, 2008.

BAYER, K. J., "Verfahren zur darstellung von thonerhydrat und alkalialuminat", patente, 1887.

BROWN, G.G. Ingenieria Quimica, Editorial Marin, 1965, Espanha.

CARTER, C.; VAN DER SLOOT, H.; COOLING, D.; *et al.*, "Characterization of untreated and neutralized bauxite residue for improved waste management". **Environmental. Engineering. Science**., 25, (4), pp. 475-488,2008.

CASTALDI, P.; SILVETTI, M.; SANTONA, *et al.*, "XRD, FTIR and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals". **Clays Clay Minerals**., Vol.56, (4), pp.461-469, The Clay Minerals Society, 2008.

COSTA M. L., BRAGA R. M.Q.L., BOSCOV, M.E.G., "Mineralogy and chemistry of red mud from Bayer-processed Amazonian bauxites", **ICSOBA**, Belém, 2012

COOLING, D. J.; HAY, P. S.; GUILFOYLE, L.," Carbonation of bauxite residue", **Proceedings of the 6ht International Alumina Quality Workshop,** Chandrashekar, S., Ed. AQW Inc., Brisbane; pp 185-190, 2002.

CREMASCO, M. A, Fundamentos da Transferência de Massa, 2a ed., Editora da Unicamp, Campinas SP, 2002.

DAS, P., ROY, D., BRAHMA, R., "Experience with thickened disposal of red mud", **Light Metals**, Ed. TMS, Vancouver, pp. 133-135, 2003.

DILMORE, R., LU, P., ALLEN, D. *et al.*, "Sequestration of CO₂ in Mixtures of Bauxite Residue and Saline Wastewater", **Energy and Fuels 22**, 2008.

DNPM, **Ocorrências, Jazidas, Minas e Desenvolvimento**, apresentação no Seminário "Bauxita & Alumínio: desafios e perspectivas", 2007. Disponível em <www.ibram.org.br/sites/700/784/00000743.ppt>. Acesso em 12 jan. 2013, 11:10:30 EVANS, K., NORDHEIM, E., TSESMELIS, K., "Bauxite Residue Management", Light Metals 2012, pp63-66, TMS, Wiley, Orlando, Fev. 2012.

FARIAS, W. M., CARDOSO, F. B. F., MARTINS, E. S. *et al.*, Seminário **Estudos sobre métodos de defloculação em solos profundamente intemperizados**, Geotecnia dos Solos Tropicais, UnB, 1997.

FLORES, H. A. R., "Absorção de dióxido de carbono em soluções aquosas de aminas em uma coluna de parede molhada com promotor de película", Tese de Mestrado, USP, 2011.

FRANÇA, S. C. A., COUTO, H. J. B., **"Análise Microgranulométrica - Malvern e Sedigraph"**. In: Sampaio, J. A., França, S. C. A., Braga, P. F. A. (eds.), *Tratamento de Minérios - Práticas Laboratoriais*, pp. 101-122, Rio de Janeiro , 2007, CETEM/MCT.

FURSMAN, O. C., **Utilization of Red Mud Residues from Alumina Production**, U.S. Dept. of Interior, Bureau of Mines, p 31., 1970.

GOLDSTEIN, G. L. e REIMERS, R. S., "Trace element partitioning and bioavailability in red mud synthetic freshwater sentiment", **Light Metals**, Ed. TMS, San Diego, pp 19-24, 1999.

GRÄFE, M.; POWER, G.; KLAUBER, C., Literature review of bauxite residue alkalinity and associated chemistry; DMR-3610; CSIRO-Minerals: Waterford;. 2009. Disponível em http://www.csiro.au, Acesso em 5 maio 2012, 11:50:33.

GUILFOYLE, L., HAY, P., COOLING, D., "Use of Flue Gas for Carbonation of Bauxite Residue", **Proceedings of the 7th International Alumina Quality Workshop**, 2005.

GUSTAFSSON, J. P., Visual MINTEQ, 2.53; KTH, Dep. Land and Water Resource Engineering: Estocolmo, 2006.

HILDEBRANDO, E. A., SOUZA, J. A. S., NEVES, R. F, "Aplicação do Rejeito do Processo Bayer (Lama Vermelha) como Matéria-Prima na Indústria de Cerâmica Estrutural". Anais do 43º Congresso Brasileiro de Cerâmica e 4º Congresso de Cerâmica do Mercosul, pp. 28101-28111, Florianópolis, SC, Brasil., 1999.

IAI – INTERNATIONAL ALUMINIUM INSTITUTE, 2009, Alumina production: Statistics. Disponível em < http://stats.world-aluminium.org/iai/stats_new/form Server.asp?form=5>, Consultado em março, 2011, 10:52:11).

JOHNSTON, M., CLARK, M.W., McMAHON, P. *et al.*, "Alkalinity Conversion of Bauxite Refinery Residues by Neutralization", Journal of Hazardous Materials 182, Elsevier, 2010

JONES, G., JOSHI, G., CLARK, M. *et al.*, "Carbon Capturing and the Aluminium Industry: Preliminary Studies", **Environmental Chemistry**, Csiro Publishing, 2006.

KHAITAN, S.; DZOMBAK, D. A.; LOWRY, G. V., "Mechanisms of neutralization of bauxite residue by carbon dioxide", **Journal of Environmental Engineering**, ASCE, 2009.

KLAUBER C., GRÄFE M., POWER G., "Review of Bauxite Residue "Re-use" Options", **CSIRO-Minerals: Waterford**, 2009. Disponível em http://www.csiro.au, Acesso em 7 maio 2012, 11:20:33.

LEMOS, R.J., "Viabilidade de Concentração Física de Titânio Proveniente do Rejeito do Processo Bayer Lama Vermelha", dissertação de Mestrado, UFPA-ITEC, 2008.

LIU, Y., LIN, C.; WU, Y., "Characterization of red mud derived from a combined Bayer Process and bauxite calcination method". **Journal of Hazardous Materials**, 146, (1-2), pp.255-261, 2006.

MAGALHÃES, E. M., **Estudo da Cinética de Secagem de Agregados Produzidos a partir do Resíduo do Processo Bayer**, dissertação de Mestrado: Universidade Federal do Pará, Belém, 2008

MAGALHÃES, E.M., Estudo da extração de compostos de ferro da lama vermelha visando a extração e/ou recuperação de compostos de titânio, tese de Doutorado, UFPA, Belém, 2012.

McCABE, W.L., SMITH, J.C. e HARRIOTT, P., **Unit Operations of Chemical Engineers**, McGraw-Hill, New York, 1085.

MEIRELES FILHO, J., **O Livro de Ouro da Amazônia**. São Paulo, Editora Geral Livros, 2007.

NIKRAZ, H.R., BODLEY, A.J., COOLING, D.J. *et al.*, "Comparison of Physical Properties between Treated and Untreated Bauxite Residue Mud", **Journal of Materials in Civil Engineering,** janeiro 2007.

PANOV, A., KLIMENTENOK, G, PODGORODETSKIY, G., *et al.*, "Directions for Large Scale Utilization of Bauxite Residue" **Light Metals, TMS,** Orlando, pp 93-98, Fev. 2012.

PARAMGURU, R., RATH, P.; MISRA, V.," Trends in red mud utilization - A review". **Min. Process. Extract. Metall. Rev.**, Taylor & Francis Inc., 26, pp 1-29, 2005.

PELOQUIN, G., DUFOUR, R., CARRUTHERS, A.N., "Apparatus for Production Withdraw and Transfer of Highly Viscous Slurry", **Patente US743376**, 2009.

PERRY, R. H., **Perry's Chemical Engineers' Handbook**, McGraw-Hill, New York, 1997.

PHILIPSBORN, H.V., KUHNAST, E., "Gama Spectrometric Characterization of Industrially Used African and Australian Bauxites and Their Red Mud Tailings", **Radiation Protection Dosimetry**, Vol. 45, pp 741-744, Nuclear Technology Publishing 1992;

POHLAND, H.; SCHEPERS, B., "Process for the preparation of aluminum hydroxide with a small content of impurities, especially of iron and with a high brightness..", **EP188268-A2**, 23 Jul, 1985.

POWER, G., GRÄFE, M., KLAUBER, C., **Review of Current Bauxite Residue Management, Disposal and Storage: Practices, Engineering and Science**, CSIRO-Minerals: Waterford p 44. 2009. Disponível em http://www.csiro.au, Acesso em 5 maio 2012, 10:50.

REBRIK, I., SMOLA, V., UTKOV, V. et al., "Criteria for Possibility of Recycling of Industrial Raw Material", **Ecology and Industry of Russia**, pp. 2-4, Nov 2008 (in Russian)

RIVAS MERCURY, J.M., "Aproveitamento de Lama Vermelha como Matéria-Prima Cerâmica", Cefet-MA, apresentação, 2008.

ROACH, G. I. D., JAMIESON, E., PEARSON, N., *et al.* Effect of particle characteristics on the solids density of Bayer mud slurries", **Light Metals**, Ed. TMS: New Orleans; pp 51-58, 2001.

RODRIGUES, M. I., IEMMA, A. F., 2009, **Planejamento de Experimentos e Otimização de Processos**, 2ª. Ed., Campinas, SP, Casa do Espírito Amigo Fraternidade Fé e Amor

SAHU, R.C., PATEL, R.K., RAY, B.C., "Neutralization of Red Mud Using CO₂ Sequestration Cycle, Journal of Hazardous Materials 179, 2010.

SANTOS, P. S, **Tecnologia das argilas aplicada as argilas brasileiras, Fundamentos**, Ed. Universidade de São Paulo, São Paulo, 1975.

SANTOS, P.S., Ciência e Tecnologia de Argilas, 2ª edição, São Paulo, Edgard Blucher, 1989.

SENYUTA, A., PANOV, A, SUSS A. *et al.*, "Comparison of acidic and alkaline technologies for producing alumina from low grade ores", **ICSOBA**, AA 19 – T, Belém, PA, Brasil, Out 2012.

SHERWOOD, T; PIGFORD, **Transfer of Material Between Phases**, Ed.McGraw-Hill, New York, pp. 51-114, 1975.

SMIRNOV, V. S, "Alumina production in Russia Part 1; Historical Background", **JOM** num 48, pp 24-26,1996.

SMITH, P. G.; PENNIFOLD, R. M.; DAVIES, M. G. *et al.*, "Reactions of carbon dioxide with tri-calcium aluminate", **Fifth International Symposium on Hydrometallurgy**, Eds. TMS: Vancouver; pp 1705-1715, 2003.

SOMLAI, J.; JOBBAGY, V.; KOVACS, J., *et al.*, "Radiological aspects of the usability of red mud as building material additive." **Journal of Hazardous Materials**, 150, pp. 541-545, 2008.

SOUZA, J.A.S., "Estudo e avaliação do uso de resíduos do processo Bayer como matériaprima na produção de agregados sintéticos para a construção civil" **Tese de Doutorado**, **Universidade Federal do Pará**, Mar. 2010.

STUMM, W., MORGAN, J.J., Aquatic Chemistry: An introduction emphasizing chemical equilibrium in natural waters. 2nd ed.; John Wiley & Sons: New York, 1981.

SUCHITA, R., WASEWAR, K.L., MUKHOPADHYAY, J. *et al.*, "Neutralization and Utilization of Red Mud for its Best Waste Management", **Archives of Environmental Science**, Vol. 6, pp.13-33, 2012

THAKUR, R. S., SANT, B. R., "Utilization of red mud". Journal of Science and Industrial. Research., 33, (8), pp. 408-416, 1974.

THORNBER, M. R.; BINET, D., "Caustic soda adsorption on Bayer residues", **5th International Alumina Quality Workshop**, al., P. e., Ed. AQW Inc., Bunbury; pp. 498-507, 1999.

THORNBER, M. R.; HUGHES, C. A., "The mineralogical and chemical properties of red mud waste from the Western Australia alumina industry", **Proceedings of the International Conference on Bauxite Tailings**, Kingston, Jamaica, 1986.

TIKHONOV, N. N, DAVYDOV, I. V, VINOGRADOV, S. A, "Wasteless Nepheline ores processing assessment of commercial implementation of the process in Asia region", **TRAVAUX ICSOBA**, Vol. 35, No. 39, pp. 478-481.2010.

UNSCEAR 2000 Report Vol. 1, **Sources and Effects of Ionizing Radiation**. Disponível em < www.unscear.org/unscear/en/publications.html>, consultado em 15 Nov de 2012, 13:15:20.

USGS, U.S., 1997, Geological Survey, Fact Sheet FS-163-97. Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance, U.S. Department of the Interior.

VENANCIO, L.C., SOUZA, J.A.S, MACEDO, E.N. *et al.*, "Residues Recycling: Reducing Costs and Helping the Environment", **JOM**, vol. 62, No. 9, Warrendale, PA, 2010

VERSIANI, F., "Neutralization of Red Mud by Boiler Stack", Light Metals, TMS, Atlanta; pp 337-343, 1983.

WAGH, A. S.; DESAI, P., **Proceedings of an international conference, Kingston, Jamaica, October 26-31, 1986,** Eds. The Jamaica Bauxite Institute, University of the West Indies: Kingston, Jamaica; pp 1-21, 1986.

WANGXING, L., "Developments and Future of the Bauxite, Alumina and Aluminum Industry in China", **Presentation ICSOBA 2012**, Belém, Brasil. 2012

WELTY, J. R., Fundamentals of Momentum, Heat, and Mass Transfer, Wiley, New York, 1976.

WHITTINGTON, B., "The Chemistry of CaO and Ca(OH)₂ Relating to the Bayer Process". **Hydrometallurgy**, 43, pp. 13-35, Elsevier, Nov. 1996.

ZARZYCKI, R; CHACUK, A., **Absorption, Fundamentals and applications**., Ed. Pergamon Press, Oxford, New York, p. 205-307, 1993.

APENDICE I

Origem da Bauxita	Refinaria	leutralizaçã o ou :ratamento	Hematita	Goetita	Magnetita	Diaspora	Boemita	gibsita	quartzo	rutilo	anatasio	sodalita	cancrinita	calcita	caolinita	imogolita	erovsquita	ilmenita	ATC	iidrocalumi ta	outros	amorfos
		2 -	α-Fe ₂ O ₃	α-FeOOH	Fe ₃ O ₄	α - AlooH	Y - AIOOH	AI(OH) ₃	SiO ₂	TiO ₂	TiO2	Na ₆ [Al ₆ Si ₆ O ₂₄].[(O H) ₃ 1	Na _{6[} Al₅Si₅O₂₄].2C aCO₃	CaCO ₃	Al₄Si₄O₁₀(OH)ଃ	Al₂SiO₃(OH)₄	СаТІО ₃ р	FeTiO ₃	CaAl ₂ (OH) ₁₂	Ca4Al ₂₍ OH) ₁₂ .CO ₃		
China	Zhengzhou	Envelhecido 10 anos	7.6	não	0	não	não	não	não	não	não	não	não	sim	não	não	11.5	não	não	não	ilita	20.7
China	Zhengzhou	Envelhecido 5 anos	8.2	não	7.8	não	não	não	não	não	não	não	não	sim	não	não	10.9	não	não	não	ilita	24.6
China	Zhengzhou	Processo Bayer + cal	7	não	5	não	não	não	não	não	não	não	não	sim	não	não	11	não	não	não	ilita	22
China	Zhengzhou	nenhum	7.4	não	8	não	não	não	não	não	não	não	não	sim	não	não	10.2	não	não	não	ilita	20.8
China	Pingguo	processo Bayer normal	19	não	não	não	não	não	não	3	não	não	não	não	não	32	não	10	não	não		22
Darling					~	~				~			~		~	~	~	~		~		
Range Darling	Kwinana	nennum	sim	sim	nao	nao	sim	sim	sim	nao	sim	sim	nao	sim	nao	nao	nao	nao	sim	nao	muscovita	n/d
Range	Kwinana	nenhum	8.7	24.3	não	não	1.3	não	4.9	não	0.3	2.7	não	11.2	não	não	não	não	não	não	muscovita(5.8)	48.3
Gana	Burntisland	ácido	16.1	23.8	não	não	não	não	1.3	5.4	não	não	não	não	não	não	não	não	não	não	n/d	51
Gana	Burntisland	nenhum	13.5	21.8	não	não	não	não	1.2	4.6	não	17.5	não	não	não	não	não	não	não	não	muscovita	38.2
Grécia	Grece	nenhum	sim	não	sim	sim	não	não	não	sim	não	sim	não	sim	não	não	sim	não	não	não	silicato de cálcio	n/d

Tabela I.1 – Composição mineralógica dos resíduos de bauxita. Fonte: GRÄFE, 2009.

Tabela I.1 – Continuação

Origem da Bauxita	Refinaria	Neutralizaçã o ou tratamento	Hematita	Goetita	Magnetita	Diaspora	Boemita	gibsita	quartzo	rutilo	anatasio	sodalita	cancrinita	calcita	caolinita	imogolita	perovsquita	ilmenita	ATC	hidrocalumit a	outros	amorfos
			α-Fe ₂ O ₃	α-FeOOH	Fe ₃ O ₄	α - AlooH	Ү - АЮОН	AI(OH) ₃	SiO ₂	TiO ₂	TiO2	Na ₆ [Al ₆ Si ₆ O ₂₄].[(OH)	Na _{6[} Al₅Si₅O ₂₄].2CaC O₃	CaCO ₃	Al₄Si₄O₁₀(OH)ଃ	Al₂SiO₃(OH)₄	CaTiO ₃	FeTiO ₃	CaAl₂(OH)₁2	Ca₄Al₂(OH)₁2.CO₃		
Guiné	Aughinish	nenhum	sim	sim	não	não	sim	sim	sim	sim	não	sim	sim	não	não	não	sim	não	sim	não	n/d	n/d
Guiné, África do Sul	Aughinish	nenhum	sim	sim	não	não	sim	sim	sim	sim	não	sim	não	não	não	não	sim	não	sim	não	n/d	n/d
India(Bihar)	Renukoot	causticização	13.8	7.3	não	0.5	9.6	1	não	1.1	11	2.3	0	1	não	não	0	não	não	não	hydrogrossular	n/d
India(Bihar)	Renukoot	nenhum	22.2	10.9	não	0.6	1	3	não	1.8	3.8	3.7	4.7	1	não	não	1.1	não	não	não	hydrogrossular NaTiO₃	n/d
Jamaica	Arvida	nenhum	sim	sim	não	não	sim	sim	não	não	sim	sim	não	sim	não	não	não	não	não	não	não	n/d
Jamaica	Kirkvine	nenhum	sim	sim	não	não	sim	não	não	não	sim	não	não	sim	não	não	não	não	não	não	bayerita	n/d
Turquia	Seydisehir	nenhum	sim	sim	não	não	sim	sim	sim	sim	não	sim	sim	não	não	não	não	não	não	não	silicato de cálcio	n/d
Turquia	Seydisehir	nenhum	sim	não	não	sim	sim	sim	não	não	não	não	sim	sim	não	não	não	não	não	não	n/d	n/d
Weipa	Eurallumina	ácido	27	não	não	não	5	4	não	não	5	24	29	não	não	não	não	não	não	não	n/d	n/d
Weipa	Eurallumina	nenhum	sim	não	não	não	sim	sim	sim	sim	sim	não	sim	não	não	não	não	não	não	não	bayerita,chantalita	n/d
Weipa	Eurallumina	nenhum	27	não	não	não	9	3	2		3		51	não	não	não	não	não	não	não	5	n/d
Weipa	Eurallumina	nenhum	29	não	não	não	6	5	não	não	5	16	33	não	não	não	não	não	não	não	n/d	n/d
Weipa	QAL	água do mar	sim	não	não	não	sim	sim	sim	não	não	sim	sim	sim	não	não	não	não	sim	sim	brucita,whewelita	n/d

Origem da Bauxita	Refinaria	Neutralização	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	TiO ₂	CaO	Na ₂ O	PF
Gana	Burtisland	Ácido	17.04	51.75	21.02	8.36	0.19	0.67	
China	Zhengzhou	Cal		12.5	19.9	6.7	41.6	2.4	
China	Chalco	Água quente, ácido,DDI- H2O	18.36	6.81	14.49	10.45	25.22	5.53	
Turquia	Seydisehir	Nenhum	20.24	39.84	15.27	4.15	1.8	9.43	8.79
Guiné,África do Sul	Aughinish	Nenhum	23.6	30.6	9.65	17.85	6.4	5.3	10.1
Turquia	Seydisehir	Nenhum	20.24	39.84	15.24	4.15	1.8	9.43	
Guiné	Aughinish	Nenhum	23.6	30.4	9.65	17.85	6.4	5.3	
Ex-Iugoslávia	Birac Alumina	Nenhum	14.14	48.5	11.53	5.42	3.96	7.5	7.25
Desconhecida	Point Confort	Nenhum	17.8	40	9.59	8.48	7.57	2.69	
Desconhecida	Mobile	Nenhum	19.4	26.4	10.2	9.4	n/a	5.4	
Desconhecida	Gramercy	Nenhum	15	51.5	1.7	6.7	7	0.97	9.3
Desconhecida	Corphus Christi	Nenhum	8.89	52.5	4.48	6.64	10.85	3.17	8.46
Desconhecida	San Ciprian	Nenhum	20.1	31.8	6.1	22.6	4.8	4.7	8.7
Gana	Burtisland	Nenhum	23.43	36.31	18.25	5.97	4.38	12.36	
Grécia	Alumine de Grece	Nenhum	15.6	42.5	9.2	5.9	19.7	2.4	
Desconhecida	S. Korean refinery	Nenhum	23.7	16.6	22.9	6.7	6.7	11.6	
Weipa	Eurallumina	Nenhum	18	41.8	9.98	8.87	5.57	6.47	8.7
Turquia	Seydisehir	Nenhum	17.27	37.72	17.1	4.81	4.54	7.13	10.22
Weipa	Eurallumina	Nenhum	20	35.2	11.6	9.2	6.7	7.5	7.3
Darling Range	Pinjarra	Nenhum	17.1	36.2	23.8	3.9	3.9	1.6	10.4
Desconhecida	Arkansas	Nenhum	23.1	10.1	23.1	3.6	47.2	3.6	4.4
Desconhecida	Suriname	Nenhum	24.3	33.4	16	3.6	5	8	14
Desconhecida	Arvida	Nenhum	20.6	31.6	8.9	6.2	1.7	10.3	21.1
Grécia	Alumine de Grece	Nenhum	15.85	48	6.96	7.06	14.4	3.26	
China	Pingguo	Nenhum	26.8	26.9	13.1	7.3	23.5		
weipa,Bintan	Tomakomai Works	Nenhum	17.9	45.3	12.4			6.9	
weipa,Bintan	Tomakomai Works	Nenhum	19.6	53.9	12.8			2.0	
Weipa	Eurallumina	Água do mar	17.9	30.5	9.58	8.61	7.77	12.1	12.4
Turquia	Seydisehir	Desconhecido	19.1	37.6	15.7	4.9	2.4	9.5	7.8
China	Shandong	Desconhecido	6.9	12.8	19.1	3.43	2.37	5.73	
India	Renukoot	Desconhecido	21.9	28.1	7.5	15.6	10.2	4.5	12.2
Hungria	Ajka	Desconhecido	14.8	42.1	13.5	5.2	6.1	8.9	8.2
China	shanxi	Desconhecido	7.3	6.8	13.9	2.5	33.9	2.7	
Desconhecida	Point Confort	Desconhecido	20.3	32.7	9.3	8.9	6.8	7.4	13.0

Tabela I.2 – Composição dos resíduos de bauxita determinados por fluorescência de raios-X. Fonte: GRÄFE *et al.*, 2009.

Origem da	Refinaria	Neutralização	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	TiO ₂	CaO	Na ₂ O	PF
Bauxita		ou							
		tratamento							
Darling	Pinjarra	Desconhecido	17.1	36.2	23.8	3.9	3.9	1.6	10.4
Range									
India	Muri	Desconhecido	24.3	24.5	6.2	18.0		5.3	
India	Korba	Desconhecido	19.4	27.9	7.3	16.4	11.8	3.3	12.6
India	Damanjodi	Desconhecido	14.8	54.8	6.4	3.7	2.5	4.8	9.5
India	Belgaum	Desconhecido	19.2	44.5	7.0	13.5	0.8	4.0	10.0
Desconhecida	Gramercy	Desconhecido	15	51.5	1.7	6.7	7.0	1.0	9.3
Desconhecida	Poços de	Desconhecido	21.9	29.6	17.5	4.4	2.9	8.3	11.5
	Caldas								
Ilhas Virgens	St. Croix	Desconhecido	33	22.9	8.5	12.9	3.5	6.0	12.4
Desconhecida	Arvida	Desconhecido	28.4	27.4	14.3	9.8	1.3	8.8	9.9
Desconhecida	Kirkvine	Desconhecido	13.2	49.4	3.0	7.3	9.4	4.0	12.5
Desconhecida	Gramercy	Desconhecido	14.6	48.9	2.7	6.9	9.1	1.5	11.6
Desconhecida	Corphus	Desconhecido	11.7	47.8	5.4	6.4	8.7	2.7	12.8
	Christi								
Desconhecida	Point Confort	Desconhecido	20.3	32.7	9.3	8.9	6.8	7.4	13.0

Tabela I.2 – Continuação.

APENDICE II

II.1 – Experimento 1

Tabela II.1 – Resultados do experimento 1.

Carbonat	ação de	Resíduos	s de Bau	xita Expe	rimento	1				0
DATA 16/	9/2011		Tempera	tura 27°C	Torre de	echeios ra	ndômicos			Comportamento do pH ao longo do
LAMA	Água 27	%pp	BICC) CENTRÍF	UGO	Qua	nt. 4			experimento
Vazão g	ás 0,0216	5 m3/s	Vazão	o de liq. 0,	,14 l/s	Ph iníc	io 12,0	рН	13	-
			ENTR	ADA				- P	13,	
	M	RU	TE	MPEST 1	.00				12,	2,0
Tempo(min)	%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)				11,	1,0
0	9,4	7,86	8,7	4	0				10,	D,0 0,0
60	9,3	7,78						_	9	
		-	SAÍ	DA					5,	
	Hanna	М	RU	TE	MPEST 1	.00			8,	3,0
Tempo (min)	рН	%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (ppm)			7,	7,0 +
0	12,0									0 5 10 15 20 25 30 35 40 45 55 65 70 75 85 95 105 120
5	11,2							_		tempo (minutos)
10	10,5	8,7	8,31	8,9	0	2		-		
15	10,0	8,8	8,59	8,9	0	2		_		Comportamento do pH após o experimento
20	9,9	8,7	8,50	9,6	0	2		-		em frasco fechado
25	9,7	8,8	8,26	9,0	1	2		-	14	
30	9,0	8.8	8.24	9.0	4	2		DH	14	
40	9.5	0,0	0,24	9,0	4	2		- "	13	
45	93	87	8.08	5,0	-	-		-	12	
55	9.2	8.7	8.31	9.2	4	11			11	
65	9,1	- /	-/-	- /					10	
70		8,7	8,57						9	9
75	9,1	8,7	8,51	9,4	4	4			8	B
85	9,0	8,7	8,35	9,3	4	4			7	7 + + + + + + + + + + + + + + + + + + +
95	8,8	8,8	8,26	9,2	4	2				0 50 100 150 200 250 300 350 400 450
105	8,8	8,8	8,24	9,1	4	2		_		tempo (dias)
120	8,8								_	
			Compor	tamento						
			do pH	apos o						
			experim	duração(-	
			рН	dias)						
			8.8	0						
			10,1	87						
			10,1	135						
			10,2	170]					
			10,3	254						
			10,7	280						
			10,6	309						
			10,6	349					_	
			10,8	385	-				_	
			10,8	409						

II.2 – Experimento 2

-	Carbonatação de Resíduos de Bauxita Experimento 2																	
DATA 21/	9/2011		Tempera	tura 27°C	T	orre de spr	av											
LAMA	VÁgua 27	'%pp	BICO) CENTRÍF	UGO	Qua	nt. 4											
Vazão g	, 0,0293	3 m3/s	Vazã	o de lig. O	44 l/s	Ph inío	io 12,3											
			FNTF															
	М	RH	TE	MPEST 1	00													
Tempo(min)	%(0)	%02	%02	NO ₂ (nnm)	SO2 (nnm)	T (°C)												
0	9.2	8.27	9.0	0	2	. (6/												
20	8,0	9,55	10,7	13	0													
40	7,3	10,14	10,9	9	1													
60	7,3	10,20	11,2	13	8													
2725	8,0	9,98	10,3	5	4	80												
2740	7,9	9,84	10,5	0	9	89		13,0 T	6	mnor	tamon	to do	nH ao	lon		^		-
12820	8,6	8,90	9,9	0	22	73		рН		mpor	Lanien				gou	0		
12840	7,2	10,45	11,2	1	19	92		12,0	<u> </u>		ex	perim	ento					_
12880	7,0	10,70	11,7	0	27	92		-	1									
12000	6.4	11,23	12,3	9	23	97		110	1									_
18495	6,1	12,27	12,3	1	41	69		11,5	1		*							
18515	5,3	13,21	13,0	5	44	71			- * *	-			Λ.					
18535	5,3	12,67	13,0	5	48	87		10,0					1	•				-
18555	5,2	12,86	13,5	5	59	87								N.				
18575	4,7	13,55	13,4	5	59	87		9,0 -						-				
18595	6,5	10,97		5	106	87		_										•
18615	6,8	11,13	11,3	5	2	87		8,0 -										_
			SAI	DA				_										
	Hanna	M	RU	TE	MPEST 1	.00		7.0										_
Tempo (min)	рН	%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		0	27	70	2730	1283	85	12905	185	55	
0	12,3	0.5	0.50									tempo(r	ninutos)					
12	11,0	8,5	8,69															
12	10,4	~ ~ ~							•						•			
18	10.4	8.0	9 34	10.2	9	0		_	Comp	ortam	ento d	lo pH	após o	o ex	perir	nento)	
18 22	10,4 10,2	8,0	9,34	10,2	9	0		-	Comp	ortam	ento o em fr	lo pH asco f	após o echad	o ex lo	perir	nento)	
18 22 27	10,4 10,2 10,2	8,0 7,6	9,03 9,34 9,86	10,2	9	0		рН 14	Comp	ortam	ento c em fr	lo pH asco f	após o echad	o ex lo	perir	nento)	_
18 22 27 32	10,4 10,2 10,2 10,1	8,0 7,6 7,4	9,03 9,34 9,86 9,98	10,2 10,9 10,7	9 6 5	0 2 2		рН 14 13	Comp	ortam	ento c em fr	do pH asco f	após o echad	o ex lo	perin	nento)	_
18 22 27 32 40	10,4 10,2 10,2 10,1 10,0	8,0 7,6 7,4 7,5	9,34 9,86 9,98 10,03	10,2 10,9 10,7 11,0	9 6 5 4	0 2 2 2		рН 14 13 12	Comp	ortam	ento c em fr	lo pH asco f	após d echad	o ex lo	perin	nento)	
18 22 27 32 40 50	10,4 10,2 10,2 10,1 10,0 9,8	8,0 7,6 7,4 7,5 7,2	9,34 9,86 9,98 10,03 10,16	10,2 10,9 10,7 11,0 11,1	9 6 5 4 4	0 2 2 2 4		рН 14 13 12 11	Comp	ortam	ento c em fr	io pH asco f	após (echad	o ex lo	perir	nento)	
18 22 27 32 40 50 60	10,4 10,2 10,2 10,1 10,0 9,8 9,7	8,0 7,6 7,4 7,5 7,2 7,2	9,86 9,86 9,98 10,03 10,16 10,3	10,2 10,9 10,7 11,0 11,1 11,2	9 6 5 4 4 5	0 2 2 2 2 4 9		рН 14 13 12 11 10	Comp	ortam	ento c em fr	io pH asco f	após d echad		perir	nento	•	
18 22 27 32 40 50 60 70	10,4 10,2 10,2 10,1 10,0 9,8 9,7 9,7	8,0 7,6 7,4 7,5 7,2 7,2	9,34 9,86 9,98 10,03 10,16 10,3	10,2 10,9 10,7 11,0 11,1 11,2	9 6 5 4 4 5	0 2 2 2 4 9		PH 14 13 12 11 10 9	Comp	ortam	ento c em fr	io pH asco f	após d echad		perir	nento)	
18 22 27 32 40 50 60 70 2710 2715	10,4 10,2 10,2 10,1 10,0 9,8 9,7 9,7 10,7	8,0 7,6 7,4 7,5 7,2 7,2	9,34 9,86 9,98 10,03 10,16 10,3	10,2 10,9 10,7 11,0 11,1 11,2	9 6 5 4 4 5	0 2 2 2 4 9		pH 14 13 12 11 10 9 8	Comp	ortam	ento c em fr	io pH rasco f	após d echad		perir	nento)	
18 22 27 32 40 50 60 70 2710 2715 2720	10,4 10,2 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,7 10,1	8,0 7,6 7,4 7,5 7,2 7,2	9,34 9,86 9,98 10,03 10,16 10,3	10,2 10,9 10,7 11,0 11,1 11,2	9 6 5 4 4 5	0 2 2 2 4 9		pH 14 13 12 11 10 9 8 7	Comp		ento c em fr	io pH rasco f	após (echad			nento		
18 22 27 32 40 50 60 70 2710 2715 2720 2725	10,4 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1	8,0 7,6 7,4 7,5 7,2 7,2 7,2 10,7	9,86 9,98 9,98 10,03 10,16 10,3	10,2 10,9 10,7 11,0 11,1 11,2 11,2	9 6 5 4 4 5 5	0 2 2 2 4 9 	36	PH 14 13 12 11 10 9 8 7	Comp		ento c em fr	to pH rasco f	após (echad		300	350		400
18 22 27 32 40 50 60 70 2710 2715 2720 2725 2730	10,4 10,2 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,0	8,0 7,6 7,4 7,5 7,2 7,2 10,7	9,34 9,34 9,86 9,98 10,03 10,16 10,3	10,2 10,9 10,7 11,0 11,1 11,2 11,2	9 6 5 4 4 5 	0 2 2 2 4 9 	36	pH 14 13 12 11 10 9 8 7	Comp		ento c em fr	to pH rasco f	após (fechad		300	350		400
18 22 27 32 40 50 60 70 2710 2715 2720 2725 2730 2735	10,4 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,0 9,9	8,0 8,0 7,6 7,4 7,5 7,2 7,2 7,2 10,7 10,7	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,87 9,95	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 10,8	9 6 5 4 4 5 	0 2 2 2 4 9 	36	pH 14 13 12 11 10 9 8 7			ento c em fr	to pH rasco f	após (Fechad		perir 300	350		400
18 22 27 32 40 50 60 70 2710 2715 2720 2725 2730 2735 2740	10,4 10,2 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,0 9,9 9,7	8,0 8,0 7,6 7,4 7,5 7,2 7,2 7,2 10,7 10,7	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,87 9,95	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 10,8	9 6 5 4 4 5 	0 2 2 2 4 9 	36	<pre>pH 14 13 12 11 11 10 9 8 77</pre>	Comp		ento c em fr	do pH rasco f	após (echad		300	350		400
18 22 27 32 40 50 60 70 2710 2715 2720 2725 2735 2740 12820	10,4 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,0 9,9 9,7 10,0	8,0 8,0 7,6 7,4 7,5 7,2 7,2 7,2 10,7 10,7	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,87	10,2 10,9 10,7 11,0 11,1 11,2 11,2 10,8	9 6 5 4 4 5 	0 2 2 4 9 	36	<pre>pH 14 13 12 11 11 10 9 8 77 7 7</pre>	Comp		ento c em fr	to pH rasco f	após (echad		300	350		400
18 22 27 32 40 50 60 70 2715 2720 2725 2730 2735 2740 12820 12825	10,4 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,0 9,9 9,7 10,3 10,0	8,0 8,0 7,6 7,4 7,5 7,2 7,2 7,2 7,2 10,7 10,7 7,7 7,9	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,87 9,95	10,2 10,9 10,7 11,0 11,1 11,2 11,2 10,8 11,3	9 6 5 4 4 5 	0 2 2 4 9 	36 36 36	<pre>pH 14 13 12 11 10 9 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	Comp		ento c em fr	to pH rasco f	após o echad		300	350		400
18 22 27 32 40 50 60 70 2715 2720 2725 2730 2740 12820 12825 12925	10,4 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,1 10,0 9,9 9,7 10,3 10,0	3,0 7,6 7,4 7,5 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,7 7,7 7,9 8,0	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,95 9,95	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 11,3 10,4	9 6 5 4 5 	0 2 2 4 9 	36 36 36 36	<pre>pH 14 13 12 10 9 8 7 7</pre>	Comp		ento c em fr	to pH rasco f solution solution solution temp temp temp temp temp temp temp temp	após o echad		300	350		400
18 22 27 32 40 50 60 70 2715 2730 2725 2730 2735 2740 12820 12825 12835	10,4 10,2 10,1 10,0 9,8 9,7 9,7 10,1 10,1 10,1 10,1 10,1 10,1 10,0 9,9 9,7 10,3 10,0 9,8 9,7	8,0 7,6 7,4 7,5 7,2 7,2 7,2 10,7 7,7 7,7 7,9 8,0 7,3	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,95 10,70 9,55 10,28	10,2 10,9 10,7 11,0 11,1 11,2 11,2 10,8 11,3 10,4 11,26	9 6 5 4 5 	0 2 2 4 9 9 	36 36 36 36 36	<pre>pH 14 13 12 11 10 9 8 8 77 8 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>	Comp		ento c em fr	do pH rasco f social so	após o echad		300	350		400
18 22 27 32 40 50 60 70 2710 2725 2730 2735 2730 12820 12825 12835 12845 12880	10,4 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,1 10,1 10,0 9,9 9,7 10,3 10,0 9,8 9,7 9,7 9,4	8,0 7,6 7,4 7,5 7,2 7,2 7,2 10,7 10,7 7,7 7,9 8,0 7,3 6,6	9,03 9,34 9,86 9,98 10,03 10,16 10,3 10,3 9,87 9,95 10,28 10,70 9,55 10,28	10,2 10,9 10,7 11,0 11,1 11,2 11,2 10,8 11,3 10,4 11,26 12,1	9 6 5 4 5 	0 2 2 4 9 	36 36 36 36 41 41	<pre>pH 14 13 12 11 10 9 8 7 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	Comp		ento c em fr	do pH rasco f rasco f remp solution rasco fece ação ias) 0 82	após of echad		300	350		400
18 22 27 32 40 50 60 70 2715 2720 2735 2730 2735 2740 12820 12835 12845 12840 12870	10,4 10,2 10,2 10,1 10,0 9,8 9,7 10,7 10,1 10,1 10,1 10,0 9,9 9,7 10,3 10,0 9,8 9,7 10,3 10,0 9,8 9,7 9,7 9,7 10,3 10,0 9,8 9,7 9,7 10,2 10,1 10,0 10,0 10,0 10,0 10,0 10,0	8,0 7,6 7,4 7,5 7,2 7,2 7,2 10,7 7,7 7,7 7,7 8,0 7,3 6,6 6,4	9,03 9,34 9,86 9,98 10,03 10,16 10,3 10,16 10,3 9,98 9,98 9,98 9,95 10,70 9,55 10,70 9,55 10,23 11,31	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 10,8 11,3 10,4 11,26 12,1 12,5	9 6 5 4 4 5 5 	0 2 2 4 9 	36 36 36 36 41 41 41	<pre>pH 14 13 12 11 12 99 88 77 88 77</pre>	Comp		ento c em fr 000 1 Co ex fr dur (d	do pH rasco 1 rasco 1 remp temp rotar do pH ap perimen ias) 0 0 82 30	após o echad		300	350		400
18 22 27 32 40 50 60 70 2715 2720 2725 2735 2740 12820 12825 12835 12845 12860 12885	10,4 10,2 10,2 10,1 10,0 9,8 9,7 10,7 10,1 10,1 10,1 10,1 10,1 10,0 9,9 9,7 10,3 10,0 9,8 9,7 9,7 9,7 9,7 9,8 9,7 9,7 9,8 9,7 9,7 9,8 9,7 9,7 9,7 9,7 10,3 10,0 9,8 9,7 9,7 10,2 10,1 10,0 10,0 9,8 9,7 10,7 10,1 10,0 9,8 9,7 10,7 10,7 10,7 10,7 10,7 10,7 10,7 10	8,0 7,6 7,4 7,5 7,2 7,2 7,2 7,2 10,7 7,7 7,9 8,0 7,3 6,6 6,4 6,4	9,03 9,34 9,86 9,98 10,03 10,16 10,3 10,16 10,3 9,87 9,95 10,70 9,55 10,28 11,31 11,39 11,46	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 10,8 11,3 10,4 11,26 12,5 12,5	9 6 5 4 4 5 5 	0 2 2 4 9 9 	36 36 40 36 41 41 41 41	<pre>pH 14 13 12 11 11 9 9 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	Comp		ento c em fr 00 1 Co ex fr dur (d	do pH rasco f so z temp mportar do pH ap perimen acado ias) 0 82 30 65	após c echad		300			400
18 22 27 32 40 50 60 70 2710 2715 2720 2725 2735 2740 12820 12825 12845 12860 12885 12905	10,4 10,2 10,2 10,0 9,8 9,7 10,7 10,1 10,1 10,1 10,1 10,1 10,0 10,0	3,2 7,6 7,7 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,7 7,9 8,0 7,3 6,6 6,4 6,4	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,87 9,95 10,70 9,55 10,28 11,31 11,39 11,46	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 10,8 11,3 10,4 11,26 12,1 12,5 12,5 12,5	9 6 5 4 4 5 	0 2 2 4 9 9 	36 36 40 36 41 41 41 41 41	<pre>pH 14 13 13 12 11 10 9 8 8 7 7 8 8 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	Comp		ento c em fr 00 1 Co c ex fri dur (d	do pH rasco 1 saco 1 so 2 temp mportar do pH ap perimen rasco fecc do a a a a a a a a a a a a a a a a a a a	após c echad		300			400
18 22 27 32 40 50 60 70 2710 2715 2720 2725 2730 2735 2740 12820 12845 12860 12870 12895 12905 12915	10,4 10,2 10,2 10,1 10,0 9,8 9,7 10,7 10,1 10,1 10,1 10,1 10,1 10,0 9,9 9,7 10,3 10,0 9,8 9,7 9,7 9,4 9,2 9,1 9,1 9,1 9	3,2 7,6 7,7 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,7 7,9 8,0 7,3 6,6 6,4 6,2	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,95 9,95 10,70 9,55 10,28 11,31 11,39 11,46 11,84	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 10,8 11,3 10,4 11,26 12,1 12,5 12,5 12,9	9 6 5 4 4 5 	0 2 2 4 9 	36 36 40 36 41 41 41 41 41 41 42	<pre>pH 14 13 12 11 10 9 9 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 8 7 7 8 7 7 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 8 8 8 8 7 7 8</pre>	Comp		ento c em fr 00 1 Co ex fr dur (d 1 1 2 2	do pH rasco 1 soco 1 soco 1 temp mportar do pH ap perimen rasco fec ação 0 82 30 65 5 775	após o echad		300			400
18 22 27 32 40 50 60 70 2715 2720 2725 2730 2735 2740 12820 12835 12845 12860 12870 12895 12905 12915 18495	10,4 10,2 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,1 10,1 10,1 10	3,2 7,6 7,7 7,5 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,7 7,9 8,0 7,3 6,6 6,4 6,2 6,1	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,95 10,70 9,95 10,70 9,55 10,28 11,31 11,39 11,46 11,84 12,20	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 11,2 11,2 10,8 11,3 10,4 11,2 12,5 12,5 12,9 12,4	9 6 5 4 4 5 	0 2 2 4 9 	36 36 36 36 41 41 41 41 41 41 41 42 35	<pre>pH 14 13 12 12 10 99 8 77 8 77 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	Comp		ento c em fr 00 1 Co ex fri dur (d 1 1 2 2 2 2 2	do pH rasco 1 rasco 1 rasco 1 rasco 1 remp mportar rasco feca ração ração ração ração ração ração ração ração ração ração ração ração ração race race race race race race race race	após c echad		300			400
18 22 27 32 40 50 60 70 2715 2720 2725 2730 2732 2740 12820 12825 12845 12845 12885 12915 18495 18495	10,4 10,2 10,2 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,1 10,1 10,1 10	3,2 7,6 7,4 7,5 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,7 7,7 7,9 8,0 7,3 6,6 6,4 6,2 6,1 5,5	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,98 9,98 9,98 9,98 9,95 10,28 11,31 11,39 11,46 11,84 12,20 12,92	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 11,2 11,3 10,4 11,3 10,4 11,25 12,5 12,5 12,5 12,9 12,4 12,9 12,4 12,9	9 6 5 4 5 	0 2 2 4 9 9 	36 36 40 36 41 41 41 41 41 41 41 41 35 37	<pre>pH 14 13 12 11 10 99 88 77 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	Comp		ento c em fr 00 1 Co c c c c fi dur (d fi 1 1 2 2 2 2 3 3	do pH rasco 1 rasco 1	após c echad		300			400
18 22 27 32 40 50 60 70 2715 2720 2725 2730 2732 2740 12820 12825 12845 12845 12860 12870 12885 12905 12905 18515 18515 18515	10,4 10,2 10,2 10,1 10,0 9,8 9,7 9,7 10,7 10,1 10,1 10,1 10,1 10,1 10,1 10	3,0 7,6 7,4 7,5 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,7 7,7 7,9 8,0 7,3 6,6 6,4 6,2 6,1 5,5 5,4 4,2	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,95 10,28 11,31 11,39 11,46 12,20 12,92 12,73	10,2 10,9 10,7 11,0 11,1 11,2 11,2 10,8 11,3 10,4 11,3 10,4 11,26 12,1 12,5 12,5 12,5 12,5 12,9 12,4 12,9 12,4 12,9 13,2 14,2 14,2 15,2 12,2	9 6 5 4 5 	0 2 2 4 9 9 	36 36 40 36 41 41 41 41 41 41 41 41 41 5 37 37 37	<pre>pH 14 13 12 11 10 99 88 77 8 14 13 12 11 10 99 88 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	Comp		ento c em fr 000 1 Co c ex fr dur (d 1 1 1 2 2 3 3 3 3 3	do pH rasco f rasco f remp temp for a p remp for a s remp for a s remp	após c echad		300			400
18 22 27 32 40 50 60 70 2715 2720 2735 2740 12820 12825 12845 12845 12885 12890 12885 12891 12885 12895 12885 12895 12885 128915 18535 18535 18535	10,4 10,2 10,2 10,1 10,0 9,8 9,7 10,7 10,1 10,1 10,1 10,0 9,9 9,7 10,3 10,0 9,9 9,7 10,3 10,0 9,9 9,7 10,3 10,0 9,9 9,7 10,3 10,0 9,9 9,7 10,3 10,0 9,8 9,7 10,7 10,1 10,0 10,0 10,0 9,8 9,7 10,7 10,1 10,0 10,0 10,0 10,0 10,0 10	3,2 7,6 7,4 7,5 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,7 7,9 8,0 7,3 6,6 6,4 6,2 6,1 5,5 5,4 4,9	9,03 9,34 9,86 9,98 10,03 10,16 10,3 9,87 9,87 9,95 10,28 10,70 9,55 10,28 11,31 11,39 11,46 11,84 12,20 12,92 12,73 13,41 12,20	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 10,8 11,3 10,4 11,3 10,4 11,26 12,1 12,5 12,5 12,5 12,5 12,9 12,4 12,9 13,2 13,5 12,5	9 6 5 4 5 	0 2 2 4 9 9 	36 36 40 36 41 41 41 41 41 41 41 41 41 41 41 41 41	<pre>pH 14 13 12 11 10 9 9 88 7 7 8 8 7 9 8 8 7 7 9 8 8 7 7 9 9 8 8 7 7 9 9 9 8 8 7 7 10 10 9 9 9 8 8 7 7 10 10 9 9 9 8 8 7 7 10 10 9 9 9 8 8 7 7 10 10 9 9 9 8 8 7 10 10 9 9 8 8 7 7 10 10 9 9 8 8 7 7 10 10 9 9 8 8 7 7 10 10 9 9 8 8 7 7 10 10 9 9 8 8 7 7 10 10 10 9 9 8 8 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>	Comp		ento c em fr 000 1 Co (dur (dur (dur (dur (dur (dur (dur (dur	do pH rasco 1 rasco 1	após c echad		300			400
18 22 27 32 40 50 60 70 2715 2720 2725 2735 2740 12820 12825 12845 12845 12860 12810 12885 12905 12915 184515 18535 18555 18555 18555 18555	10,4 10,2 10,2 10,1 10,0 9,8 9,7 10,7 10,1 10,1 10,1 10,1 10,1 10,1 10	3,2 7,6 7,7 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,7 7,9 8,0 7,3 6,6 6,4 6,2 6,4 6,2 6,4 9 4,9 5,5 5,4	9,03 9,34 9,94 10,03 10,16 10,3 9,87 9,98 9,98 9,98 10,03 9,87 9,97 10,70 9,55 10,28 11,31 11,39 11,46 11,84 12,20 12,92 12,73 13,41 13,30	10,2 10,9 10,7 11,0 11,1 11,2 11,2 11,2 10,8 11,3 10,4 11,26 12,5 12,5 12,5 12,5 12,5 12,5 12,9 12,9 13,2 13,5 13,7 13,8	9 6 5 4 4 5 	0 2 2 4 9 9 4 4 7 27 27 27 18 16 16 23 26 26 26 26 26 32 44 46 57 59 9	36 36 40 36 41 41 41 41 41 41 41 41 41 41 41 41 41	<pre>pH 14 13 12 11 9 9 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	Comp		ento c em fr 000 1 Co ex ex dur (d dur (d 1 1 2 2 2 3 3 3 3 4	do pH rasco 1 rasco 1	após c echad		300			400

Tabela II. 2 – Resultados do experimento 2.

II.3 – Experimento 3

Carbonata	ação de l	Resíduos	de Baux	kita Exper	rimento 3	3		
DATA 18/1	10/2011		Tempera	tura 27°C	Torre de r	echeios ra	ndômicos	S Comportamento do pH ao longo do
LAMA	Água 279	%рр	Ent	rada livre	1/2"	Qua	nt. 1	experimento
Vazão g	ás 0,0283	m3/s	Vazã	o de liq. 1,	.00 l/s	Ph iníc	io 12,5	пн 13,0
			ENTR	ADA				12,0
	М	RU	TE	MPEST 1	.00			11.0
Tempo(min)	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		
0	7,1	10,40	10,4	1	13	90		10,0
20	6,6	11,80	10,9	0	17	90		90
40	7,0	10,76	11,2	0	18	91		5/0
60	6,0	17,22	11,3	0	18	104		8,0
80	6,2	12,14	11,1	0	16	104		70
100	7,3	10,22	11,1	0	16	104		
			SAÍ	DA				tempo (minutos)
	Hanna	М	RU	TE	MPEST 1	00		
Tempo (min)	рН	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	Comportamento do pH após o
0	12,5	6,9	11,3	11,2	0	12	36	experimento em frasco fechado
10	10,0						38	рн 14
20	9,3	7,0	10,48	11,5	0	17	39	
30	9,1						40	
40	9,0	6,8	10,70	11,4	0	20	41	
50	8,9						42	
60	8,9	6,8	10,71	11,2	0	16	43	
70	8,9						44	
80	8,8	7,2	10,5	11,4	0	16	44	
90	8,8						45	
100	8,7	7,1	10,61	11,1	0	16	45	
								tempo (días)
			Compor	tamento	1			
			do nH	anós o				
			evnerim	ento em				
			experim	duração	1			
			рН	(dias)				
			8.7	0				
			9.8	55	1			
			9,8	103	1			
			9,9	138	1			
			10	222	1			
			10,3	248	1			
			10,3	277	1			
			10,3	317	1			
			10,3	353	1			
			10,4	377				

Tabela II. 3 – Resultados do experimento 3.

II.4 – Experimento 4

Tabela II. 4 – Resultados do experimento 4.

			· .								1		1							
Carbona	atação d	e Resídu	os de Baux	ita Exper	imento 4	ļ		~												
DATA 21	/10 / 2011		Temperate	ura 27°C	Тс	orre de spr	ау		Co	omport	amento	ао рн	ao longo	30						
LAM	A/Água 2	7%рр	BICO	CENTRÍFU	GO	Qua	nt. 8				expei	rimento)							
Vazão gá:	0,0325	m³/s	Vazão	de liq. 0,5	9 I/s	Ph inío	io 12,0	13,0												
			ENTR	ADA				рн 12,0 ·												
	М	RU	TEN	/PEST 10	00															
Temperatura	e/ cOa	°/ Oa	e/ Oa		50a/ 3	T(°C)		11,0 ·												
0	7.2	11 03	7602	NO2 (ppm)	302 (ppm)	61		10.0												
10	8.4	8.50	8.5	0	5	68									-					
20	8.8	8.62	8.4	9	1	73		9,0 •												
40	6.1	12.07	12.2	4	61	88														
60	5.7	12.78	12.8	13	68	90		8,0 ·												
80	5,7	12,74	12,8	9	69	87														
100	5,2	13,45	13,2	9	87	84		7,0 •	-			+		+						
120	5,3	12,96	13,4	9	88	86			0 10	0 20	30 40	50 E	0 80 10	5 120	140					
140	3,6	15,80	13,5	9	86	74					terr	ipo (minuto	s)							
			SAÍI	DA					Compo	ortamo	nto do i	hH anós	o ovnori	mento						
	Hanna	N	/RU	TF	MPEST 1	00		-	compt	Ji tame	am frase	o fach:	ado	mento						
Tempo (min)	μ	%CO2	%02	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		em frasco fechado											
0	12,0	8,0	9,58				27	- 14												
10	10,7	9,0		8,8	0	5	32	рн 13												
20	10,5	8,3	9,18	8,8	4	1	37	12												
30	10,3		,					11												
40	10,2	6,4	11,70	12,4	4	63	41	10							-					
50	10,1							9												
60	10,1	5,9	12,36	13,0	9	68	42	8												
80	10,0	5,6	12,82	13,9	8	130	42	ļ												
100	9,8	5,3	12,81	13,5	9	85	43	· ·	0 5	0 100	150	200	250 300	350	400					
120	9,6	4,9	12,79	13,5	9	88	42		0 5	0 100	, 150	emno (dias)	1	550	400					
140	9,5	4,6	13,8	13,5	8	88	42					empo (ulus,	,							
		Comport	amento do																	
		рна	apos o																	
		experir	duração																	
		рН	(dias)																	
		9,5	0																	
		10,4	52																	
		10,2	100																	
		10,4	135																	
		10,4	219																	
		10,8	245																	
		10,9	274																	
		10,8	314																	
		10,6	350																	
		10,7	374																	

II.5 – Experimento 5

Ca	rbonata	cão de R	esíduos o	de Bauxi	ta Experi	mento 5		Cálculo da massa de CO ₂ reagida.									
	10 / 2011	çao ae n	Tempera	tura 27°C	Torre de S	nrav		(min)	[ka/s]	[kg/s]	[m ³ /s]	[kg/s]	[ka/s]	[ka]			
	/λσμα 27%	(nn	Dist Lia	Bicos	Tone de s		ot 10	Tompo	[Kg/3]	[Kg/3]	O'ent	miCO ent	miCO abs	[AMCO _{2*} min			
	0.02502	m^3/c	Va-~	de lier d	021/-	Quar Dh. in (n	1. 10	Tempo	0.000550	0.0005466	0.020502	0.0007407	0.000100205	,			
vazao gas	0,02593	111 / S	Vazao		1,03 1/5	Ph Inic	10 12,5	0	0,002563	0,0235466	0,026592	0,0027437	0,000180365				
		-	ENTR4	ADA				10	0,002637	0,0235743	0,0270398	0,00281916	0,000181777	0,108643			
		M	RU	TE	MPEST 1	.00		20	0,00262	0,0233671	0,0279361	0,00279767	0,000177565	0,107803			
Tempo(min)		%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	40	0,002586	0,0230707	0,0280446	0,00275833	0,000172106	0,209803			
0		6,0	12,76	12,9	0	55	40	60	0,002550	0,023193	0,028232	0,00276846	0,000218587	0,234416			
10		6,2	12,02	12,5	0	30	47	80	0,00255	0,0231448	0,0280029	0,00259199	4,21125E-05	0,156419			
20		6,2	12,15	12,8	0	21	60	100	0,002371	0,0231363	0,027962	0,00254356	0,000172622	0,128841			
40		6,2	12,05	12,8	0	27	66	120	0,002497	0,0231046	0,0271241	0,002625	0,000127681	0,180181			
60		6,2	11,92	12,7	0	27	67	140	0,002542	0,0230876	0,0273089	0,002574	3,24164E-05	0,096058			
80		5,8	12,55	13,3	0	34	64						[kg]	1,22			
100		5,7	12,56	13,4	0	35	64						kg CO ₂ /ton	33,0			
120		5,9	12,20	12,8	0	32	55	13.0						- 0.014			
140		5,8	12,17	13	0	30	58	DH				ao longo do ex	oerimento	CO ₂ absorvido			
			SAÍD	A				120			CO	2 absorvido		[kg/min] - 0,012			
	Hanna	M	RU	TE	MPEST 1	.00		12,0									
Tempo (min)	рН	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)			4				- 0,01			
0	12,5	5,6	13,22	13,6	0	53	32	11,0				$f \rightarrow$		1			
10	10,6	5,8	12,39	13,0		30	34							- 0,008			
20	10,2	5,8	12,58	13,2	0	19	36	10,0			+			-			
30	9,9				-		38	_		 T 			\	- 0,006			
40	9,6	5,8	12,57	13,2	0	27	40										
50	10,0	F 7	12.50	12.1	0	27	40	3,0						- 0,004			
60	9,9	5,7	12,50	13,1	0	2/	39	-			V						
100	9,0	5,7	12,07	13,0	0	31 //1	39	8,0						- 0,002			
120	9.0	5,5	12.65	13,0	0	33	40										
140	8,9	5,7	12,61	13,4	0	31	40	7,0 +						+ 0			
								0	20	40 60 t	80 empo(minuto	100 120 os)) 140 1	160			
			Compor	tamento													
			do pH	após o					Compor	tamento	o do pH a	após o ex	perimento	כ			
			experim	ento em				_		em	frasco f	echado					
			рН	duração (dias)				рН 14 _Т									
			8,9	0				- 1									
			10,2	43				13 -									
			10,1	90				12									
			10,2	126													
			10,2	210				11 -									
			10,4	236													
			10,5	265				10									
			10,7	305				9			_						
			10,6	341													
			10,7	365	1			- *†									
								7 +									
								0	50	100	150 2	00 250 n (dias)	300 35	0 400			

Tabela II. 5 – Resultados do experimento 5.

II.6 – Experimento 6

Ca	rbonata	cão de R	esíduos	de Bauxi	ta Experi	mento 6			Cálculo da massa de CO ₂ reagida.									
	11/2011	çao ae n	Tempera	tura 27°C	Torre de F	Rechein - Si	elas		(min)	[kg/s]	[kg/s]	[m ³ /s]	[kø/s]	[kø/s]	[kø]			
IAMA	/Água 279	knn	Dist Lia	Ent Livre	1/2"	Oua	nt 1		Tempo	m CO ₂ sai	m N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫ΔMCO ₂ +min			
Vazão gás	0,02120	m ³ /s	Vazão	de liq. 1,	11 l/s	Ph iníc	io 12,6		0	0,0022834	0,0197828	0,0227131	0,00263542	0,000352				
		-	ENTR/	ADA		•			10	0,0024031	0,0195814	0,0229235	0,00267767	0,0002746	0,187980			
		М	RU	TE	MPEST 1	.00			20	0,0024618	0,0194696	0,0229178	0,00265244	0,0001906	0,139564			
Tempo(min)		%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		40	0,0024665	0,0191525	0,021909	0,0026158	0,0001493	0,203963			
0		6,9	11,40	11,8	0	5	47		60	0,002398	0,0190024	0,022639	0,002552	0,0001536	0,181755			
10		7,1	11,02				54		80	0,0024871	0,0190713	0,0223945	0,00262838	0,0001413	0,176953			
20		7,1	10,72	11,3	0	0	57		100	0,0023697	0,018957	0,022285	0,00254283	0,0001732	0,196073			
40		7,1	10,90	11,7	9	0	47		120	0,0023907	0,0189281	0,0227036	0,002500	0,0001093	0,169519			
60		7,0	10,82	11,7	9	0	61							[kg]	1,255806			
80		7,2	10,42	11,6	9	0	57							kg CO₂/ton	33,9			
100		7,0	10,71	11,9	9	0	57		12.0						- 0.025			
120		6,9	10,74	12,0	9	0	64		13,0		-				CO ₂ absorvido			
140									рН		рн	ao longo do	experimento		[kg/min]			
			SAÍD	DA					12,0		— — co	2 absorvido			- 0,02			
	Hanna	М	RU	TE	MPEST 1	.00												
Tempo (min)	рН	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		11,0						1			
0	12,6	6,0	11,95	12,4	0	7	27			Λ					- 0,015			
10	9,9	6,4	11,30				31		10,0						.			
20	9,2	6,6	11,03	12	8	0	33											
30	8,8						35						\frown		- 0,01			
40	8,6	6,7	11,21	12,8	9	0	37		5,0									
50	8,6						39							-	- 0.005			
60	8,8	6,6	10,90	12,0	5	0	41		8,0						0,005			
80	8,6	6,8	10,93	12,0	8	0	39											
100	8,6	6,5	11,46	12,0	9	0	40		70						- 0			
120	8,5	6,6	10,96	12,1	9	0	42		0	20	40 6	0 80	100	120 14	40			
140											ten	npo (minutos)					
			-					_		Comport	tamento	do pH a	pós o exi	periment	to			
			Comport	tamento						•	om	Frasco fe	 					
			do pH	após o							em		chauo					
			experim	ento em				-	^{pH} 14									
			рН	(dias)					13						+			
			85	0	1				12									
			9.7	39														
			9,8	87					11 +				-					
			9,9	122	İ				10 +						╀──┤│			
			10	206					₀↓			-		_				
			10,1	232					[4									
			10,3	261					8									
			10,5	301					7∔						+			
			10,2	337					0	50	100	150 20	0 250	300	350 400			
			10,5	361								tempo	(dias)					
	10,5 501																	

Tabela II. 6 – Resultados do experimento 6.

II.7 – Experimento 7

C	de Bauxi	ta Experi	mento 7	1			Cálcul	o da massa	a de CO ₂ reagi	da.									
DATA 18/	11/2011		Temperatu	ura 27 °C	Torre de s	pray			(min)	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]				
Sobrena	adante 1,5	5% pp	Dist. Liq. B	icos 1 nív	el	Quar	it. 10		Tempo	m CO ₂ sai	m N ₂ sai	Q ent	m CO ₂ ent	m CO ₂ abs	∫∆MCO ₂ +min				
Vazão gás	0,02256	m ³ /s	Vazão	de liq. 1	,1 l/s	Ph inío	io 12,8		0	0,002735	0,020889	0,024633	0,003522813	0,000787487					
			ENTR/	٩DA					10	0,002848	0,020638	0,024706	0,003242715	0,00039423	0,354515252				
		N	1RU	TE	MPEST 1	00			20	0,002515	0,020447	0,022312	0,002548439	3,30378E-05	0,128180379				
Tempo(min)		%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		40	0,00253	0,020228	0,02438	0,002831715	0,000301869	0,200944229				
0		8,8	8,92	10,9	1	2	58		60	0,002599	0,020178	0,024571	0,002820281	0,000221024	0,313735969				
10		8,2	9,52	10,5	5	2	63		80	0,002638	0,020225	0,025280	0,002865258	0,000227206	0,403407084				
20		7,2	1,73	11,5	2	2	66							[kg]	1,40				
40		7,3	10,49	11,3	9	0	65							kg CO₂/ton	37,9				
60		7,3	10,37	11,4	5	2	69	Г	14.0	·	·	·			05				
80		7,4	10,28	11,2	9	0	78		рН 👯				longo do expe	rimento - 0.0	CO ₂ absorvido				
100									13,0 🛔				bsorvido		045 [Kg/iiiii]				
120									12.0)4)25				
140									12,0					[0,0	222				
			SAÍ	DA					11,0						3				
	Hanna	N	1RU	TE	MPEST 1	00			10,0										
Tempo (min)	рН	%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)								15				
0	12,8	6,8	11,24	11,7	1	2	29		9,0					0,0)15 04				
10	9,9	7,2	10,48	12,2	0	4	34		8,0	-+				- 0,0	<i></i>				
20	9,2	6,4	11,51	12,5	1	3	36			- V				- 0,0	005				
30	8,5						38		7,0 +	20	40			100					
40	8,4	6,5	11,50	12,5	11	0	39		0	20	ter	npo(minuto	s)	100					
50 60	8,4 8,4	67	11.24	12.1	1	2	39			•									
80	83	6.8	10.95	12,1	<u>م</u>	0	40			Compor	tament	o do pi	apos o e	experimen	to				
90	8.4	0,0	10,55	12,2	5	0	41				en	n frasco	fechado						
	<i>cj</i> :								рН _{14 ⊤}										
			Comportar	nento do	1				13 -						<u> </u>				
			pH ap	ós o					12 -										
			experime	ento em					11						—				
			n U	duração	1				10	+									
			рн	(dias)					9 -			_	+ +						
			8,4	0					8 📍										
			12,6	25					7 4										
			12,6	73					0	50	100	150	200 250	300 3	350 400				
			12,8	108								temp	o (minutos)						
			12.2	2192				- 4											
			12,2	210	{														
			11.8	247															
			11,0	11,8 287															
			11,7	347	1														
11,7 347										1									

Tabela II. 7 – Resultados do experimento7.
II.8 – Experimento 8

	Carbona	tação de	Resíduo	s de Baux	ita Exper	imento 8	3			Cálcul	o da massa	a de CO ₂ reagi	da.	
DATA 25	/11 / 2011		Temp	48-57 °C	T	orre de spr	ау	(min	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
LAM	A/Água 27	%рр	Dist. Liq.	Bicos 1níve	el .	Quar	nt. 10	Temp	m CO ₂ sai	m N ₂ sai	Q ent	m CO ₂ ent	m CO ₂ abs	∫∆MCO ₂ •min
Vazão gá:	0,0274	m³/s	Vazã	io de liq. 1,2	26 I/s	Ph inío	io 12,3	0	0,002802	0,024061	0,027624	0,003334049	0,000532272	
			ENT	RADA				10	0,002994	0,023705	0,027043	0,00344525	0,000451557	0,29514893
		М	RU	TEI	MPEST 1	00		20	0,00293	0,023665	0,026965	0,003390157	0,000460061	0,27348551
Tempo(min)		%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	40	0,003226	0,023831	0,028277	0,003666167	0,000440477	0,54032258
0		7,2	10,84	11,5	4	9	48	60	0,002822	0,023396	0,027980	0,003045478	0,000222998	0,39808507
10		7,6	9,92	11,0	4	0	48	80	0,002867	0,023422	0,028222	0,003233113	0,000365833	0,35329888
20		7,5	9,92	10,9	4	0	48	100	0,002948	0,023283	0,028072	0,003305223	0,000357353	0,34821098
40		8,1	8,89	10,2	5	0	63						[kg]	2,21
60		6,8	10,84	11,5	4	14	63						kg CO ₂ /ton	59,7
80		7,2	10,57	11,7	4	10	65	13.0 -						- 0.035
100		7,4	10,42	11,5	5	10	65	nH				pH ao longo do		CO ₂ absorvido
120								120				experimento		- 0.03
140								12,0 -		~	-e-	CO2 absorvido		
			SA	ÍDA				11.0 -						- 0,025
	Hanna	Μ	RU	TEI	MPEST 1	00		11,0						- 0.02
Tempo (min	рН	%CO2	%02	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	10,0 -	-					
0	12,3	6,1	11,27	12,2	1	10	48							- 0,015
10	10,5	6,6	10,98	11,8	4	0	52	9,0 -						-
20	10,2	6,5	10,71	11,7	4	0	54	_					•	- 0,01
30	10,0	7.2	0.02	10.0	1		55	8.0 -						
40 50	9,7	7,2	6,92	10,9	1	1	56							0,005
60	9.3	6.3	11.35	12.4	4	13	56	7,0 -						+ o
80	9,0	6,4	11,16	12,3	4	10	56	- (20	40	tempo(mir	80	100	120
100	8,9	6,6	11,2	12,0	4	10	57				tempo(iiii			
120									Com	oortame	ento do	pH após o	o experime	ento
140											em fras	co fechad	o	
			Constant					рн 1	4					
			Comport	amento do				1						
			experin	ipos o nento em				1	2					
				duração				1	1 ++					
			рН	(dias)				1						<u>'</u>
			8,9	0					9 🔶 🗕					
			10,1	18					8					
			10,1	66					7 +					
			10,2	101					0 50	100	150	200 250	300 3	350 400
			10,4	185				_			te	mpo (dias)		
			10,6	211										
			10,6	240										
			10,6	280										
			10,7	316										
			10,6	340										

Tabela II. 8 – Resultados do experimento 8.

II.9 – Experimento 9

	Carbonat	ação de	Resíduos	de Baux	ta Experi	mento 9				Cálculo d	a massa de (CO ₂ reagida.		
DATA 12/	/12 / 2011		Temperat	ura 27 °C	Torre de s	pray		(min)	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
LAMA	4/Água 27	%рр	Dist. Liq. B	icos 2 nív	eis	Quar	nt. 10	Tempo	m CO ₂ sai	m'N ₂ sai	Q ent	m [°] CO ₂ ent	m CO ₂ abs	∫∆MCO ₂ ∗min
Vazão gás	0,0228	m³/s	Vazão	de liq. 0,	74 I/s	Ph iníc	io 12,3	0	0,0023095	0,0209567	0,0247293	0,00259578	0,00028629	
			ENTR	ADA				10	0,00227904	0,0207211	0,024526	0,00260663	0,00032759	0,184164363
		N	1RU	TE	MPEST 1	.00		20	0,00227155	0,0206109	0,0244628	0,00250456	0,00023301	0,168179819
Tempo(min)		%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	40	0,00252562	0,0205315	0,0243937	0,00283693	0,00031131	0,326591923
0		6,4	12,12	12,5	0	45	55	60	0,002501	0,02033	0,024520	0,00277003	0,00026879	0,3480631
10		6,5	12,02	12,5	0	29	56	80	0,00242312	0,020016	0,0241345	0,00269611	0,000273	0,325072724
20		6,3	11,95	12,7	0	39	58	100	0,00214707	0,0198511	0,023950	0,00237678	0,00022971	0,299098577
40		7,2	10,64	11,6	4	2	60	120	0,00260716	0,0204223	0,0239208	0,00290998	0,00030282	0,319513679
60		7,1	10,75	11,5	4	9	65						[kg]	1,97
80		7,0	11,07	11,6	0	11	64						kg CO ₂ /ton	53,3
100		6,2	12,16	12,9	4	43	63	13,0						0,025
120		7,6	8,31	8,1	3	4085	63	рн			🔶 рНао	ongo do expe	rimento	CO2absorvido [kg/min]
			SAÍI	LLLLL DA				12,0			-CO2 ab	sorvido	-	- 0,02
	Hanna	Ν	1RU	TE	MPEST 1	.00		11,0 🕰	+ /					-
Tempo (min)	pН	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)			_		\searrow		- 0,015
0	12,3	5,7	12,67	13,1	0	46	30	10,0			-			
10	10,6	5,7	12,52	12,9	0	31	34							- 0,01
20	10,4	5,7	12,69	13,2	0	29	35	9,0						
30	10,3	6.4	11 51	12.2	4	2	3/	80						- 0,005
50	9.8	0,4	11,51	12,2	4	3	38	0,0						
60	9.7	6.4	11.53	12.4	4	3	41	7,0 -						+ o
80	9,4	6,3	11,61	12,4	3	9	46	0	20	40 6	0 80	100	120 1	40
100	9,2	5,6	12,73	13,1	4	24	47	1		ter	npo (minutos)			
120	9,1	6,8	9,18	10,1	0	3378	47	C	omportar	nento de	o pH apó	s o expe	rimento e	em
									•	fra	sco fech	ohe		
			Comportar	mento do				nH				uuo		
			рН ар	ós o				14 T						
			experime	ento em				13						
			рН	duração (dias)				12						
			9.1	0						•			\rightarrow	
			10	1				10						
			10.2	49				9						
			10,3	84	1			8 -						
			10,4	168				7+		100	+ +	250	200 7	50 400
			10,5	194				0	50	100	10 200	/ 200	300 3	30 400
			10,6	223]						tempo (uiasj		
			10,8	263										
			10,7	299										
			10,7	323										

Tabela II. 9 – Resultados do experimento 9

II.10 – Experimento 10

		~ ! ~												
Ca	rbonata	çao de R	esiduos (de Bauxi	ta Experi	mento 10	0		1	Cálcul	o da massa	de CO ₂ reagio	a.	
DATA 13/	12 / 2011		Temp	40-50°C	Тс	orre de Spr	ау	(min)	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
Sol	brenadant	e	Dist. Liq.	Bicos 2 ni	veis	Quar	nt. 10	Tempo	m CO ₂ sai	m N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO _{2*} min
Vazão gás	0,02031	m³/s	Vazão	de liq. C),28 l/s	Ph inío	io 12,8	0	0,00211	0,017997	0,020961	0,002490619	0,000380579	
		-	ENTR	ADA				10	0,001833	0,017923	0,02128	0,0019712	0,000137887	0,15553973
		М	RU	TF	MPFST 1	00		20	0.002352	0.018002	0 021827	0.002008253	-0.000343923	-0.0618108
								20	0,002552	0,010002	0,021027	0,002000255	0,000343323	0,0010100
Tempo(min)		%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	40	0,001953	0,017774	0,020889	0,002117579	0,000164662	-0,1075565
0	-	7,2	10,75	12,6	9	10	53	60	0,001962	0,017581	0,021903	0,002159468	0,000197182	0,21/10605
20		5,7	12,58	12,9	9	10	58	80	0,002049	0,017748	0,022091	0,002286709	0,000237505	0,39121798
20		5,8	12,24	40.7	0	2	50						[Kg]	0,59449040
40		6,2	11,74	12,7	9	2	56						kg CO ₂ /ton	16,1
60	-	6,4	11,48	12,5	9	10	76	14,0		_	U ao longo g	la avnarimenta	0,	03 CO, absorvido
100		6,7	11,34	12,3	9	9	/5	рН		—-р	n au iuligu u	io experimento	- 0,	025 [kg/min]
120								13,0		c	O2 absorvid	0	- 0,	02
140	-											· _	- 0	015
140			C A ÍI					12,0		-	\sim			01
	r		SAII	JA									- 0,	01
	Hanna	M	RU	TE	MPEST 1	.00		11,0	11				- 0,	005
Tempo (min)	рН	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	10,0	$-\mu$				- 0	
0	12,8	6,1	11,82	12,5	9	11	43		_ \ →				0	,005
10	9,8	5,3	12,96	14,7	4	11	43	9,0	-+		_		0	.01
20	9,5	6,8	11,10				43			/				015
30	9,3						44	8,0	<u> </u>	/				,015
40	9,0	5,7	12,47	13,4	9	2	46		¥				0	,02
50	8,8			12.2		-	48	7,0 +						,025
60	8,7	5,8	12,24	13,3	9	9	50	0	20	4 te) mpo(minut	60 80 os)	100	
80	8,7	6,0	12,03	13,0	9	10	47		_					
90 ODSEDVACÕ	8,8						47		Compo	rtament	o do pl	Hapós o e	xperimen	to
OBSERVAÇO	/ES.	docligo do s	om o pH = 1	0.8	rmitir o oqu	acimente at				er	n frasco	o fechado		
Apos 5 min a	caluena ior	foi roligada		om 10.1 0	máximo too	r do CO	e	рН ₁₄						
obtido no gáo		vido o ontu	o pri estava	niotor do ól		1 46 60 2		17						
000100 110 803	1010,07000	vido a ciita						13						
		Compor	tamento					12						
		do pH	após o					11						
		experim	ento em					10						
			duração					9	*					
		рН	(dias)					8	++					
		8,8	0					7	++					
		12,8	48						0 50	100	150	200 250	300 3	50 400
		13	83								tei	mpo (dias)		
		12,4	167											
		13	193											
		13	222											
		12,9	262											
		12,9	298											
1		12,9	322											

Tabela II.10 – Resultados do experimento 10.

II.11 – Experimento 11

C	arbonat	ação de	Resíduo	s de Bauxi	ta Experi	mento 1	1				Cálculo	da massa de	CO ₂ reagida		
DATA 23	/11 / 2011		Temper	atura 27°C	Torre o	le Recheios	- Selas	(min))	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
So	brenadan	te	Dist. Liq.	Ent. Livre 1	/2"	Qua	nt. 1	Tempo	0	m CO ₂ sai	m'N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO₂•min
Vazão gá:	0,02121	m³/s	Vazã	o de liq. 0,	96 I/s	Ph inío	io 12,7	0		0,002315	0,019738	0,02329404	0,00266614	0,00035142	
			ENT	RADA		-		10		0,002592	0,019569	0,02364579	0,00285936	0,00026732	0,185624003
		М	RU	TEN	MPEST 1	00		20		0,002521	0,019265	0,02351672	0,00284715	0,00032621	0,17806071
Tempo(min)		%CO2	%02	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	40		0,002643	0,0191	0,02360992	0,00281689	0,00017371	0,299955407
0		7,0	11,28	11,6	4	13	56	60		0,002626	0,018989	0,02349027	0,00283901	0,00021293	0,231985973
10		7,6	10,40	10,9	5	4	65	80		0,002609	0,018912	0,0232625	0,00279166	0,0001824	0,237198598
20		7,7	10,17	11,0	13	0	69							[kg]	1,13
40		7,7	10,01	11,0	14	0	74							kg CO ₂ /ton	30,6
60		7,8	9,97	11,0	6	2	74	13.0 -				-			- 0.025
80		7,7	10,08	10,8	14	0	72	pH 🕇				pH ao I	ongo do expe	rimento	CO2absorvido[
100								12,0					sorvido		kg/min]
120															- 0,02
140								11,0 +							
			SA	NÍ DA					_\'		\mathbf{X}				- 0,015
	Hanna	М	RU	TEN	MPEST 1	00		10,0			$- \checkmark$				
Tempo (min)	рН	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)			\					- 0,01
0	12,7	6,1	11,8	12,4	6	17	28	9,0 T							
10	9,7	6,9	10,89	11,8	6	2	31								- 0,005
20	8,3	6,8	11,20	11,8	9	2	35	8,0 T							
30	8,2						37	70							
40	8,2	7,2	10,71	11,5	13	0	38	0		20	. 41	, 60	2 8	0 10	0
50	8,2						39	_			te	empo (minutos)		
60	8,2	7,2	10,66	11,8	6	2	40	_	C	omport	ament	o do nH a	nós o ex	nerimen	to
80	8,2	7,2	10,47	11,7	14	0	42	_		ompon				permen	
											en	i frasco fe	echado		
			Comport	amento do				PH 14	ч <u>т</u>						
			pH a	após o				13	; ┼─					\rightarrow	
			experir	nento em	_			12	2 						+
			pН	duração				11	۱ -						+
				(dias)				10) _					_	+
			8,2 12.0	0	-			9	י לל י						+
			12,9	102				8	•						+
			12.0	103	{			- 7	+						
			13.1	213	1			-	0	50	100	150 20	0 250	300 3	350 400
			13.2	213	1			-				tempo	(dias)		
			13,2	242	1										
			13	318	1			_							
			13.1	342	1										
			1,0,1	J42	1	1									

Tabela II. 11 – Resultados do experimento 11.

II.12 – Experimento 12

C	arbonat	ação de	Resíduc	s de Bauxi	ta Experi	mento 1	2					Cálculo	da massa de	CO ₂ reagida		
DATA 29	/11 / 2011	l i	Tempe	ratura 56°C	Torre d	e Recheios	- Selas		ĺm	inl	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
LAM	A/Água 2	7%pp	Dist. Lig	. Ent. Livre 1	/2"	Qua	nt. 1		Ten	npo	m CO ₂ sai	m N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO ₂ +min
Vazão gá:	0,02545	m3/s	Vaz	ăo de liq. 0,	91 l/s	Ph iníc	io 12,6		())	0,002455	0,021686	0,02475407	0,00296486	0,0005097	
		,	EN	TRADA					1	.0	0,002497	0,021729	0,02482347	0,0029313	0,00043453	0,28326792
		M	RU	TEN	APEST 10	00			2	:0	0,002497	0,021718	0,02493366	0,00284216	0,00034539	0,23397353
Tempo(min)		%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		4	0	0.002531	0.021613	0.02481586	0.00282873	0.00029808	0.38608181
0		7,1	10,98	11,7	4	10	46		6	i0	0,002580	0,021676	0,02522699	0,00278935	0,00020936	0,30446392
10		7,0	11,15	11,6	5	4	46		8	0	0,002538	0,021673	0,02472391	0,00283612	0,00029774	0,45638765
20		6,8	11,24	12,0	5	2	48								[kg]	0,00209479
40		6,8	11,25	12,0	5	4	48								kg CO ₂ /ton	0,1
60		6.7	11.19	12.0	6	9	53		40.0						0 2	
80		6.8	11.23	12.1	5	10	46		13,0				рн	ao longo do e:	perimento	CO ₂ absorvido
100				,					pН	I			 co2	2 absorvido		[kg/min]
120									12,0	╉						- 0,03
140																
			S	AÍDA					11,0	\vdash						- 0,025
	Hanna	М	RU	TEN	/IPEST 10	00					∖ <mark>`</mark> ⊾					- 0,02
Tempo (min)	рН	%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		10,0	<u> </u>	-					
0	12,6	5,9	11,92	12,3	4	4	56									- 0,015
10	10,2	6,0	11,66	12,3	5	4	56		9,0	<u> </u>					→	-
20	9,8	6,0	11,70	12,4	6	2	56		l .							- 0,01
30	9,3						57									
40	9,3	6,1	11,75	12,4	5	4	57		8,0							- 0,005
50	9,2					-	56	_								
60	9,3	6,2	11,66	12,6	6	4	56	_	7,0	 0	20	1	0	50	80	+ 0 100
80 90	9,2	6,1	11,77	12,5	5	10	56	-		<u> </u>	20	t	empo (minuto	is)		100
	•,=										Comport	amento	do pH apo	ós o expe	rimento er	n
													frasco feci	hado		
														lauo		
			Compor	tamento do					рН	14 T						
			pH	após o						13 +						
			experi	mento em						12 +						
			frasc	o fechado						11 +						
				duração						10					• •	
			рН	(dias)				_								
			9,2	0						۳T						
			10,4	14				_		8 🕇						
			10,5	62				_		7 +			-			
			10,6	97				_		0	50	100	150 20	0 250	300 3	50 400
			10,6	181	-			_					tempo	(dias)		
			10,7	207	{			_	L							
			10,9	230												
			10,9	2/0	{											
			10,8	312												
			10,8	330												

Tabela II. 12 – Resultados do experimento 12.

II.3 – Experimento 13

Ca	rbonatao	ão de R	esíduos c	de Bauxit	a Experii	mento 13	3	1				Cálculo da	ı massa de	CO ₂ reagi	da.	
DATA 9-10 /	/11 / 2011		Tempera	itura 27°C	Torre de F	Recheio est	truturado		ſm	inl	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
LAMA	/Água 279	%рр	Dist. Liq.	Ent. Livre	1/2"	Qua	nt. 1		Ten	npo	m CO ₂ sai	m N ₂ sai	Q'ent	m CO ₂ ent	m'CO ₂ abs	∫ΔMCO ₂ ,min
Vazão gás	0,01986	m³/s	Vazão	de liq. 0	,87 l/s	Ph inío	cio 12,6		()	0,002291	0,018316	0,021281	0,002696	0,000405	
	· · · ·		ENTR/	ADA			,		1	0	0,002353	0,018208	0,021337	0,002652	0,000299	0,211076749
		Μ	IRU	TE	MPEST 1	00			2	0	0,002207	0,018163	0,021242	0,00257	0,000363	0,198558278
Tempo(min)		%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		14	10	0.002166	0.018301	0.020731	0.002604	0.000438	0.48066018
0		7.7	9.80	10.7	0	5 5	. (6)		14	30	0.002395	0.018189	0.021009	0.002643	0.000248	0.41156864
10		7.6	10.10	11.0	0	8	56		14	50	0.00257	0.017955	0.021293	0.002743	0.000173	0.252819113
20		74	10 14	11 3	0	5	56		14	60	0.001981	0.017772	0.020823	0.002288	0.000307	0 144234562
1410		74	10,11	10.7	0	8	44			00	0,001501	0,01///2	0,020025	0,002200	[kg]	1 698917522
1430		7,6	9.92	10,7	0	4	52								kg CO ₃ /to	45.9
1450		8.0	9.44	9.8	0	4	61								0 - 2	- / -
1450		6.7	11 24	12.7	0	13	55		13,0 ·	1			• • • •			T 0,03
1400		0,7	11,24	12,7	0	15	55		рН				рнао	iongo do ex	perimento	CO ₂ absorvido
									12.0			<u> </u>	CO2 at	sorvido		0.025
			SAÍ					1	12,0							0,020
	Hanna	M	IRU	TE	MPEST 1	00		1	11,0 ·	<u> </u>		-+				- 0,02
Tempo (min)	рН	%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (npm)	T(°C)				Y		–			
0	12.6	6.6	10.14	11.5	0	5	35	1	10.0							0.015
10	9.7	6.8	10.16	11.1	0	7	36		10,0 .							T 0,015
20	9.2	6.4	10.50	11.8	0	5	37						VX –			
30	9,1	- /	.,	,-		_	38		9,0 ·							+ 0,01
1410	10.5	6.2	11.15	11.7	0	9	33	Í						\rightarrow		
1420	9,4		,					1	8.0 .	<u> </u>						- 0.005
1430	9,0	6,9	10,42	11,1	0	5	35									·
1440	8,6															
1450	8,6	7,5	9,82	10,6	0	4	39		/,0 ·	0			1450			- 0
1460	8,6	5,8	12,1	14,2	0	34	40			0			1450	itor)		
													empo (mini	itosj		
OBSERVAÇÕ	ES:									Co	omporta	mento d	o pH apó	ós o expe	erimento	o em
Corrida foi in	iterrompid	la e compl	etada no di	ia seguinte	e devido ac	afogamer	nto do					fra	isco fect	nado		
sistema de d	renagem o	la torre. Es	ste fato obr	igou a lim	peza do sis	tema de m	iovimenta	ção	l	14						
de gas.									рн	14						
			Comport	tamento						13						
			do pH	após o						12						
			experim	ento em												
			pН	duração						11 ·				-		
				(dias)						10				_		→
			8,6	0	┨────											
			9,9	33						9						
			9,9	81	{					8	I					
			10,1	116						_						
			10,2	200	{					7	1	400				
			10,5	220	{						U	100	20	, ,	300	400
			10,0	205				\square					tempo	(dias)		
			10,4	331	ł											
			10.4	355	1											
			10,4	555				1	1							

Tabela II.13 – Resultados do experimento 13.

II.14 – Experimento 14

	Tabela	II.14 -	Resultados	do ex	perimento	14.
--	--------	---------	------------	-------	-----------	-----

C	arbonata	ação de l	Resíduos	de Baux	ita Experir	nento 14	Ļ	1			Cálculo	da massa de	CO ₂ reagida		
DATA 02/	12 / 2011		Temp.	46-53°C	Torre de Reo	heio estru	turado		[min]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
So	brenadant	e	Dist. Lig.	Ent. Livre	1/2"	Qua	nt. 1		Tempo	m	m N ₂ sai	Q ent	m'CO2ent	m CO ₂ abs	∫∆MCO₂•min
Vazão gás	0,02255	m3/s	Vazã	o de liq.	0,88 l/s	Ph inío	io 12,5		0	0,002206	0,019801	0,0226576	0,00267554	0,0004692	
			ENT	RADA					10	0,002268	0,019649	0,0225886	0,00246125	0,0001932	0,19871988
		М	RU	Т	EMPEST 10	00			30	0,002404	0,019515	0,0224389	0,00254975	0,0001457	0,20331739
Tempo(min)		%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		40	0,002397	0,019474	0,0234936	0,00254191	0,0001453	0,0872947
0		7,0	11,28	12,1	0	15	46		60	0,002233	0,019326	0,0235189	0,00230632	0,0000735	0,13127426
10		6,5	11,65	12,3	9	10	48		80	0,00294	0,019515	0,023868	0,00312471	0,0001848	0,15494813
30		6,8	11,11	11,8	5	2	49		90	0,002866	0,019515	0,0238995	0,00304543	0,0001799	0,10941235
40		6,8	11,07	11,9	0	6	65							[kg]	0,88496669
60		6,2	11,90	12,9	9	2	67							kg CO ₂ /ton	23,9
80		8,4	8,91	10,2	9	0	72		13.0						- 0.03
90		8,2	8,98	9,9	4	2	73		- NH			— ••	Hao longo do		CO ₂ absorvido
									12,0			6	experimento		0,025
													.02 absorvido		
			SA	ÍDA					11,0	1					0,02
	Hanna	М	RU	Т	EMPEST 10	00									
Tempo (min)	рН	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		10,0						0,015
0	12,5	5,8	12,09	12,6	0	15	46								0.01
10	8,8	6,0	12,01	12,6	5	10	48		3,0						0,01
20	8,4						50		8.0					→	0.005
30	8,3	6,4	11,66	12,2	5	2	50								-,
40	8,3	6,4	11,58	12,5	1	6	51		7,0					,	+ o
50 60	8,3	6.0	12 10	12.1	٥	1	52		0	20	4	0 (minutos)	60	BO :	L00
80	8,3	7.9	9.40	10,4	9	0	53						,		
90	8,3	7,7	9,60	10,9	9	0	53			.omport	amento	о ао рна	apos o ex	perimer	ito
									14 -		em	frasco fe	echado		
									рн 13 —						
			6						12	$ \frown $					
			Compor	tamento					11						
			evnerim	apus u ento em											
			схрени	duração				-	10						
			рН	(dias)					9						
			8,3	0					8						
			12,3	11					7 +						
			12,5	59					0		100	200		300	400
			12,6	94								tempo (dias)		
			12,2	178											
			12,4	204											
			12,7	233				-							
			12,7	273				-							
			12,4	309				-							
			12,3	333											

II.15 – Experimento 15

C	arbonata	ação de	e Resíduos de Bauxita Experimento 15									Cálculo	da massa de	CO ₂ reagida		
DATA 07/	02 / 2012		Temp	. 27°C	Torre de Reo	heio estru	turado		[min]		[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
	Lama		Dist. Liq.	Ent. Livre	1/2"	Qua	nt. 1		Tempo)	m	m N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO ₂ ∗min
Vazão gás	0,01603	m3/s	Vazã	o de liq.	l/s	Ph inío	cio 12,9		0	0	,002065	0,015419	0,017083	0,00263455	0,0005697	
	•		ENT	RADA					10	0	,002115	0,015123	0,0171371	0,00247833	0,0003633	0,2798789
		М	RU	Т	EMPEST 10	00			20	0	,001918	0,014904	0,0168577	0,00252298	0,0006051	0,29050808
Tempo(min)		%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		30	0	,001899	0,014628	0,0165637	0,00226329	0,0003643	0,29081206
0		9,2	5,87	8,0	0	1447	48		40	0	,002199	0,014642	0,0165441	0,00243579	0,0002368	0,18031216
10		8,6	8,62				47		60	0	,002205	0,014476	0,0164128	0,00240119	0,0001959	0,25962481
20		8,9	8,17	9,6	0	128	47		80	0	,002082	0,014281	0,0161375	0,00230664	0,0002251	0,25260517
30		8,1	9,32	10,6	0	32	46		90	0	,002191	0,014347	0,0163534	0,00233012	0,0001390	0,1092218
40		8,7	8,80	9,5	0	38	45								[kg]	1,66296298
60		8,7	8,57	9,7	0	34	47								kg CO ₃ /ton	44,9
80		8.5	8.49	9.6	0	24	47		14.0 -							- 0.04
90		8,5	8,95	9,7	0	21	48	1	pH				— рН ас	longo do exp	erimento	CO₂absorvido
									13,0 📥		$- \cap$		-CO2 a	absorvido		- 0,035
			SA	ÍDA												
	Hanna	М	RU	T	EMPEST 10	00			12,0	\blacksquare	+	+-				- 0,03
Tempo (min)	op (min) pH %CO2 %O2 %O2 NO2 (ppm) SO2 (ppm) T 0 12,9 7,2 7,94 9,2 0 1354				T (°C)		11.0							- 0,025		
0	12,9	7,2	7,94	9,2	0	1354	28		111,0 T							
10		7,4	9,09				29									- 0,02
20	9,7	6,8	9,81	11,1	0	78	33		10,0				_			- 0.015
30	9,2	6,8	10,55	12,1	0	32	36	_							-	0,015
40	9,0	7,9	9,10	10,1	0	38	37		9,0 +							- 0,01
50								_								
60	8,8	8,0	9,15	10,6	0	36	40	_	8,0 +							- 0,005
80	8,6	7,6	10,14	11,2	0	23	42	_								
90	8,5	8,0	9,36	10,7	0	19	42		7,0 +				_			+ 0
									0		20	4 te	o empo (minuto	60 ps)	80	100
			_							Со	mport	amento	do pH a	após o ex	perimer	nto
			Compor	tamento								em	frasco f	echado		
			do pH	apos o												
			experim	ento em					14	•						
			Trasco i	echado				-	13	3 –						
			рН	(diac)					12	<u>2</u>						
			85	(uias)				-	11	L						
			9.5	6				-	pH 1						←	→
			9.8	29	ł				10	' 👉						
			10.2	113					9	• 🏌						
			10.3	139	ĺ				8	3 🛴						
			10,4	168	İ				_	.						
			10,5	208	ĺ				1 7	0	c	0 1	00 11	50 200) 250	300
			10,5	244	ĺ				1	0	5	- 1	temp	o (dias)	, 230	500
10,5 244 10,6 268												- (

Tabela II.15 – Resultados do experimento 15.

II.16 – Experimento 16

C	arbonata	ação de l	Resíduos	síduos de Bauxita Experimento 16								Cálculo	da massa de	CO ₂ reagida		
DATA 08/	02/2012		Temp	. 27°C	Torre de Reo	cheio estru	turado		[mi	n]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
	Lama		Dist. Lig.	Ent. Livre	1/2"	Qua	nt. 1		Tem	po	m	m N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO ₂ •min
Vazão gás	0,01620	m3/s	Vazã	o de liq.	0,97 l/s	Ph iníc	io 12,9		0		0,001065	0,01491	0,0170761	0,0013669	0,0003017	
			ENT	RADA		-			10)	0,001169	0,014713	0,0167882	0,00142963	0,000261	0,16881831
		М	RU	Т	EMPEST 10	00			20)	0,001359	0,01468	0,0168641	0,001650	0,0002909	0,16556379
Tempo(min)		%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		40)	0,001181	0,014521	0,0167798	0,0014064	0,0002249	0,30946721
0		4,7	14,42	14,7	0	35	43		60)	0,001142	0,014514	0,0165802	0,001431	0,0002888	0,3082366
10		5,0	13,82	14,6	0	22	43		80)	0,00125	0,014366	0,0163771	0,00141798	0,0001684	0,27432556
20		5,8	12,80	15,7	0	50	46		90)	0,00125	0,014376	0,0163591	0,00138864	0,0001391	0,09223228
40		5,0	13,57	14,6	0	19	48								[kg]	1,31864375
60		5,1	13,30	14,3	0	13	45								kg CO ₂ /ton	35,6
80		5,1	13,39	14,6	0	15	44		14,0 T						0,0)2
90		5,0	13,34	14,6	0	15	44		рН 🛔	L	_		_		- 0,0)18 [kg/min]
									13,0	Ż					- 0.0	016
				ÍDA					12.0 -							14
	Hanna		SA			20						Y			0,0)14)10
	Haillia	IVI	RU	1		00			11,0 -	+		🗕 pH ao loi	ngo do experi	mento 🔽	- 0,0)12
Tempo (min)	рН	%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		10.0		_	CO2 abso	orvido		- 0,0	01
0	12,9	3,7	14,56	15,1	0	34	30		10,0 T			002.005			- 0,0	008
10	9,3	4,1	14,44	14,9	0	22	33		9.0 -						- 0,0	006
20	8,7	4,8	13,39	15,5	0	50	35								- 01	004
30					-				8,0 -							
40	8,2	4,2	14,35	14,7	0	18	37								- 0,0	002
50	7 5	4.1	12 70	15.0	0	12	40		7,0 +							
80	7,5	4,1	13,70	15,0	0	15	40)	20	40 tem	60 (minutos)	80	100	
90	7,8	4,5	13,82	15,0	0	10	41									
	/-	,-	- / -	- /						С	omport	amento	do pH a	após o ex	perimer	ito
										14 –		em	frasco fe	echado		
									рН							
			Comport	tamento						13 -		1				
			do pH	após o						12 -						
			experim	ento em						11 -						
			Trasco t	echado												→
			рН	(dias)						10 7	1					
			7.8	0						9 -						
			9,8	5	1					8 -	L					
			10,1	28						,]						
			10,2	112						, ,) 5	50 1	.00 15	50 200	250	300
			10,4	138						-		-	tempo	(dias)		
			10,7	167												
			10,6	207												
			10,6	243				-								
			10,6	267	J											

Tabela II.16 – Resultados do experimento 16.

II.17 – Experimento 17

C	arbonata	ação de l	Resíduos	de Baux	ita Experin	nento 17		1			Cálculo	da massa de	CO ₂ reagida		
DATA 10/	02/2012		Temp. 2	23 - 27°C	Torre de Reo	heio estru	turado		[min]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
	Lama		Dist. Lig.	Ent. Livre	1/2"	Qua	nt. 1		Tempo	m	m'N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO ₂ •min
Vazão gás	0,01037	m3/s	Vazã	o de liq.	1,00 l/s	Ph inío	io 12,7		0	0,00100	0,009913	0,0110531	0,00137296	0,0003728	
			ENT	RADA					10	0,00102	0,009816	0,0110589	0,00132694	0,0003114	0,2052579
		М	RU	Т	EMPEST 10	00			20	0.00097	0.009645	0.0108657	0.00122926	0.0002612	0.17179277
Tempo(min)		%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		30	0,00108	0,009694	0,0108472	0,00130153	0,0002218	0,14492263
0		7,2	10,78	11,8	1	2	39		40	0,00104	0,009677	0,0107797	0,00122345	0,000181	0,12084058
10		7,0	11,30	12,2	0	5	41		60	0,00097	0,009614	0,0107802	0,00109729	0,0001293	0,18615279
20		6,6	11,70	12,8	1	2	41		80	0,00000	0,009514	0,0106714	0,00083387	0,0008339	0,57789321
30		7,0	10,74	12	1	11	41		90	0,00069	0,009574	0,0107404	0,00080197	0,0001109	0,28341943
40		6,6	11,04	12,3	1	4	40	_						[kg]	1,69027931
60		5,9	12,54	13,6	1	2	39							kg CO ₂ /ton	45,7
80		4,5	14,49	15,8	5	2	37		13,0		pl	Hao longo do	experimento		0,06
		4,5	14,70	13,5	0	0	57		рН		- - C	D2 absorvido		_	[kg/min]
			SA	ÍDA	I	l			12,0						0,05
	Hanna MRU TEMPEST 100								11,0				/	-	0,04
Tempo (min)	npo (min) pH %CO2 %O2 %O2 NO2 (ppm) SO2 (ppm) T (T (°C)								
0	ppo (min) pH %CO2 %O2 %O2 NO2 (ppm) SO2 (ppm) T 0 12,7 5,3 11,77 12,4 1 2					23	1	10,0	$\boldsymbol{\cdot}$					0,03	
10	10,1	5,4	12,20	13,3	1	2	24								
20	9,4	5,2	13,02	13,6	1	0	27		9,0	-					0,02
30	8,9	5,8	12,00	13	0	7	27						+		
40	8,5	5,6	12,35	12,9	1	2	27		8,0			$\overline{}$			0,01
80	0,5 8.4	5,2	15,20	14,2	1	2	27		7.0						
90	8.2	3.7	15,39	16,2	0	5	26		0	20	4	empo (minuto	SA	80	100
	-,	-,	- /	-,		-	-		_				,		
		Compor	tamento						C	omport	amento	do pH a	ipos o ex	perimen	to
		do pH	após o								em	frasco fe	echado		
		experim	ento em						^{pH} 14 ⊤						
		frasco f	fechado						13 -						
			duração						12 -						
		рН	(dias)						11 -						
		8,2	0						10						·
		9,7	3 26					\square	9 -						
		10.1	110	{				\square	8 🕇						
		10,7	136						7 +			ļ			
		11,1	165						0	5	0 1	00 15	0 200	250	300
		10,6	205									tempo	(dias)		
		10,7	241												
	10,7 241 10,6 265														

Tabela II.17 – Resultados do experimento 17.

II.18 – Experimento 18

	Carb	onataçã	o de Resío	luos de Bauxita Ex	perimento	18					Cálculo	da massa de	CO ₂ reagida		
DATA 20/0	03 / 2012		1	ēmp. 27°C	Torre de Reo	cheio estru	turado		[min]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]
	Lama		Dist. Liq. E	nt. Livre 1/2"		Qua	nt. 1		Tempo	m	m N ₂ sai	Q ent	m'CO ₂ ent	m'CO ₂ abs	∫∆MCO ₂ ∗min
Vazão gás	0,01986	m3/s	Va	zão de liq. 1,00	l/s	Ph inío	io 12,4		0	0,002259	0,01865	0,0213605	0,00280176	0,000543	
				ENTRADA		•			10	0,002341	0,018252	0,0220551	0,00265906	0,0003179	0,25827383
		N	1RU	TEMP	EST 100				20	0,002499	0,018164	0,0219923	0,00278273	0,0002834	0,1803886
Tempo(min)		%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		40	0,002467	0,017911	0,0221112	0,00267234	0,0002054	0,29329349
0		7,8	10,30	11,0	0	296	47		60	0,002451	0,017801	0,0219935	0,00261641	0,0001654	0,22246992
10		7,6	10,16	12,4	0	144	66		80	0,002375	0,017788	0,0217213	0,00261436	0,0002390	0,24264084
20		8,0	9,68	10,7	0	447	67		90	0,002435	0,017665	0,0212026	0,00263139	0,0001960	0,13052395
40		7,8	9,80	10,8	0	385	74		100	0,002368	0,017622	0,021383	0,00263022	0,0002625	0,13756389
60		7,7	9,73	10,7	0	660	75	_						[kg]	1,32759064
80		7,7	9,72	10,8	0	610	71	_						kg CO ₂ /ton	35,9
90		7,8	9,65	10,9	0	/02	65	_	13,0		-	🔶 pH ao lon	go do experim	ento	0.035 co₂absorvido
100		7,8	9,82	10,9	0	002	68		pH		-	CO2 abso	rvido		(kg/min) - 0,03
				δαίρα	1	1			12,0						
	Hanna	N	1011	TEMP	EST 100				11,0						- 0,025
Tempo (min)	nH	%CO2	*01	%O1	NO3 (nom)	SO2 (mm)	T (°C)								- 0,02
0	12,4	6,4	10,2	11,7	0	76	30		10,0				<u> </u>	–	- 0,015
10	9,0	6,7	10,87	11,9	0	87	33		9,0						- 0.01
20	8,2	7,2	10,23	11,2	0	70	35								0,01
30	8,1	7.2	10.22	11.2	0	00	20	-	8,0						- 0,005
40 50	8,1	7,2	10,32	11,2	0	90	39	-	7.0						0
60	8,2	7.2	10.30	11.5	0	83	41		0	20	40	60	80	100 1	20
80	8,1	7,0	10,30	11,8	0	71	42				te	mpo (minuto:	s)		
90	8,1	7,2	10,41	13,6	0	84	43		c	omport	amento	do pH a	após o ex	perimen	to
100	8,1	7,0	10,81	11,7	0	98	43			•	em	frasco fe	echado	•	
								_	14 -						
		Comport	amonto do		Comportan	anto do		_	рН ₁₃ .		_				
		DH a			pH ap	ńs o			12 -		_				
		experin	nento em		experime	nto em			11 -						
		frasco	fechado		frasco a	iberto			10 -						→
		nH	duração		머님	duração			9 -		•				
		pii	(dias)		pii	(dias)			8						
		8,1	0		8,1	0			7 -						
		9,6	19		9,5	3)	50	100	150 (diac)	200	250
		9,0	43		3,0	19		+				tempt	Juidsj		
		9,8	61		10,3	27			c	Comport	amento	do pH a	após o ex	perimer	ito
		9,8	70		10,2	42					en	1 frasco a	aberto	• • •	
		10,2	96		10,5	61					ch				
		10,3	125		10,2	75			DH 40						
		10,2	165		10,8	96			12						
		10,2	201		11,4	165			11						
		10,2	223		11.2	201		+	10 -						
									9 -	<u> </u>					
									8						
									7 -						
								-	0)	50	100	150	200	250
								+				tempo	o(dias)		
										1				1	

Tabela II.18 – Resultados do experimento18.

II.19 – Experimento 19

	Carbonatação de Resíduos de Bauxita Experimento 19										Cálculo	da massa de	CO ₂ reagida				
DATA 26/	03 / 2012	,	т	amp 27°C	Torre de Spr	av			[min]	[ka/s]	[ka/s]	[m ³ /s]	[ka/s]	[ka/s]	[ka]		
DATA 20/	03/2012		1	emp. 27 C	torie de spi	ay			[IIIII]	[Kg/S]	[Ng/3]	Cient	[Kg/s]	[Ng/s]	[NK]		
	Lama	- 1	Dist. Liq. B	icos cone ôco	,	Quant	. 10		Tempo		m N ₂ Sal	Qent	III CO ₂ ein	III CO ₂ abs	Jameo 2.		
Vazão gás	0,02070	m3/s		Vazão de líq. 0,8 l	/s	Ph início	o 12,7		0	0,002592	0,01931	0,0228383	0,00293209	0,0003397			
				ENTRADA					10	0,002538	0,019169	0,0225062	0,00287037	0,0003322	0,20156518		
		N	IRU	TEM	PEST 100				20	0,002521	0,019038	0,0231064	0,00285061	0,0003292	0,19842198		
Tempo(min)		%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		40	0,002444	0,018735	0,0230638	0,00276422	0,00032	0,38952688		
0		7,9	10,06	11,0	0	137	58		60	0,002428	0,018603	0,0222831	0,00271075	0,0002823	0,36138629		
10		7,8	10,06	11,0	0	170	56		80	0,002421	0,018546	0,0224735	0,00266589	0,0002453	0,31661137		
20		7,8	10,08	11,0	0	250	67		100	0,002382	0,018258	0,0232149	0,00262902	0,0002469	0,29535984		
40		7,6	11,20	11,1	0	253	68							1,7628715	[kg]		
60		7,6	10,17	11,1	0	411	63							47,6	kg CO ₂ /ton		
80		7,5	10,25	11,2	0	276	67		13,0						0,025		
100		7,5	10,42	11,2	0	222	83		рН 🐧			фрн	ao longo do ex	operimento	CO ₂ absorvido		
				CAÍDA					12,0 🛔			_ CO	2 absorvido		[kg/min]		
	Userse			SAIDA			1										
	Hanna	IV		IEM	PEST 100				11,0	-					-		
Tempo (min)	рН	%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)			1					- 0,015		
0	12,7	7,0	10,7	11,6	0	12	28		10,0	*							
10	9,9	6,9	10,86	11,6	0	25	30								- 0,01		
20	9,1	6,9	10,88	11,7	0	17	32		9,0								
40	9,4	6.8	10.96	11.9	0	15	37								- 0.005		
50	9.0	0,0	10,50	11,5	0	15	5/		8,0								
60	8,8	6,8	11,01	12,0	0	13	39										
80	8,6	6,8	11,00	12,1	0	11	40		7,0 +	20	40	60	80	100	+ 0 120		
90	8,4								-			tempo(minu	tos)				
100	8,3	6,8	10,98	12,1	0	11	45			Cor	nporta	mento	do pH a	pós o			
										expe	riment	to em fr	asco feo	hado.			
	Comporta	mento do			Comportan	nento do pH											
	pH a	pós o			após o expe	rimento em			14								
	experim	ento em			frasco	aberto			12								
	Trascol	duração				duração			11 -								
	рH	(dias)			рН	(dias)			рн ₁₀				•				
	8,3	0			8,3	0			9 -	/	-						
	10	13			9,8	3			8	•							
	10,4	21			10	13			7 +			100	450	200			
	10,3	37			10,9	21			U		50	100	150	200	250		
	10,4	55			10,4	36						tempt	Julas				
	10,5	64			10,5	55		HÌ		-							
	10,5	90			10,4	69		\vdash		Cor	nporta	mento	do pH a	pos o			
	10,8	119			10,7	159				exp	erimer	nto em f	frasco al	oerto			
	10,7	195			11	195			14								
	10,6	219			11	241			рН 13	<u> </u>	_						
									12		_						
									11						→		
								$\left \right $	10			•					
									9	 	-						
									8								
									7	+	50	100	150	200	250		
										0	50	tempo (dias)	200	250		
								l									

Tabela II.19 – Resultados do experimento 19.

II.20 – Experimento 20

	Carbonat	ação de	Resíduos o	de Bauxi	ta Experime	ento 20			Cálculo da massa de CO ₂ reagida.									
DATA 2	8/03 / 2012		Temp.	27°C	Torre de Rec	heio Randôm	ico		[min]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]			
	Lama		Dist. Lig. Er	nt. Livre 1/	/2"	Quant	t. 1		Tempo	m	m'N ₂ sai	Qent	m'CO ₂ ent	m CO ₂ abs	∫ΔMCO ₂ ∗min			
Vazão gás	0.01808	m3/s	Vazão d	lelia (18 1/s	Ph início	13.1		0	0.002232	0.017508	0.0200902	0.00269/19	0.000/623				
Value Bas	0,01000	1110/0	ENITO		,	· · · · · · · · · · · · · · · · · · ·	10,1		10	0,002202	0.010045	0.0102072	0,00253764	0,0003354	0.22020001			
					TENADECT	00			10	0,002202	0,010045	0,0192072	0,00232704	0,0005254	0,25050961			
		N	IKU		TEIMPEST 1	.00			30	0,002244	0,016478	0,0190036	0,0025325	0,0002888	0,18425586			
Tempo(min)		%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		40	0,002277	0,016276	0,0185873	0,00250052	0,0002235	0,15368794			
0		8,0	10,00	10,8	0	17	48		60	0,002262	0,016163	0,0185546	0,00244943	0,0001871	0,24634904			
10		7,9	10,05	10,1			50		80	0,002217	0,016068	0,0184191	0,00240076	0,0001837	0,22244433			
30		8,0	9,90	10,9	0	101	50		100	0,002217	0,016052	0,0183977	0,00240553	0,0001884	0,22327341			
40		8,0	9,86	10,7	0	209	47							[kg]	1,26632038			
60		7,9	9,88	10,9	0	128	49							kg CO ₂ /ton	34,2			
80		7,8	9,86	11,1	0	99	49		14,0						0,03			
100		7,8	10,10	10,9	0	249	48		рН 🖕			nH ao longo d	lo experiment	0	CO ₂ absorvido			
									13,0 🚹 —			CO2 absorvid	n		- 0.025			
												02 0000110	0					
			SAII	DA					12,0									
	Hanna	Hanna MRU TEMPEST 100							- \ 1		_				- 0,02			
Tempo (min)	nH	%(0)	%O2	%O2	NO ₂ (nom)	SO2 (nnm)	T (°C)		11,0		\leftarrow				1			
0	13.1	6.9	7.67	11.4	0	302 (ppm)	28				\sim				- 0,015			
10	10.2	6,9	10.80	11,1		51	32		10,0						1			
20	9,4	7,1	10,62	11,4	0	12	35							-	- 0,01			
30	9,0								9,0					>	1			
40	8,7	7,3	10,37	11,3	0	27	39								- 0,005			
50	8,3								8,0] [
60	7,8	7,3	10,42	10,9	0	8	41		70			<u> </u>			1 o			
70	7,3								0	20	40	60	80	100 1	20			
80	9,0	7,2	10,48	11,5	0	10	43				te	mpo(minutos)					
90	8,9								Comportamento do pH anés o									
100	8,7	7,2	10,56	11,4	0	39	43		Comportamento do pH após o									
	Comportance	to do pH								expe	riment	o em fr	asco fec	chado.				
	anós o expe	rimento			Comportan	ento do nH			14 🕇									
	em frasco f	echado			anós o exne	rimento em			рн 13 -									
	cinitasco i	centuro			frasco	aberto			12			_						
	рH	duração				duração			11 +									
		(dias)			pН	(dias)			10			+						
	8,7	0			8,7	0												
	9,7	11			10,1	11			8	, 								
	10,2	19			10,6	19			7									
	10,1	35			10,4	34					50	100	150	200	250			
	10,2	53			11,0	53						tempo	(dias)					
	10,3	62	-		10,8	67												
	10,4	88			10,8	88		\square		Con	norta	mento	do nH or	nós o				
	10,5	117			11,3	157		\square		COI		·						
	10,5	157			11,3	193				exp	erimer	nto em f	rasco al	berto				
	10,5	217			10,9	239			14 ·									
	10,0	21/							P . 13 -									
									12 -									
								\square	11 -	\sim		-						
									10 -		+							
									9		+							
									8 -		-							
									7 -									
										D	50	100	150	200	250			
												temp	o (dias)					

Tabela II.20 – Resultados do experimento 20.

II.21 – Experimento 21

Carbonat	Carbonatação de Resíduos de Bauxita Experimento 21										Cálculo	da massa de	CO ₂ reagida		
DATA 10/	04 / 2012		Temp.	27°C	Torre de Rec	heio Ranô	mico		[min] [kg/s] [kg/s] [m³/s] [kg/s] [kg				[kg/s]	[kg]	
	Lama		Dist. Liq. En	t. Livre 1/2	2"	Qua	nt. 1		Tempo	m	m'N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	∫∆MCO₂∗min
Vazão gás	0,01793	m3/s	Vazão d	eliq.0,	8 l/s	Ph iníc	io 12,4		0	0,002781	0,016476	0,018757	0,00315087	0,0003695	
			ENTR	ADA					10	0,002722	0,0163	0,01900	0,00301604	0,000294	0,199048
		Ν	ИRU	T	EMPEST 10	00			20	0,002601	0,016083	0,0186604	0,0029091	0,0003079	0,18057318
Tempo(min)		%CO2	%02	%02	NO ₂ (nnm)	SO2 (npm)	T (°C)		40	0.002682	0.015828	0.0185242	0.00290062	0.0002182	0.31563662
0		9,8	9,35	10,3	0	553	41		60	0,002543	0,015704	0,0183585	0,00281352	0,0002708	0,29335663
10		95	9.52	10.5	0	482	49		80	0.002626	0.015669	0.0183616	0 00281399	0 0001878	0 27513564
20		9,3	9,60	10,5	0	488	48		100	0,002245	0,015773	0,0103010	0,0023696	0,0001242	0,18720053
40		9,4	9,70	10,6	0	384	50		120	0,002336	0,015811	0,018331	0,002557	0,0002206	0,20688535
60		9,2	9,81	10,6	0	202	50		140	0,002367	0,015834	0,018351	0,00249885	0,0001321	0,21161169
80		9,2	10,00	10,8	0	132	50		160	0,002389	0,015725	0,0181662	0,00239065	1,149E-06	0,07994677
100		7,8	9.68	10,8	0	90	49 51		180	0,00264	0,015042	0,0181347	0,00261997	-1,987E-05	1.94
140		8,2	9,85				51							kg CO ₂ /ton	52,4
160		7,9	10,14				50	ſ						0 2	
180		8,7	9,38				51		13,0 T			🔶 pH ao lo	ngo do experir	mento 🗌	0,025
									12.0				orvido		[kg/min]
			SAII	A					12,0	A		02 803	51 1100		0,02
	Hanna	N	/IRU	TI	EMPEST 10	00			11,0						0,015
Tempo (min)	рН	%CO2	%02	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)			\mathbf{Y}	í V				
0	12,4	8,7	9,96	11,5	0	88	29		10,0		-	\leftarrow			0,01
10	9,7	8,6	10,13	10,8	0	77	32					\mathbf{Y}			
30	9,2	6,5	10,72	10,9	0	04			9,0	~	•		-+		0,005
40	8,8	8,7	10,31	10,9	0	75	40						$\rightarrow +$	→	
50	8,8								8,0						0
60	8,5	8,3	10,83	11,0	0	44	42		7.0						0.005
90	8,4	8,0	10,45	11,2	0	51	45		7,0	5	0	100	150	200	-0,005
100	8,4	7,4	10,6	11,2	0	27	45				ter	npo (minutos)		
120	8,4	7,7	10,1				45			Cor	nporta	mento	do pH a _l	pós o	
140	8,4	7,8	9,9				45			expe	rimen	to em fr	asco feo	hado.	
180	8,4	7,9	10,1				40		14 -	•					
100	0,1	0,7	10,0				10		pH 13						
									12 -						
	Comporta	mento do			Comportan	nento do			11 -						
	pH ap	oos o			pH ap	ós o nto om			10					~	
	frasco f	echado			frasco a	berto			9 -				-		
		duração				duração			8 -						
	рН	(dias)			рН	(dias)			7 4						
	8,4	0			8,4	0			0		50	100	150	200	250
	9,6 9.6	23			10	22						tempo(di	as)		
	9,6	41			10,5	41				Con	nporta	mento	do pH ap	oós o	i
	9,7	50			11,1	76				exp	erimen	to em f	rasco ab	erto.	
	9,8	76			11,4	145			14 -						
	10	105			11,5	181			pHL3 ·		_				
	10.3	143			11,2	221			12 -						
	10,3	205]						11 -						➡_
									10 -						
									9 -	/					
								\square	8	•					
									7 -		-				
										0	50	100	150	200	250
								l				tempo (d	iias)		

Tabela II.21 – Resultados do experimento 21.

II.22 – Experimento 22

Tabela II.22 – Resultados do experimento 22.

Carbonatação de Resíduos de Bauxita Experimento 22										Cál	culo da mas	sa de CO2 reag	ida.		_
DATA 26/	14 / 2012	ind ta ça o c	Temp	27°C	Torre de Re	cheio estr	uturado	[min]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[ka]	_
DAIA 20/0			nemp.	2/ 0	Tone de Re	chelo esti		-	[Kg/3] m	m'N-sai	0 ent	m CO-ent	m CO. abs	[AMCO	min
Vazão gás	Lama	m2 /c	Dist. Liq. Er	it. Livre 1/	2	Qua Dh inío	nt. 1	Tempo	0.00106	0.01472	0.017122	0.00227405	0.000413773	Janeoz	
Vazao gas	0,01500	1115/5		ADA	,0 1/5	PITITIC	10 11,7	10	0,00196	0,01475	0,01/152	0,00237495	0,000413773	0 200614	1000
		Ν		-	TEMPEST 10	n		20	0,00195	0,01433	0,010855	0,00220473	0,000234343	0,200014	604
Cempo(min)		%(02	%02	%02	NO2 (nnm)	5 602 (nnm)	T (°C)	40	0.00193	0.01398	0.016229	0.00214051	0.000216119	0 246897	/618
0		8.4	9.42	10.4	1	poz (ppm)	53	60	0.00201	0.01386	0.015901	0.00203953	0.0000254	0.144922	2447
10		8,0	9,68	10,8	4	13	56	80	0,00191	0,01391	0,016016	0,00207447	0,0001603	0,111413	326
20		7,9	9,66	10,8	4	24	54	100	0,0017	0,0138	0,015858	0,00187558	0,0001795	0,203854	145
40		8,0	9,71	10,7	4	2	53	120	0,00186	0,01389	0,015932	0,0019435	0,0000825	0,157178	351
60		7,7	9,77	10,5	5	2	50	140	0,00183	0,01369	0,01565	0,0018889	0,0000603	0,085665	283
80		7,8	9,72	10,9	5	2	51	160	0,00183	0,01375	0,015652	0,00192134	0,0000927	0,091821	.339
100		7,1	10,52	11,6	4	2	50	180	0,00186	0,01386	0,015761	0,00188171	0,0000266	0,071606	311
120		7,3	10,43				49	200	0,00188	0,01384	0,015679	0,00193696	0,0000554	0,049176	074
140		7,2	10,50				40	220	0,00186	0,01381	0,015599	0,00184795	0,0000337	-0.017355	5704
180		7,3	10,27				47	250	0.00186	0.01364	0.015449	0.00183009	-0.0000250	-0.006079	9899
200		7,3	10,40				45		.,	0,0100	0,010	-,	[kg]	1,5	
220		7,0	10,27				45						kg CO ₂ /ton	40,2	
240		7.0	11.00				45								
250		7,0	10,69				45	12,0						0,03	
			SAÍ	DA				рн			🗕 nH ao lo	ngo do experime	ento	CO2absor [kg/mi	rvido in]
	Hanna	Ν	/IRU	-	TEMPEST 100	D		11.0				0		- 0,025	
empo (min	рH	%CO2	%02	%02	NO2 (ppm)	(mag) 202	T (°C)	11,0			CO2 abs	orvido		- 0.02	
0	11,7	7,0	10	11	1	11	28	10,5						0,02	
10	9,3	7,1	10,23	11,4	1	2	34	10,0						- 0,015	
20	8,7	7,2	10,10	11,4	4	2	38	9,5 🕂	1					-	
30	8,6							9,0	-+					- 0,01	
40	8,6	7,2	10,40	11	4	2	42	8,5	and the	1				- 0.005	
50	6,5 8.5	76	0 00	11.0	4	2	45					XA		0,005	
70	8,6	7,0	5,50	11,0			45	3,0				- • \		- 0	
80	8,7	7,2	10,27	11,3	4	2	44	7,5							
90	8,7							7,0 +	50	10	0 15	200	250		
100	8,7	6,4	11,47	12,1	4	2	45				tempo(m	inutos)	250		
120	8,4	7,0	10,6				44		Compo	rtamen	to do nH	l anós o ex	nerimento	em	
140	8,4	6,9	11,62				45				frasco	fechado		••••	
180	8.4	7.0	10.49				45				masco	lechauo			
200	8.4	7,0	10,45				45								ר ו
220	8,4	7,1	10,49				45	^{pn} 13							- 1
240	8,4	7,0	10,79				45	12 -							-
250	8,4	7,0	11,8				45	11 -		-					-
	Composito	manta da			Comporton	anto do		10 -							-
	nHar	niento uo			nH and	ńs o		9 -							-
	experim	ento em			experime	nto em		8							-
	frasco f	echado			frasco a	berto		7							_
		duração				duração		0		50	100	150	200	:	250
	рн	(dias)			PH	(dias)					1	empo(dias)			.
	9,4	7			9.4	6		c l	omport	amento	do pH a	anós o exp	erimento e	n	
	9,7	21			10,2	25			ompore	amente	frasco	aborto			
	9,7	25			11	60					ii asco a	iberto			
	9,7	34			11	129		р Н ¹⁴ ⊤							
	10,1	60			11,1	165		13							
	10,3	89			10,8	211		12							
	10,4	129						11 +							
	10,5	189						10							\vdash
								9 🖠	-						
								8							
								7 + 0		50	100	150	200	250	
								tampa (disc)							

II.23 – Experimento 23

Tabela II.23 – Resultados do experimento 23.

Carbonat	Carbonatação do Bosíduos do Pouvito Evnorimento 22										Cálculo	da massa de	CO reagida		
	05 / 2012	nesiado.	Temp	27°C	Pecheio Par	dômico		ſmir	1	[ka/s]	[kg/s]	[m ³ /s]	[kg/s]	[ka/s]	[ka]
DATA 25/	1.2m2		Dict Lia	Ent Livro	1 /2"	Qua	nt 1		ij	[Kg/3] m	m'N, sai	0'ent	miCO-ent	mi (O, abs	[ΔMCO ₂ +min
Vazão gás	0.01556	m3/s	Vazã	o de lia.	1/2 1/s	Ph iníci	io 12.9	0	10	0.001991	0.014512	0.0171674	0.00233638	0.0003455	
11111 811			ENT	RADA	./ =			10		0.001831	0.014082	0.0167023	0.00215827	0.0003269	0.20172022
		M	RU	Т	EMPEST 10	00		20		0.001902	0.013835	0.0162714	0.00206887	0.0001669	0 14814285
Tempo(min)		%CO2	%02	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	40		0,001884	0,01371	0,0159782	0,00209649	0,0002126	0,22766897
0		8,4	9,33				59	60		0,001949	0,013763	0,0159987	0,00207937	0,0001308	0,20600085
10		8,0	9,70				60	80		0,001872	0,013561	0,0156765	0,00197231	0,0001002	0,13859293
20		7,8	9,95				57	100)	0,001884	0,013667	0,0157355	0,00209043	0,0002065	0,18402522
60		8,0 7.9	9,50				55	140	,	0.001884	0.013698	0.0157489	0.00209221	0.0002083	0,24880425
80		7,6	9,99				52	160)	0,001932	0,013478	0,0157361	0,00203893	0,0001070	0,12486925
100		8,0	9,51				51	180)	0,001962	0,013687	0,0157783	0,00203736	0,0000749	0,10917776
120		8,0	9,39				51	200)	0,001995	0,01374	0,0157287	0,00204367	0,0000488	0,0742182
140		7,9	9,51				48	220)	0,001989	0,013695	0,0157184	0,00206206	0,0000735	0,07333975
160		7,9	9,75				55	240	,	0,001884	0,013669	0,0156869	0,00193372	0,0000498	2 00
200		7,8	9,49				50							kg CO ₃ /ton	54.0
220		7,9	9,35				51	14.0	_					0.02,00	025
240		7,4	10,10				50	pH			_		la avnariment		CO ₂ absorvido[
			SA		13,0			_	pirao longo (io experiment	° —	kg/min]			
	Hanna	M	RU TEMPEST 100					12.0			_ +	CO2 absorvid	0		,02
Tempo (min)	nH	%(0)	%02	%02	NO ₂ (nnm)	SO2 (nnm)	T (°C)	12,0							
0	12,9	7,2	9,97	,	(PP-1)	• • • • • (pp)	30	11,0 -		-	~			⁻ C	,015
10	9,9	6,8	10,70				38	10.0 -	Ш	Λ_{-}					
20	8,9	7,2	10,18				44	10,0	1	r 🔪				- 0	,01
30	8,7	7.2	10.15				47	9,0 -							
50	8,6	7,2	10,15				47	8.0						- c	,005
60	8,5	7,4	10,15				45								
70	8,6							7,0 -						c	
80	8,6	7,2	10,54				49	'	J	50	100 tem	150 po(minutos)	200 25	0 300	
90	8,8 8,2	7.2	10.41				47		_						
100	8,6	7,2	10,41				47		C	.omport	amento	аорнаро	s o experi	mentoer	n
140	8,6	7,5	10,05				47					ascoleci	Iduu		
160	8,6	7,5	9,98				52	рн 1	4 ∏						
180	8,6	7,5	9,99				47	1	3 †						
200	8,7	7,6	9,83				46	1	2 †						
220	8,6	7,0	10.4				47	1	1 †						
	- / -	,	- /					1	° †	~					
	Comporta	mento do			Comportan	nento do			9 🛊						
	pH ap	oós o			pH ap	ós o			8 🕇						
	experim fracco f	ento em			experime	nto em			7 +			100	150	200	
	Hascoli	duração			Trasco a	duração			0		50	tempo	(dias)	200	250
	рН	(dias)			рН	(dias)							()		
	8,6	0			8,6	0			c	omport	amento	òqs Hq ob	s o exper	imento er	n 🛛
	9,3	27			9,5	6					f	rasco fech	nado		
	9,8	56			10,8	96 132		_							
	10.1	96			11,1	178		рН	14						
	10,1	132			,	-		- ·	13						i
	10,3	156							12					•	
									10						
								\square	- 0						
									8	•	_				
									7						[
										0	50	100	150	200	250
												tempo	(dias)		-

II.24 – Experimento 24

	Carbonatação do Bosíduos do Bouvita Evertimento 24										Céleul				
		Taração de Residuos de Bauxita Experimento 24									Calcul	o da massa	de CO2 reagida		
DATA 31/	05/2012		Temp. 2	27°C	Torre de Re	cheio Rano	dômico	lmir	۱J	[kg/s]	[kg/s]	[m ⁻ /s]	[kg/s]	[kg/s]	[kg]
	Lama		Dist. Liq. Ent.	Livre 1/2	1	Qua	int. 1	Temp	00	m	m N ₂ sai	Qent	m CO ₂ ent	m CO ₂ abs	J∆MCO2*min
Vazão gás	0,01507	m3/s	Vazão de	eliq. O	,8 I/s	Ph inío	io 12,8	0		0,002049	0,014151	0,0161029	0,002355844	0,000306787	
			ENTRA	DA			_	10		0,001948	0,013996	0,015936	0,002251036	0,000302594	0,18281441
		N	IRU	Т	EMPEST 1	00		20		0,001936	0,013857	0,0158369	0,002176887	0,0002413	0,16316821
Tempo(min)		%CO2	%02	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)	40		0,001878	0,01368	0,0156775	0,002174413	0,000296402	0,3226211
0		8,7	8,87				47	60		0,001912	0,013506	0,0154188	0,00216429	0,000252739	0,32948426
10		8,4	9,22				47	80		0,00197	0,013383	0,0152473	0,00207029	0,000100288	0,21181624
20		8,2	9,47				48	100)	0,001836	0,013326	0,0153191	0,00197111	0,000134891	0,14110778
40		8,3	9,34				49	120)	0,001938	0,013336	0,0152812	0,002189179	0,000250948	0,23150368
60		8,4	8,92				49	140)	0,001958	0,013296	0,0152407	0,002056436	9,89302E-05	0,20992708
80		8,1	9,31				48	160	,	0,001/8	0,013243	0,0151859	0,001877847	9,82965E-05	0,11833605
100		86	8 77				49	200	,	0,001825	0,013245	0,015201	0,001933917	9.83823F-05	0,13770208
140		8,1	9.30				50	220)	0.001914	0.013172	0.0151307	0.001984965	7.10901E-05	0.10168346
160		7,4	10,29				49	240)	0,001889	0,01317	0,0150968	0,001911275	2,25828E-05	0,05620379
180		7,7	10,07				49	260)	0,001738	0,01313	0,0151288	0,00180885	7,12532E-05	0,05630162
200		7,7	9,77				49	280)	0,001902	0,01311	0,0151558	0,00197592	7,3995E-05	0,08714889
220		7,9	9,42				51	300)	0,001807	0,013106	0,0151111	0,001882022	7,45557E-05	0,08913038
240		7,6	9,80		ļ		50	320)	0,001813	0,013185	0,0151151	0,001863234	5,00898E-05	0,07478728
260		7,2	10,37				51	340)	0,001813	0,01318	0,0151454	0,001861136	4,79919E-05	0,058849
280		7,9	9,44				53	360	,	0,001825	0,013139	0,0152039	0.00102710	4,95/59E-05	0,05854068
300		7,5	10,13				50	380	,	0,00185	0,0131/4	0,0152225	0,00192719	-2 0224E-05	0.0/008919
340		7,4	9 95				51	400	,	0,001965	0,015199	0,0132934	0,001980900	-2,0224E-00	2 89
360		7.4	10.78				50							kg CO ₂ /ton	78.1
380		7,6	10,46				50	14,0	-					T 0,	.02
400		7,8	10,23				51	nH	4		→ pH	ao longo do.		0	absorvido
			SAÍDA	1				13,0	#	\frown	 cc	2 absorvido			[kg/min]
	Hanna	N	IRLI	т	MDEST 1	00			TŁ		R			- 0,	.015
							- (5.5)	12,0	┢	-+	Λ				
Tempo (min)	pH	%CO2	%O2	%O2	NO2 (ppm)	SO ₂ (ppm)	T (°C)	_			Λ				
0	12,8	7,6 7.2	9,56				28	11,0	╬	<u> </u>	H				.01
20	9.4	7,3	10.23				33	_		- 0	• \ /				
30	9,3	1,5	10,20				55	10,0						- 0.	.005
40	9,0	7,2	10,05				38					╶╶ጚ╶╱		`` ا	
50	8,8							9,0	\vdash	the second					
60	8,7	7,4	10,11				41	_					****	*1 o	
70	8,5		0.70					8,0	\vdash						
80	8,5	/,/	9,78				44	-							
100	8,6	7.2	10.37				45	7,0	0	50 1	0 150	200 250	300 350	400 450	1,005
110	8,5	,	- /-								t	empo(minuto	os)		
120	8,5	7,6	9,91				45			Compo	rtamont	o do nH a		imento em	
140	8,6	7,7	9,8				46	_		compo	rtament	fracco fo	chado	mentoem	
160	8,5	7,0	10,83				46	_				il asco le	CIIduu		
180	8,5	7,2	10,37				47	pH 1	⁴ T						
200	8,5	7,3	10,28				48		13 +						
220	8.5	7,0	9,9 10.01				49		2 T						
260	8,5	6,9	10,86				49								
280	8,5	7,6	9,78				51			-			-		
300	8,5	7,2	10,46				50		8	r	_				
320	8,5	7,2	10,22				49		- - -		_				
340	8,5	7,2	10,25				49	_	0		50	100	150	200	250
360	8,5	7,2	11,02				47	_				tem	po (dias)		
38U 400	8,5 8,6	7,3	10,7				4/	-							
400	0,0	7,0	10,5				-10	-		Compo	rtament	o do pH a	pós o exper	imento em	
	Comport	amento do	1		Comportar	nento do	1	1	4 —			frașco a	berto		
	nH	após o			pH ap	ós o		PH .	<u>,</u>						
	experir	nento em			experime	ento em			Ţ						
	frasco	fechado			frasco a	aberto		1	ťΤ						
	nH	duração			рH	duração]	1	1 †	-				•	
	- 19	(dias)				(dias)	Į	1	• 🕇	1	-				
	8,6	0			8,6	0	┨────	_	9 붙						—
	9,5	26			9,5	5	ł		8 						—
	9,9	55 87			10,5	26	ł	_	7 ↓						
	10	95			11.1	131	1	-	0		50	100	150	200	250
	10	131			10,8	177	1					tempo	dias)		
	10,3	155	1												

Tabela II.24 – Resultados do experimento 24.

II.25 – Experimento 25

Tabela II.25 – Resultados do experimento 25.

	Carbonatação de Resíduos de Bauxita Experimento 25											Cálcul	o da massa o	de CO ₂ reagida		
DATA 06/	06/2012		Temp.	27°C	Torre Spray			[mi	n]	[kg/s]	[kg/s]	[m ³ /s]	[kg/s]	[kg/s]	[kg]	
	Lama		Dist. Lia. Bi	cos cone o	ôco	Quar	nt. 10		Tem	oai	m	m N ₂ sai	Q ent	m'CO ₂ ent	m'CO ₂ abs	∫∆MCO ₂ •min
Vazão gás	0,02035	m3/s	Vazão	de liq.	0,8 l/s	Phinic	io 11,7		0)	0,002359	0,018836	0,0214382	0,002648433	0,00028992	
			ENTR/	ADA					10)	0,002551	0,018716	0,0215018	0,00276664	0,00021606	0,15179457
		MF	RU	Т	EMPEST 10	0			20)	0,002501	0,018368	0,0212042	0,002676099	0,00017532	0,11741553
Tempo(min)		%CO2	%O2	%02	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)		40)	0,002387	0,018318	0,0211671	0,00263627	0,00024893	0,2545479
0		7,3	10,80				45		60)	0,002093	0,018099	0,0208321	0,002269865	0,00017693	0,25551115
10		7,7	10,14				49	_	80)	0,002295	0,018101	0,0208354	0,002471996	0,00017716	0,21245033
20 40		7,6	10,13				51		10	0	0.002391	0.018063	0.0207215	0.002493109	0.00010164	0,16727973
60		6,5	11,75				48		14	0	0,002384	0,018026	0,020651	0,002622654	0,00023882	0,20610259
80		7,1	10,90				49		16	0	0,002557	0,018063	0,0207012	0,002732805	0,00017623	0,24902924
100		7,2	10,52				49		18	0	0,002669	0,018127	0,020/141	0,002/69122	0,00010038	0,16596/43
140		7,6	10,01				49		22	0	0,002609	0,017917	0,0207305	0,002711126	0,00010211	0,12555452
160		7,9	9,74				49		24	0	0,002266	0,017859	0,0206819	0,002369765	0,00010404	0,12368768
180		8,0	9,40				49	_	26	0	0,002197	0,017865	0,0205816	0,002338704	0,00014164	0,14740447
200		7,5	9.76				52		30	0	0.002231	0.017887	0.0205841	0.002373381	0.00010048	0,12897655
240		6,9	11,09				51		32	0	0,002334	0,017924	0,020599	0,002443948	0,00010956	0,12602838
260		6,8	11,27				49		34	0	0,002327	0,017751	0,0204746	0,002429187	0,00010218	0,12704729
280		6,9	11,08				49		36	0	0,002094	0,017732	0,0205491	0,002197652	0,00010357	0,12345253
320		7,1	10,73				49	1	40	0	0,002177	0,017829	0,0205968	0,002278747	0,00010220	0,12298698
340		7,1	11,07				49		42	0	0,002107	0,017827	0,020617	0,002177307	0,00006986	0,10323689
360		6,4	12,15				49	1	44	0	0,002004	0,017789	0,0205579	0,002074217	0,00007041	0,08416342
380 400		6.6	12,12				48	1	46	0 0	0,001976	0,017/91	0,0205749	0,002075931	0,00010037	0,10247058
420		6,3	12,34				48		50	0	0,002093	0,017931	0,0206413	0,002158873	0,00006593	0,08008376
440		6,0	12,83				47		52	0	0,001855	0,01792	0,0205979	0,001853365	-0,0000134	0,03875373
460		6,0	12,89				47								[kg]	3,79
480		5,7	13,16				45		-						kg CO ₂ /ton	102,5
520		53	12,57				40	-	14,0 T						0,0	2 `O _n absorvido[
		-,-						1	рн			- - nH	ao longo do e	experimento —	- 0,0	¹⁸ kg/min]
			SAÍD	A					15,0						- 0,0:	16
	Hanna	MF	NU	Т	EMPEST 10	0			12,0 -	A	X	_	2 80301 1100	_	- 0,0	14
Tempo (min)	рН	%CO2	%O2	%O2	NO ₂ (ppm)	SO ₂ (ppm)	T (°C)			V	L /\	_			- 0,0:	12
0	11,7	6,5	11,57				29	_	11,0						- 0,0	1
10	10,3	7,1	10,68				32	-	10,0		$\rightarrow \mu$	\A			- 0,00	08
30	9,7	7,1	10,02				38			1	74	^t ast (∖ <mark>,</mark> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H, J	- 0,00	06
40	9,5	6,8	10,88				39		9,0 +			·····	¥	- bef by	- 0,00	04
50	9,4	6.0	12.14				41	-							- 0,00	02
70	9,2	0,0	12,14						8,0 T						- 0	
80	9,1	6,6	11,27				42		7,0 +						-0,0	02
90	8,9	69	10.88				43	-	0		100	200 tem	300 po(minutos)	400 500	600	
110	8,7	4,5								~	omnorta	montod	o nH onóc	o ovnorimo	nto om fra	
120	8,7	7,0	10,77				43			U	omporta	mentou	орпароз fecha	o experime	nioenna	500
140	8,7	6,9	10,79				44	-					reent			
180	8,5	7,4	9,79				44		pH 1	<u>,</u> [
200	8,7	7,2	10,22				46		1	, L						
220	8,7	7,6	10,07				46	_	1	1						
240	8,7	0,0 6.4	11,34				46	$\left \right $	1	₀∔						
280	8,7	6,7	11,11				46	1		🚽 و				•		
300	8,7	6,5	11,11				46			8 –		+				
320	8,7 8.7	6,8 6.8	10,84				46 47	$\left\{ - \right\}$		7 +						
360	8,7	6,1	12,42				46	j		U		JU	100 temi	150 po(dias)	200	250
380	8,7	6,2	12,44				44	$\left \right $								
400	8,7 8.7	6,3	12,29				44 1/1	$\left \right $		С	omporta	mento d	o pH após	o experime	ento em fra	sco
440	8,7	5,8	12,97				44	1					aber	to		
460	8,7	5,7	13,32				43	1		14 T						
480	8,7	5,5	13,44				41	-	рН	13 +		_				
520	8,7	5,3	13,91				41 40			12 +						
		· · ·								11 +			-			
										10 +						
	comporta após o o	mento do pH		comporta	mento do pH					9 🚽	(
	em fras	<u>co fechado</u>		em fra	sco aberto					8 +						
	Tempo			Tempo						7 +						
	(dias)	рН 8 7		(dias)	рН 					0		50	100	150 o (dias)	200	250
	49	9,8		20	10,2				·				cemp	- (
	81	9,8		110	10,8]										
	89 125	9,7		125	10,7			-								
	125	9,7 9,9		1/1	10,8	l		-								