

PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA UNIVERSIDADE FEDERAL DO PARÁ /MUSEU PARAENSE EMÍLIO GOELDI

Arthur Felipe Diniz Sousa

Taxonomia de *Stenochironomus* Kieffer, 1919 (Diptera: Chironomidae) da Amazônia

Arthur Felipe Diniz Sousa

Taxonomia de *Stenochironomus* Kieffer, 1919 (Diptera: Chironomidae) da Amazônia

Dissertação apresentada ao Programa de Pós-Graduação em Zoologia, do convênio da Universidade Federal do Pará e Museu Paraense Emílio Goeldi, como requisito parcial para obtenção do título de Mestre em Zoologia.

Área de concentração: Evolução.

Linha de Pesquisa: Sistemática e taxonomia

Orientadora: Prof. Dra. Jeane Marcelle Cavalcante do Nascimento Coorientador: Prof. Dr. Galileu Petronilo da Silva Dantas

Belém, 2025

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Sistema de Bibliotecas da Universidade Federal do Pará Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo(a) autor(a)

D585t Diniz Sousa, Arthur Felipe. Taxonomia de Stenochironomus Kieffer, 1919 (Diptera: Chironomidae) da Amazônia / Arthur Felipe Diniz Sousa. — 2025. 142 f. : il. color.
Orientador(a): Prof^a. Dra. Jeane Marcelle Cavalcante do Nascimento Coorientador(a): Prof. Dr. Galileu Petronilo da Silva Dantas Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Zoologia, Belém, 2025.
1. Insetos aquáticos . 2. Chironominae. 3. Biodiversidade.

4. Região Neotropical. I. Título.

CDD 578.012

FOLHA DE APROVAÇÃO

ARTHUR FELIPE DINIZ SOUSA

Taxonomia de *Stenochironomus* Kieffer, 1919 (Diptera: Chironomidae) da Amazônia

Dissertação apresentada ao Programa de Pós-Graduação em Zoologia, do convênio da Universidade Federal do Pará e Museu Paraense Emílio Goeldi, como requisito parcial para obtenção do título de Mestre em Zoologia, sendo a COMISSÃO JULGADORA composta pelos seguintes membros:

Prof^a. Dra. Jeane Marcelle Cavalcante do Nascimento Universidade Federal do Pará (UFPA) (Presidente)

Prof^a. Dra. Livia Maria Fusari Universidade Federal de São Carlos (UFSCar)

Prof. Dr. Gustavo Costa Tavares Universidade Federal do Pará (UFPA)

Prof. Dr. Ricardo Koroiva Universidade Federal da Paraíba (UFPB)

Prof. Dr. Luiz Carlos Pinho Universidade Federal de Santa Catarina (UFSC)

Aprovada em: 25 de fevereiro de 2025.

"Na minha juventude, passei meu tempo investigando insetos"

Maria Sibylla Merian

AGRADECIMENTOS

À Universidade do Federal do Pará (UFPA) pelo suporte intelectual e físico.

Ao Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) pela concessão da bolsa de estudos no decorrer do curso de mestrado.

À coordenação do Programa de Pós-graduação em Zoologia (PPGZOOL) pela gestão e condução do programa.

Ao Instituto de Pesquisas na Amazônia (INPA) pelo estágio que me proporcionou condições, suporte e acesso aos recursos que tornaram possível o desenvolvimento desse projeto.

À Prof^a. Dr^a. Jeane Marcele Cavalcante do Nascimento pela valiosa orientação, ensinamentos, apoio e confiança durante todo decorrer desse trabalho.

Ao Prof. Dr. Galileu Petronilo da Silva Dantas pela paciência e coorientação durante todas as fases de seleção de material, montagem e descrição de espécies, que foram realizadas durante todo período que estive no INPA.

A minha colaboradora, Dr^a. Neusa Hamada, por ter aberto as portas do seu laboratório, no qual havia todos os recursos e materiais necessários para o desenvolvimento desse trabalho. E, por ter aberto as portas da sua casa, onde pude ter o prazer de conviver com ela, com o Phil e seus gatos.

Aos seguintes projetos coordenados pela Dra. Neusa Hamada que possibilitaram a realização desse trabalho: Insetos aquáticos na América do Sul: taxonomia integrativa, biologia e ecologia, processo CNPq n. 308970/2019-5; Sistemática de insetos aquáticos na América do Sul, CNPq/PROTAX (440616/2015-8); CNPq/MCTI/FAP/PROTAX-FAPEAM (Fundação de Amparo à Pesquisa do Estado do Amazonas) (062.00643/2017); INCT ADAPTA II, financiado pelo CNPq (465540/2014-7) e pela FAPEAM (062.1187/2017). CAPES Proequipamento (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Ao IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) pelo fornecimento das licenças de coleta.

Ao Laboratório de Citotaxonomia e Insetos Aquático Aquáticos (INPA), onde estagiei e desenvolvi todo esse trabalho, bem como tive o prazer de conviver com os membros do laboratório que me acolherem: Adella, Davi, Erica, Gabi Jorge, Vitória, Maria, Claúdia, Jefferson, Ana Pes, Gleison e dentre outros nomes do laboratório. Também agradeço em especial aos membros Raul e Gabi Mendes pela amizade e passeios em Manaus.

À Dra. Ruth Keppler e Emiliano Reis pela cooperação no primeiro capítulo desse trabalho e a Dra. Gizelle Amora pelo material coletado utilizado neste trabalho.

Gostaria de agradecer aos meus pais, minha mãe Maria Itaselma Diniz de Sousa e meu pai Norberto Neves de Sousa, pelo apoio incondicional e conversas sobre o andamento do curso, além da história para continuar estudando e me dedicando a graduação e mestrado.

Aos meus irmãos Nicolas Diniz Sousa e Victor Diniz Sousa, pelo companheirismo e caronas para universidade, e por ajudarem com problemas técnicos do notebook.

Agradeço todo apoio e carinho que minha tia Márcia Dos Anjos Diniz sempre teve por mim.

Agradeço em especial ao meu melhor amigo Lucas Garcia Martins, por ter me motivado, inspirado e estado ao meu lado durante todo trabalho.

Agradeço também aos meus amigos de fora da Universidade, Maria Vitória Souza Carmo e Ana Beatriz Leão Castelo Branco Maia, juntos desde o ensino médio, fico feliz por continuar compartilhando altos e baixos de minha vida acadêmica com essas duas pessoas tão importantes para mim.

SUMÁRIO

RESUMO
ABSTRACT
INTRODUÇÃO GERAL 11
Referências Bibliográfica 20
Capítulo 1
Capítulo 2 61
CONCLUSOES GERAIS
ANEXOS 114
Anexo 1 - Normas da revista Annales Zoologici Fennici, na qual já foi publicado o capítulo 1
Anexo 2 - Normas da revista Austral Entomology a qual foi preparado para submissão o capítulo 2

RESUMO

Stenochironomus Kieffer, (Diptera: Chironomidae) é um grupo diverso e cosmopolita, cuja taxonomia é baseada principalmente na morfologia da genitália dos machos adultos. O gênero foi revisado por Borkent que elaborou chaves de identificação para larvas, pupas e adultos para as regiões Neártica, Neotropical e Paleártica. Além disso, o autor propôs a subdivisão do gênero em dois subgêneros com base na morfologia e no habitat dos estágios imaturos: Stenochironomus (Petalopholeus) Borkent, para espécies minadoras de folhas, e Stenochironomus s. str. Kieffer, para larvas minadoras de troncos. Existem cerca de 112 espécies de Stenochironomus distribuídas pelo mundo (exceto na Antártida), das quais 39 ocorrem na região Neotropical e 30 no Brasil, sendo 27 registradas na região Amazônica. Contudo, alguns estágios imaturos de Stenochironomus neotropicais ainda são desconhecidos: das 39 espécies descritas para a região, apenas 24 possuem pupas descritas e 18 possuem larvas descritas. Baseando-se nessa lacuna, o presente trabalho teve como objetivo geral realizar um estudo taxonômico sobre Stenochironomus na Amazônia. Para tanto, foi analisado material oriundo de coletas realizadas anteriormente pelo Laboratório de Citotaxonomia e Insetos Aquáticos (INPA) na Amazônia brasileira. A associação com os estágios imaturos foi possível a partir da coleta de folhas submersas colonizadas por larvas de Stenochironomus, que foram transportadas para criação em laboratório até a emergência dos adultos. Também foi analisado material proveniente de armadilhas Malaise e Pennsylvania. Como resultado foram descritas oito espécies novas para o gênero, das quais cinco foram descritas com base no macho, pupa e larva, uma descrita com base no macho e pupa, e duas com base apenas no macho. Além disso, a distribuição de Stenochironomus figueiredoensis Dantas, Hamada & Mendes, Stenochironomus liviae Dantas, Hamada & Mendes e Stenochironomus roquei Dantas, Hamada & Mendes foi ampliada para o estado do Acre. Assim, este trabalho contribui para o conhecimento taxonômico de Stenochironomus no Brasil, principalmente na Amazônia, aumentando o número de espécies conhecidas na região.

Palavras-chave: Biodiversidade; Insetos aquáticos; Chironominae; imaturos; Região Neotropical.

ABSTRACT

Stenochironomus Kieffer (Diptera: Chironomidae) is a diverse and cosmopolitan group whose taxonomy is mainly based on the morphology of adult male genitalia. This genus was revised by Borkent (1984), who developed identification keys for larvae, pupae, and adults from the Nearctic, Neotropical, and Palearctic regions. Additionally, the author proposed the subdivision of the genus into two subgenera based on the morphology and habitat of immatures and larvae: Stenochironomus (Petalopholeus) Borkent for leaf-mining species, and Stenochironomus s. str. Kieffer for trunk-mining larvae. There are approximately 112 species of Stenochironomus distributed worldwide (except in Antarctica), of which 39 occur in the Neotropical region and 30 in Brazil, with 27 recorded in the Amazon region. However, some immature stages of Neotropical Stenochironomus are still unknown: among the 39 species described for the region, 24 have described pupae, and 18 have described larvae. Based on this, the present work aims to conduct a taxonomic study of Stenochironomus from the Amazon. To this goal, material from previous collections conducted by the Laboratory of Aquatic Insect Cytotaxonomy (INPA) in the Brazilian Amazon was analyzed. The association with immature stages was made possible through the collection of submerged leaves colonized by Stenochironomus larvae, which were transported to the laboratory for rearing until the emergence of adults. Material collected using Malaise and Pennsylvania traps was also analyzed. As result, eight new species were identified for the genus, of which five were described by associating their developmental stages with males, one was described based on males and pupae, and two were described based solely on males. Furthermore, the distribution of Stenochironomus figueiredoensis Danta, Hamada & Mendes, Stenochironomus liviae Danta, Hamada & Mendes, and Stenochironomus roquei Dantas, Hamada & Mendes was expanded to the state of Acre. Thus, this study contributes to the taxonomic knowledge of Stenochironomus in Brazil, particularly in the Amazon rainforest, by expanding the number of known species in the region.

Keywords: Biodiversity; Aquatic insects; Chironominae; immatures; Neotropical Region.

INTRODUÇÃO GERAL

Amazônia

A Amazônia corresponde a uma área de cerca de $7x10^6$ km² localizada na América do Sul, compreendendo os seguintes países: Bolívia, Brasil, Colômbia, Equador, Guiana Francesa, Peru, Suriname, Venezuela. A maior parte está em território brasileiro, e é conhecida como Amazônia Legal (Coutinho, 2016), a qual, segundo o IBGE (2020), tem uma área equivalente a 5.015.067,749 km², compreendendo os estados do Acre, Amapá, Amazonas, Mato Grosso, Maranhão Roraima, Rondônia e Tocantins. A região amazônica é composta por florestas heterogêneas que abrigam uma rica diversidade de espécies, além de fornecer serviços ecossistêmicos que regulam o clima do planeta (Coutinho, 2016; Garrett *et al.*, 2021). Apesar de sua importância, esse bioma está ameaçado por ações antrópicas, como o desmatamento impulsionado pela pecuária, ocasionando a perda de um patrimônio natural ainda pouco conhecido (Margulis, 2003; Friedrich, 2021).

O avanço do desmatamento na Amazônia é uma realidade (Silva *et al.*, 2005; Copertino *et al.*, 2019), assim, estudos taxonômicos na região são importantes para enriquecer o conhecimento sobre a biodiversidade. Do ponto de vista ambiental, o conhecimento faunístico de uma determinada área é fundamental para qualquer plano de conservação do ambiente aquático, fornecendo subsídios para a proposta de criação de áreas prioritárias para a conservação (Balian *et al.*, 2008). Também, é importante para a compreensão da dinâmica das comunidades de invertebrados e vertebrados associados, além de ajudar na compreensão das respostas destes organismos às condições climáticas e edáficas e perturbações antropogênicas (Zequi *et al.*, 2019).

Diptera

Comunidades biológicas de ecossistemas aquáticos dulcícolas, como rios, lagos e riachos, são compostas principalmente por invertebrados, sendo os insetos aquáticos os mais numerosos e representativos em termos de biomassa, correspondendo a 60% das espécies de invertebrados nestes ambientes (Gullan & Craston, 2012). São considerados aquáticos aqueles insetos que passam um ou mais estágios do seu ciclo de vida dentro da água, geralmente na forma de ovo e larva ou ninfa, ocupando o ambiente terrestre apenas na fase adulta, mas, em alguns casos, podem permanecer toda sua vida no ambiente aquático (Dijkstra *et al.*, 2014; Koroiva & Pepinelli, 2019).

Dentre as ordens de insetos aquáticos, Diptera é a mais numerosa, representando metade da diversidade dos insetos aquáticos presentes nesses ambientes (Dijkstra, 2014; Adler & Courtnney, 2019). A ordem contém cerca de 180 famílias (Brown, 2009), das quais 41 possuem algum membro aquático, correspondendo a 46.000 espécies aquáticas distribuídas ao redor do mundo (Adler & Courtnney, 2019).

A grande diversidade observada entre os Diptera aquáticos deve-se a capacidade adaptativa desses insetos, que os permitem ocupar qualquer ambiente de água doce; além disso, algumas espécies também são capazes de habitar ambientes de água salgada costeiros (Springer, 2009; Koroiva & Pepinelli, 2019). Embora haja uma grande abundância de larvas de Diptera em ambientes aquáticos, o conhecimento sobre sua ecologia, morfologia e diversidade ainda é limitado, visto que a maior parte das espécies são descritas apenas com base na fase adulta (Wagner *et al.*, 2008; Adler & Courtnney, 2019).

A região Neotropical possui mais de 30.000 espécies de Diptera distribuídas em 118 famílias (Amorim, 2009). No Brasil a ordem conta com cerca de 12229 espécies (Rafael *et al.*, 2025), entretanto, são estimadas mais de 60.000 espécies para o país, pois muitas regiões brasileiras ainda são pouco exploradas (Carvalho *et al.*, 2012).

Classicamente a maior parte dos estudos sobre Diptera aquáticos na região Norte do Brasil é dedicada aos mosquitos devido a sua importância médica e veterinária (Vinogradova, 2007). Assim, desde o século XX, os estudos sobre esses insetos na Amazônia têm sido em sua maior parte focados em grupos vetores de doenças, principalmente devido ao crescimento populacional da região que foi acompanhado do aumento na incidência de mortes por doenças transmitidas por representantes desse grupo (Nessimian *et al.*, 2019). Isso resultou na predominância da ordem Diptera na produção literária dessa região, especialmente os trabalhos voltados para as famílias Culicidae, Psychodidae e Simuliidae (Nessimian *et al.*, 2019).

Atualmente outras famílias de Diptera, como Chironomidae, são objetos de estudos importantes para avaliação de ambientes aquáticos, uma vez que suas larvas compõem uma parte significativa da densidade faunística desses ambientes, geralmente ocorrendo em grande abundância (Trivinho-Strixino, 2019). No entanto, o conhecimento sobre a sistemática de muitos grupos nessa família permanece relativamente limitado em decorrência da vasta extensão geográfica, das dificuldades de acesso à muitas áreas e pelo número limitado de taxonomistas trabalhando com alguns grupos.

Chironomidae

Chironomidae é uma família de Diptera amplamente distribuída, e atualmente encontra-se dividida em 11 subfamílias: Orthocladiinae, Tanypodinae e Chironominae — as quais possuem maior número de espécies descritas e são bem distribuídas ao redor do mundo (Ferrington, 2008; Spies *et al.*, 2009); já Aphroteniinae, Buchonomyiinae, Chilenomyiinae, Diamesinae, Prodiamesinae, Podonominae, Telmatogetoninae e Usambaromyiinae são menos diversificadas, com ocorrência mais restrita a determinadas condições ambientais (Karima, 2021). Atualmente existem cerca de 400 gêneros e 6.200 espécies de quironomídeos conhecidas, número que está em constante atualização à medida que novas espécies são descobertas e novas revisões são realizadas (Silva *et al.*, 2018; Karima, 2021).

Todas as subfamílias de Chironomidae são encontradas na região Neotropical, sendo a subfamília Chironominae a dominante, com o maior número de espécies descritas, seguida de Orthocladiinae e Tanypodinae; essas três representam cerca de 80% das 900 espécies válidas para região (Spies *et al.*, 2009; Silva *et al.*, 2018). O restante das espécies está distribuído nas subfamílias Aphroteniinae, Buchonomyiinae, Chilenomyiinae, Diamesinae, Podonominae e Prodiamesinae que ocorrem em ambientes frios, e Telmatogetoninae, representada por espécies de ambiente marinho (Silva *et al.*, 2018). No Neotrópico, a fauna de Chironomidae conhecida ainda representa uma pequena porção da verdadeira riqueza de espécies desse táxon; além disso, é possível observar lacunas de conhecimento a respeito do ciclo de vida completo de muitas espécies no grupo, somado ao baixo número de chaves taxonômicas (Silva & Farrell, 2017).

No Brasil são listadas cerca de 680 espécies distribuídas em 100 gêneros para Chironomidae (Pinho *et al.*, 2025), mas, segundo as estimativas, essa diversidade pode chegar a 1.500 espécies (Trivinho-Strixino, 2011). No país são registradas cinco subfamílias: Chironominae, Tanypodinae e Orthocladiinae são as mais comuns (Vieira *et al.*, 2012), enquanto Telmatogetoninae e Podonominae tem distribuição mais restrita (Roque & Trivinho-Strixino, 2004).

As larvas de Chironomidae desempenham um papel fundamental como decompositoras de matéria orgânica submersa, uma vez que elas se alimentam de folhas e madeira em decomposição (Epler, 2001). Essas larvas possuem dieta alimentar a base de tecido vegetal, sendo capazes de consumir detritos rígidos com alta concentração de lignina, e ocorrem em grande quantidade associadas a detritos foliares, assim, são consideradas como coparticipantes da decomposição em sistemas aquáticos (Rossi, 2016).

De acordo com Trivinho-Strixino (2011), a maioria das pesquisas sobre Chironomidae é voltada para a ecologia de suas larvas, havendo carência de estudos taxonômicos que relacionem, por exemplo, as formas imaturas e adultas para uma melhor identificação taxonômica. Isso acarreta numa lacuna de conhecimento sobre as espécies dessa família e, consequentemente, na sua conservação e utilização em estudos mais aplicados.

Historicamente, as chaves e descrições de espécies de Chironomidae foram baseadas especialmente em machos adultos, sendo os estágios imaturos negligenciados devido ao tamanho diminuto de algumas espécies, pelas dificuldades de coleta e processamento e pela ausência de características morfológicas distintivas entre os diferentes táxons (Oliver & Roussel, 1983). As pesquisas brasileiras sobre Chironomidae se intensificaram nas décadas de 60 e 70, sendo os estudos taxonômicos focados sobre machos adultos; essa tendência continuou ao longo dos anos, o que gerou uma lacuna de conhecimento a respeito das formas imaturas (Trivinho-Strixino, 2019). Como destacado por Pinho *et al.* (2024), embora o número de espécies descritas tenha crescido substancialmente, a diversidade real de Chironomidae no Brasil permanece subestimada, com disparidades regionais evidentes e com notória predominância de descrições baseadas apenas em machos adultos.

Na Amazônia, os primeiros estudos taxonômicos sobre Chironomidae tiveram início com a descrição de *Chironomus calligraphus* Goeldi, 1905 e Goeldichironomus holoprasinus Goeldi, 1905, originalmente descritos no gênero *Chironomus*, e somente 50 anos depois houve novos avanços no conhecimento sobre esse grupo na região, com a descrição de 14 novos gêneros pelos trabalhos de Roback na década de 60 (Fittkau, 2001). Além disso, o trabalho de Fittkau (1971) reconheceu 58 gêneros e 437 morfoespécies dessa família para Amazônia, o autor também estimou mais de 1000 espécies de Chironomidae para região. Atualmente, são formalmente descritas 306 espécies para a Amazônia, das quais 206 são endêmicas (Pinho *et al.* 2024).

Na última década, projetos como o "Insetos aquáticos: biodiversidade, ferramentas ambientais e a popularização da ciência para melhoria da qualidade de vida humana no Estado do Amazonas", financiado pelo Programa de Apoio a Núcleos de Excelência em Ciência e Tecnologia (Pronex), estimularam o desenvolvimento de novas pesquisas taxonômicas sobre os Chironomidae na Amazônia (Silva *et al.*, 2019). Assim, diversos trabalhos resultantes desse projeto forneceram a descrição de novas espécies para a região, bem como descrições de estágios imaturos de espécies anteriormente descritas apenas com base em adultos (e.g., Amora *et al.*, 2015; Silva *et al.*, 2019; Dantas & Gilka, 2017; Dantas *et al.*, 2018; Dantas *et al.*, 2023).

Outros trabalhos desenvolvidos na Amazônia brasileira envolvendo o grupo são de cunho ecológico, como os de biomonitoramento de áreas que sofreram ações antrópicas. Entretanto, devido à dificuldade na identificação de alguns táxons, a maioria das identificações fornecidas estão apenas a nível de família (Fidelis & Hamada, 2008; Couceiro, *et al.*, 2009) e, às vezes, até gênero (Gomes, 2012; Sonoda *et al.*, 2018). O uso potencial dos Chironomidae como bioindicadores depende da identificação das larvas, entretanto, muitas espécies ainda permanecem com a descrição de todos os seus estágios incompleta (Epler, 2001), por isso, a continuidade das pesquisas taxonômicas sobre o grupo na Amazônia é necessária para suprir essas lacunas.

Stenochironomus Kieffer, 1919

Stenochironomus Kieffer, 1919 é um gênero cosmopolita, ocorrendo em todas as regiões biogeográficas exceto Antártica, e assim como outros membros da família, sua taxonomia é baseada principalmente na morfologia da genitália dos adultos (Borkent, 1984). Esse gênero foi originalmente estabelecido por Kieffer em 1919, e a sua espécie-tipo, *Chironomus pulchripennis* Coquillett, 1902, foi designada somente alguns anos depois por Townes (1945) (Spies & Sæther, 2004).

Stenochironomus foi revisado por Borkent (1984), que elaborou chaves de identificação para larvas, pupas e adultos para as regiões Neártica, Neotropical e Paleártica. Contudo, as chaves para larvas e pupas apresentam limitações de precisão, uma vez que a maioria das espécies descritas não possui informações sobre seus estágios imaturos. Esse mesmo autor também apontou que as adaptações das larvas minadoras e características da genitália dos adultos sugerem que *Stenochironomus* seja um grupo monofilético.

As larvas de *Stenochironomus* podem ser reconhecidas pelas seguintes características: cabeça achatada dorsoventralmente; primeiros segmentos do corpo achatados e mais largos que os demais segmentos; pseudópodes posteriores curtos e providos de garras fortes; túbulos anais longos; mento côncavo, com 10 dentes fortemente esclerosados e placas ventromentais com estriação pouco nítida e mandíbula com dentes fortes (sendo os internos mais longos que apical) (Trivinho-strixino, 2019). As pupas podem ser caracterizadas conforme a seguir: órgão respiratório com muitas ramificações e um corno torácico não bifurcado; espículas nos tergitos abdominais VII e VIII presentes ou ausentes, caso essas estruturas estejam presentes, o esporão do segmento VIII é castanho claro. Já os adultos são caracterizados conforme a seguir: antepronoto reduzido; escuto se projetando anteriormente; nos machos, as volselas inferiores são longas, com setas arranjadas ao longo da margem dorsal (Borkent, 1984).

Existem cerca de 112 espécies de *Stenochironomus* distribuídas ao redor do mundo (exceto na Antártida), das quais 39 ocorrem na região Neotropical e 30 no Brasil, com 27 delas ocorrendo na região Amazônica (Tabela 1) (Borkent 1984; Pinho *et al.*, 2005; Andersen *et al.*, 2007; Dantas *et al.*, 2010; Reis *et al.*, 2013; Dantas *et al.*, 2016; Parise & Pinho 2016; Amora *et al.*, 2018; Moubayed, 2024). Doze espécies novas foram descritas para a Amazônia nas últimas décadas desde as descrições de Borkent (1984), onde também foi perceptível o empenho desses trabalhos em associar os diferentes estágios de vida. Dentre as mais recentes, *Stenochironomus munteanpurin* Amora, Hamada & Pinho, 2018 ocorre na porção ocidental da Amazônia e no sudeste brasileiro, já *S. hallei* ocorre somente na Guiana Francesa. As demais espécies descritas para o Brasil ocorrem as regiões sudeste e sul:

Stenochironomus atlanticus Pinho & Mendes, 2005; Stenochironomus maikeae Andersen, Mendes & Pinho, 2007; Stenochironomus sebastiao Andersen, Mendes & Pinho, 2007 e Stenochironomus falcifer Parise & Pinho, 2016.

Como apontado por Dantas *et al.* (2016), para que haja melhor compreensão da história de vida desse gênero é necessário haver associação entre os diferentes estágios de vida. Porém, alguns imaturos de *Stenochironomus* neotropicais ainda são desconhecidos: das 39 espécies descritas para a região, 24 possuem as pupas descritas e 18 possuem as larvas descritas (Dantas *et al.*, 2016; Parise & Pinho, 2016; Amora *et al.*, 2018; Moubayed, 2024).

Tabela 1. Espécies do gênero *Stenochironomus* Kieffer, 1919 registradas na Amazônia, estágios em que foram descritos, instituição onde os holótipos estão depositados e distribuição geográfica/localidade. M = macho, F = fêmea, P = pupa, L= larva, INPA = Instituto Nacional de Pesquisas na Amazônia, CNC = Canadian Natural Collection (Canadá) AM= Amazonas, PA= Pará, RR= Roraima.

Espécie	Estágios Descritos	Holótipo	Localidade
S. aculeatus Borkent, 1984	М	INPA	Brasil (RR)
S. albidorsales Borkent, 1984	M, P	INPA	Brasil (AM)
S. bacrionis Borkent, 1984	M, P, L	INPA	Brasil (PA), Equador
S. fittkaui Borkent, 1984	Μ	INPA	Brasil (PA), Panamá
S. impendens Borkent, 1984	М	INPA	Brasil (PA)
S. jubatus Borkent, 1984	M, F	INPA	Brasil (AM)
S. licinus Borkent, 1984	М	INPA	Brasil (PA)
S. nudipupa Borkent, 1984	M, F, P, L	CNC	Brasil (AM, RR) Costa Rica, Equador e Venezuela
S. palliaculeatus Borkent, 1984	М	INPA	Brasil (AM, PA), Colômbia
S. pectinatus Borkent, 1984	M F	INPA	Brasil (AM, PA)
S. prolatus Borkent, 1984	Μ	INPA	Brasil (AM)
S. reissi Borkent, 1984	М	INPA	Brasil (AM, PA)

S. triannulatus Borkent, 1984	M F	INPA	Brasil (AM, PA)
S. vatius Borkent, 1984	M P	INPA	Brasil (AM)
S. zonarius Borkent, 1984	Μ	INPA	Brasil (PA)
S. roquei Dantas, Hamada & Mendes, 2010	M P L	INPA	Brasil (AM)
S. messias Reis, Serpa-Filho & Ferreira-Keppler, 2013	M P L	INPA	Brasil (AM)
S. oliveirai Reis, Serpa-Filho & Ferreira-Keppler, 2013	M P L	INPA	Brasil (AM)
S. manaura Dantas, Hamada & Mendes, 2016	M P L	INPA	Brasil (AM)
S. gracilis Dantas, Hamada & Mendes, 2016	M P	INPA	Brasil (AM)
S. bare Dantas, Hamada & Mendes, 2016	M P	INPA	Brasil (AM)
S. amazonicus Dantas, Hamada & Mendes, 2016	MFPL	INPA	Brasil (AM)
S. figueiredoensis Dantas, Hamada & Mendes, 2016	M P	INPA	Brasil (AM)
S. liviae Dantas, Hamada & Mendes, 2016	M P L	INPA	Brasil (AM, BH, SC)
S. suzanae Dantas, Hamada & Mendes, 2016	Μ	INPA	Brasil (AM)
S. munteanpurin Amora, Hamada & Pinho, 2018	M P L	INPA	Brasil (AC, BH, RJ,
			SC)
S. hallei Moubayed, 2024	М	MZL	Guiana Francesa

As larvas de *Stenochironomus* são relativamente grandes e possuem uma coloração vermelha distintiva. Dentre as espécies deste gênero, apenas uma, *Stenochironomus nelumbus* (Tokunaga & Kuroda, 1935) foi registrada minando tecido vegetal vivo (Deepu & Habeeburrahman, 2008). As demais espécies do gênero são minadoras de troncos ou folhas submersas, seja em ambientes lênticos ou lóticos (Borkent 1984). Borkent (1984) propôs a divisão de *Stenochironomus* em dois subgêneros: *Stenochironomus (Petalopholeus)* Borkent, constituído de espécies com larvas minadoras de folhas, e *Stenochironomus s. str.* Kieffer, constituído pelas espécies minadoras de troncos. Essa proposta de divisão em subgêneros não foi adotada em trabalhos taxonômicos posteriores, pois, como enfatizado por Pinho *et al.* (2005), apenas algumas espécies possuem seus estágios imaturos descritos, por isso, propostas de divisões em subgêneros baseadas nos hábitos dos imaturos precisam ser adotadas com cautela. No entanto, essa hipótese ainda não foi devidamente testada com novos dados, e os subgêneros permanecem válidos.

A criação de imaturos de *Stenochironomus* em laboratório é relativamente fácil, pois poucas espécies necessitam de temperatura e outras condições controladas (Oliveira & Pes, 2019), o que possibilita a associação dos diferentes estágios do seu ciclo de vida (Wantzen, 2006; Dantas *et al.*, 2016). Entretanto, vale ressaltar que as larvas possuem taxonomia difícil devido à grande semelhança morfológica entre as espécies, o que exige um maior esforço do taxonomista (Dantas *et al.*, 2016).

Conforme o exposto anteriormente, ainda há muitas espécies de Chironomidae a serem descoberta e estudadas na Amazônia (Fittkau, 2001). Esse bioma está sob constante ameaça antrópica (Margulis, 2003; Vieira *et al.*,2005, Friedrich, 2021), o que pode comprometer o conhecimento sobre faunas ainda não estudada. Além disso, as diversas lacunas existentes no estudo sistemáticos sobre *Stenochironomus* e outros gêneros em Chironomidae só serão resolvidas a partir de novos estudos taxonômicos, com a descrição de espécies novas, de estágios desconhecidos e redescrições de espécies com poucas informações taxonômicas. Dessa forma, este trabalho agregará conhecimento às pesquisas que vêm sendo desenvolvidas sobre a família, possibilitando e facilitando, assim, o seu uso em estudos mais aplicados, como, por exemplo, sua utilização mais acurada como bioindicadores ambientais. Por fim, a possibilidade de formar novos recursos humanos trabalhando na área irá garantir a manutenção das pesquisas com esse grupo, uma vez que atualmente existem poucos taxonomistas no Brasil dedicados ao estudo dessa família.

OBJETIVOS

Objetivo geral

Realizar um estudo taxonômico sobre Stenochironomus da Amazônia.

Objetivos específicos

- Inventariar as espécies de *Stenochironomus* da Amazônia.
- Associar estágios imaturos e adultos de Stenochironomus.
- Descrever espécies novas do gênero para a Amazônia.

ORGANIZAÇÃO DA DISSERTAÇÃO

Essa dissertação está dividida em dois capítulos. O primeiro capítulo já está publicado e contém a descrição de duas espécies novas de *Stenochironomus*. O segundo capítulo contém a descrição de seis novas espécies, bem como novos registros de *Stenochironomus* para a Amazônia. Todos os nomes das espécies novas foram omitidos (inclusive do capítulo já publicado) para evitar futuros problemas taxonômicos, uma vez que uma dissertação não é um tipo de publicação que garanta a validade dos nomes propostos, de acordo com normas da ICZN.

REFERÊNCIAS BIBLIOGRÁFICAS

Adler, P., & Courtney, G. (2019). Ecological and Societal Services of Aquatic Diptera. Insects, 10(3), 70.

Amora, G., Hamada, N., & Pinho, L. C. (2015). New species and records of *Goeldichironomus* Fittkau, 1965 from Brazil (Diptera: Chironomidae). **Zootaxa**, 4059(2), 383-392.

Amora, G., Hamada, N., & Pinho, L. C. (2018). *Stenochironomus munteanpurin* sp. n., a new leafmining species from Brazil (Diptera: Chironomidae). **Zootaxa**, 4382(3), 553.

Amorim, D.S. (2009). Neotropical Diptera diversity: richness, patterns, and perspectives. In: T. Pape, D. Bickel & R. Meier (Eds.). **Diptera diversity: status, challenges and tools.** Leiden: Brill. p. 71–97.

Andersen, T., Mendes, H. F., & Pinho, L. C. (2007). Two new species of *Stenochironomus* Kieffer,
1919 from Brazilian Atlantic Rainforest (Diptera: Chironomidae). Studia dipterologica, 14(2), 263-269.

Balian, E. V., Segers, H., Lévèque, C., & Martens, K. (2008). The Freshwater Animal Diversity Assessment: an overview of the results. **Hydrobiologia**, 595(1), 627–637.

Borkent, A. (1984). The systematics and phylogeny of the *Stenochironomus* complex (*Xestochironomus*, *Harrisius*, and *Stenochironomus*) (Diptera: Chironomidae). **The Memoirs of the Entomological Society of Canada**, 116(S128), 5-270.

Brown, B. V. (2009). Capítulo 1. Introduction. In: Brown, B. V., Borkent, A., Cumming, J. M.,
Wood, D. M., Woodley, N. E., & Zumbado N. A. (Eds.). Manual of Central American Diptera.
Volume I. NRC Research Press. p. 1-8.

Callisto, M., Moretti, M., & Goulart, M. (2001). Macroinvertebrados bentônicos como ferramenta para avaliar a saúde de riachos. **Revista Brasileira de Recursos Hídricos**, 6(1), 71-82.

Carvalho, C. J. B., Rafael, J. A., Couri, M. S., & Silva, V. C. (2012). Diptera. In: Rafael, J. A., Melo, G. F., Carvalho, C. G. B., Casari, S. A., & Constantino, R. (Eds.). Insetos do Brasil. Diversidade e Taxonomia. Ribeirão Preto: Editora Holos. p. 701-744.

Cleto Filho, S. E. N. (2003). Urbanização, poluição e biodiversidade na Amazônia. **Ciência hoje**, 33(193), 72-75.

Copertino, M., Piedade, M. T. F., Vieira, I. C. G., & Bustamante, M. (2019). Desmatamento, fogo e clima estão intimamente conectados na Amazônia. **Ciência e Cultura**, 71(4), 04-05.

Couceiro, S. R. M., Hamada, N., Forsberg, B. R., & Padovesi-Fonseca, C. (2009). Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon. Journal of Soils and Sediments, 10, 89-103.

Coutinho, L. (2016). Caracterização dos principais biomas no Brasil. In: Coutinho, L. (Ed). Biomas brasileiros. Oficina de Textos. p. 35-37.

Costa, J. M., Silva, C. C., Santos, T. C., Pereira, S. M., & Almeida, G. L. (2011). Insetos Aquáticos da Ecorregião Xingu-Tapajós. In: Castilhos, Z. C., & Buckup, P. A. (Eds.). Ecorregião Aquática Xingu-Tapajós. CETEM. p. 123-138.

Dantas, G.P.S. (2010). Taxonomia de *Stenochironomus* Kieffer, 1919 (Chironomidae: Diptera), na Amazônia Central, Brasil. Dissertação. Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 106 pp.

Dantas, G.P.S., Hamada, N. & Mandes, H.F. (2010) A new Neotropical species of the genus *Stenochironomus* Kieffer (Diptera: Chironomidae) with wood-mining larvae. **Zootaxa**, 2490, 47–54.

Dantas, G. P. D. S. (2015). Revisão das espécies neotropicais de *Larsia* Fittkau, 1962 (Diptera: Chironomidae: Tanypodinae) e taxonomia de Tanypodinae Thienemann et Zavřel na Amazônia, Brasil. Tese. Instituto de Pesquisas na Amazônia, Manaus, Amazonas. 397 pp.

Dantas, G. P. S., Hamada N., & Mendes, H. F. (2016). Contribution to the knowledge of *Stenochironomus* Kieffer (Diptera, Chironomidae) from Brazil: seven new species and description of females and immatures of some previously known species. **Zootaxa**, 4117(1), 1-139.

Dantas, G. P. S., & Giłka, W. (2017). New *Tanytarsus* van der Wulp from the Brazilian Amazonia indicate clues to intrageneric relations (Diptera: Chironomidae). **Zootaxa**, 4294(2), 281.

Dantas, G. P., Hamada, N., & Giłka, W. (2023). *Tanytarsus* van der Wulp (Chironomidae, Diptera): new species from the western Amazon region in Peru and Brazil, new records from the Neotropics, and remarks on the taxonomy of the genus. **Zootaxa**, 5271(1).

Deepu, M., & Habeeburrahman, P. V. (2008). Invasion and severe outbreak of the lotus lily midge *Stenochironomus nelumbus* Tok et Kur (Diptera: Chironomidae) in Indian freshwater ecosystems. **Current science**, 94(12), 1569-1570.

Dijkstra, K. D. B., Monaghan, M. T., & Pauls, S. U. (2014). Freshwater biodiversity and aquatic insect diversification. **Annual review of entomology**, 59, 143-163.

Epler, J.H. (1998) Biosystematics of the genus *Dicrotendipes* Kieffer, 1913 (Diptera: Chironomidae: Chironominae) of the world. **Memoirs of the American entomological Society**, 36, 1–214.

Epler, J. H. (2001). Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources.

Favro, A. (2021). **Dinâmica da comunidade de Chironomidae (Diptera) em eventos de cheias e** secas extremas em um rio Neotropical. Dissertação. Universidade Estadual de Maringá, Maringá, Paraná. 26 pp.

Ferrington, L. C. (2008). Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. **Hydrobiologia**, 595(1), 447-455.

Fidelis, L., Nessimian, J. L., & Hamada, N. (2008). Distribuição espacial de insetos aquáticos em igarapés de pequena ordem na Amazônia Central. Acta Amazonica, 38(1), 127-134.

Fittkau, E. J. (1971). Distribution and ecology of Amazonian chironomids (Diptera). **The Canadian Entomologist**, 103(3), 407-413.

Fittkau, E. J. (2001). Amazonian Chironomidae (Diptera, Chironomidae): a contribution to chironomid research in the Neotropics. **Amazoniana: Limnologia et Oecologia Regionalis Systematis Fluminis Amazonas**, 16(3/4), 313-323.

Friedrich, K., Silveira, G. R. D., Amazonas, J. C., Gurgel, A. D. M., Almeida, V. E. S. D., & Sarpa, M. (2021). Situação regulatória internacional de agrotóxicos com uso autorizado no Brasil: potencial de danos sobre a saúde e impactos ambientais. Cadernos de Saúde Pública, 37.

Garrett, R. D., Cammelli, F., Ferreira, J., Levy, S. A., Valentim, J., & Vieira, I. (2021). Forests and sustainable development in the Brazilian Amazon: history, trends, and future prospects. **Annual Review of Environment and Resources,** 46, 625-652.

Gomes, L. F. (2012). Biomonitoramento de áreas degradadas utilizando Chironomidae (Insecta: Diptera). Faculdade UnB de Planaltina, Universidade de Brasília. 36 pp.

Gullan, P. J. & Cranston, P. S. (2012) Insetos Aquáticos. In: Gullan, P. J. & Cranston, P. S. (Eds.). Os **Insetos: Um Resumo de Entomologia**. 4ºed. Roca. P 225-239.

Hijmans, R. J., Guarino, L., Bussink, C., Mathur, P., Cruz, M., Barrentes, I., & Rojas, E. (2004). DIVA-GIS. Vsn. 5.0. A geographic information system for the analysis of species distribution data.

Instituto Brasileiro de Geografia e Estatística (IBGE). (2020). **IBGE atualiza mapa da Amazônia Legal**. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013agencia-denoticias/releases/28089-ibge-atualiza-mapa-da-amazonia-legal. Acesso em: 25 de agosto de 2023.

Kawada, R. & Buffington, M.L. (2016). A scalable and modular dome illumination system for scientific microphotography on a budget, **PLoS One**:11(5).

Karima, Z., (2021). Chironomidae: Biology, Ecology and Systematics. In: Perveen, F. K. (Ed.). The Wonders of Diptera: Characteristics, Diversity, and Significance for the World's Ecosystems. **IntechOpe**. p. 1-25.

Koroiva, R., & Pepinelli, M. (2019). Distribution and habitats of aquatic insects. Aquatic Insects, 11-33.

Langton, P.H., (1991). A key to pupal exuviae of West Palaearctic Chironomidae: Huntingdon, Cambridgeshire, England, P.H. Langton, 386 p.

Langton, P.H., (1994). If not 'filaments', then what?. **Chironomus Newsletter on Chironomidae Research**, v. 6, p. 9.

Langton, P.H., (1995). The pupa and the events leading to eclosion. In: Armitage, P.D., Cranston, P.S., & Pinder, L.C.V. (Eds.). The Chironomidae, the biology and ecology of non-biting midges: London, Chapman and Hall. p. 169-193.

Lima, M. (2022). As mudanças no uso da terra perturbam os córregos e afetam os grupos alimentares funcionais de insetos aquáticos na Amazônia. **Journal of Insect Conservation**, 26, 137-148.

Margulis, S. (2003). Causas do desmatamento da Amazônia brasileira. 1ª ed. Brasília.

Mendes, H. F. (2002). Rearing Tanypodinae, Telmatogetoninae and Orthocladiinae in Brazil–an empirical approach. Chironomus Journal of Chironomidae Research, (15).

Moubayed, J. (2024) On the genus *Stenochironomus* Kieffer from French Guiana. I. New records with description of *S. hallei* sp. n. from the primary rainforest (Diptera, Chironomidae, Chironominae). **Ephemera**. 25, p. 83-90.

Nessimian, J. L., Sampaio, B. H. L., & Dumas, L. L. (2019). Taxonomia de insetos aquáticos: cenários e tendências para a Amazônia brasileira. In: Hamada, N.; Nessimian, J. L.; Querino, R. B. (Eds.). **Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia**. Editora do INPA, Manaus. p. 15-26.

Oliver, D. R., & Roussel, M. E. (1983). The Insects and Arachnids of Canada. Part 11. The Genera of Larval Midges of Canada. Diptera: Chironomidae. Minister of Supply and Services.

Oliveira, V. D., & Pes, A. O. (2019). Inventário da fauna de insetos aquáticos: coleta, preservação e criação. In: Hamada, N.; Nessimian, J. L.; Querino, R. B. (Eds.). Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia. Editora INPA, Manaus. p. 151-167.

Parise, A. G., & de Pinho, L. C. (2016). A new species of *Stenochironomus* Kieffer, 1919 from the Atlantic Rainforest in southern Brazil (Diptera: Chironomidae). Aquatic Insects, 37(1), 1–7.

Pinho, L. C., Mendes, H.F. & Marcondes, C.B. (2005). A new Brazilian species of *Stenochironomus* Kieffer mining decayed leaves in bromeliads (Diptera: Chironomidae). **Zootaxa**, 1046, 37–47.

Pinho, L. C., Rosa, N. D. P., & Campos, L. L. F. (2024). Unveiling the diversity and distribution of non-biting midges (Diptera: Chironomidae) in Brazil through the Taxonomic Catalog of the Brazilian Fauna. **Zoologia**, *41*, e24027.

Pinho, L. C. Fusari, L. M., Mendes, H. (2025). Chironomidae in Catálogo Taxonômico da Fauna do Brasil. PNUD. Disponível em: http://fauna.jbrj.gov.br/fauna/faunadobrasil/2191. Acesso em: 15 Fev. 2025.

Rafael, J.A., *et al.* (2025). **Diptera**. Catálogo Taxonômico da Fauna do Brasil. JBRJ. Disponível em: http://fauna.jbrj.gov.br/fauna/faunadobrasil/252>. Acesso em: 27 mar. 2025

Reis, E. D. A., Filho, A. S., & Ferreira-Keppler, R. L. (2013). Two new species and records of *Stenochironomus* Kieffer from Brazilian Amazon region, with description of immature stages (Diptera: Chironomidae). **Zootaxa**, 3710(5), 449.

Roque, F. D. O., & Trivinho-Strixino, S. (2004). *Podonomus pepinellii* n. sp., first record of the genus and subfamily from Brazil (Diptera: Chironomidae: Podonominae). **Zootaxa**, 689(1), 1-7.

Rossi, L. A. L. (2016). **Influência da composição química foliar na colonização por larvas de Chironomidae (Diptera) durante a decomposição em riachos**. Tese. Universidade de São Carlos, São Carlos, São Paulo. 179 pp.

Silva, J. D., Rylands, A. B., & Da Fonseca, G. D. (2005). O destino das áreas de endemismo da Amazônia. **Megadiversidade**, 1(1), 124-131.

Silva, F. L., & Farrell, B. D. (2017). Non-biting midges (Diptera: Chironomidae) research in South America: subsidizing biogeographic hypotheses. **Annales de Limnologie - International Journal of Limnology**, 53, 111–128.

Silva, L. F., Pinho, L. C., Wiedenbrug, S., Dantas, G. P. S., Siri, A., Andersen, T., & Trivinho-Strixino, S. (2018). Family Chironomidae. In: Hamada, N., Thorp, J. H., & Rogers, D. C. (Eds.). Thorp and Covich's Freshwater Invertebrates. p. 661–700.

Silva, F. L., Oliveira, C. S. N., & Dantas, G. P. S. (2019). Estado da arte dos Tanypodinae da região Amazônica. In: Hamada, N.; Nessimian, J. L.; Querino, R. B. (Eds.). Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus. p. 673-678.

Silva, F. L. D., Dantas, G. P. S., & Hamada, N. (2019). Description of immature stages of *Ablabesmyia cordeiroi* Neubern, 2013 (Diptera: Chironomidae: Tanypodinae). Acta Amazonica, 49(2), 118–121.

Sonoda, K. C., Monteles, J. S., Ferreira, A., & Gehard, P. (2018). Chironomidae da Amazônia Oriental. **Jaguariúna**, São Paulo.

Spies, M., & Sæther, O. A. (2004). Notes and recommendations on taxonomy and nomenclature of Chironomidae (Diptera). **Zootaxa**, 752(1), 1-90.

Spies, M., Andersen, T., Epler, J. H., Watson, Jr, C. N. (2009). Chironomidae (non-biting midges). In:
Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado N. A.
(Eds.). Manual of Central American Diptera. NRC Research Press, Ottawa. Vol 1. p. 437-480.

Springer, M. (2009). Marine insects. In: I. S. Wehrtmann & J. Cortés (Eds.). Marine Biodiversity of Costa Rica, Central America. **Monographiae Biologicae**, 86, 29.

Trivinho-Strixino, S. (2011). Chironomidae (Insecta, Diptera, Nematocera) do Estado de São Paulo, Sudeste do Brasil. **Biota Neotropica**, 11, 675-684.

Trivinho-Strixino, S. (2019). Ordem Diptera Família Chiromidae Guia de identificação de larvas. In: Hamada, N.; Nessimian, J. L.; Querino, R. B. (Eds.). Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus. Pp. 443-656.

Vieira, I. C. G., Da Silva, J. M. C., & De Toledo, P. M. (2005). Estratégias para evitar a perda de biodiversidade na Amazônia. **Estudos Avançados**, 19(54), 153–164.

Vieira, L. J. S., Rosin, G. C., Takeda, A. M., Lopes, M. R. M., & de Sousa, D. S. (2012). Studies in South-Occidental Amazon: contribution to the knowledge of Brazilian Chironomidae (Insecta: Diptera). Acta Scientiarum. Biological Sciences, 34(2), 149-153.

Vinogradova, E.B. (2007). Diapause in Aquatic Insects, with Emphasis on Mosquitoes. In: Alekseev,V.R., de Stasio, B.T., Gilbert, J.J. (Eds.). Diapause in Aquatic Invertebrates Theory and HumanUse. Monographiae Biologicae, vol 84. Springer, Dordrecht.

Wagner, R., Bartak, M., Borkent, A., Courtney, G., Goddeeris, B., Haenni, J.P., Knutson, L., Pont,
A., Rotheray, G. E., Rozkosny, R., Sinclair, B., Woodley, N., Zatwarnicki, T., & Zwick, P. (2008).
Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae,
Culicidae, Chironomidae, Tipulidae and Tabanidae). Hydrobiologia 2008, 595, 489–519.

Wantzen, K. M., & Wagner, R. (2006). Detritus processing by invertebrate shredders: a neotropical–temperate comparison. Journal of the North American Benthological Society, 25(1), 216-232.

Zequi, J. A. C.; Espinoza, A. A.; Almeida Paccola, J.; Lopes, J. (2019). Aquatic insect communities in small stream in the south of Brazil. **Environmental monitoring and assessment**, 191(7): 1-9.

Capítulo 1

Stenochironomus (Petalopholeus) sp. 1 and S. (P.) sp. 2

(Diptera: Chironomidae), two new leaf-mining species

from Brazil

O Capítulo I desta Dissertação foi elaborado e formatado conforme as normas da publicação científica *Annales Zoologici Fennici* as quais se encontram no Anexo I.

1	Stenochironomus (Petalopholeus) sp. 1 and S. (P.) sp. 2 (Diptera, Chironomidae), two new
2	leaf-mining species from Brazil.
3	
4	Arthur F. D. Sousa ^{1*} , Galileu P. S. Dantas ² , Neusa Hamada ² & Jeane M. C. do Nascimento ¹
5	
6	¹⁾ Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Zoologia
7	(PPGZOOL), Instituto de Ciências Biológicas (ICB), Belém, PA, Brazil
8	²⁾ Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de Pós-graduação em
9	Ciências Biológicas (Entomologia) (PPGEnto), Laboratório de Citotaxonomia e Insetos
10	Aquáticos (LACIA), Manaus, AM, Brazil
11	*corresponding author: arthurdisousa@gmail.com
12	
13	Abstract
14	
15	Two new species of Stenochironomus (Petalopholeus) from Brazil are described and
16	illustrated based on adult, pupal, and larval stages. These species can be distinguished from
17	their congeners primarily by characteristics of the male hypopygium. The larvae were
18	collected mining leaves in lotic environments. Both species were found in the Amazon region,
19	with one also recorded in the Cerrado biome.
20	
21	1. Introduction
22	
23	Stenochironomus Kieffer, 1919, is a cosmopolitan and species-rich genus easily recognized by
24	its aquatic larvae, which are highly specialized for a leaf- or wood-mining lifestyle. Borkent
25	(1984) conducted a comprehensive review of the genus, describing 32 new species and
26	performing a cladistic analysis that corroborated its monophyly. Additionally, Borkent (1984)
27	proposed the subdivision of the genus into two subgenera, based on the morphology of
28	immatures and larval habitats: Stenochironomus (Petalopholeus) for leaf-mining species and
29	Stenochironomus s. str: for those with woody-mining larvae. Pinho et al. (2005) questioned
30	the validity of this classification, arguing that S. atlanticus Pinho & Mendes, 2005 does not fit
31	easily into any of the subgenera proposed by Borkent (1984) and that the immature stages of
32	many species remain unknown. However, this hypothesis has not yet been properly tested

- 33 with new data, and the subgenera remain valid. Currently, more than 100 species of
- 34 Stenochironomus are recognized worldwide, with 39 occurring in the Neotropical region and
- 35 30 in Brazil (Borkent 1984, Pinho *et al.* 2005, Andersen *et al.* 2007, Dantas *et al.* 2010, Reis
- 36 *et al.* 2013, Dantas *et al.* 2016, Parise & Pinho 2016, Amora *et al.* 2018, Moubayed 2024).
- 37 In the present study, we describe and illustrate the adult and immature stages of two new leaf-
- 38 mining species of *Stenochironomus* from Brazil.
- 39

40 Material and methods

41

42 The collection and rearing of immature stages were conducted following the methodology

43 outlined by Amora (2018). Emerged adults, along with corresponding immature exuviae, were

44 preserved in 80% ethanol. Specimens of *Stenochironomus* were collected in submerged leaves

45 in streams and rivers from Amazonas, Goiás, Pará, Rondônia, and Roraima States. Except for

46 one adult male from Pará State collected with Malaise trap.

47

The examined specimens were slide-mounted in Hoyer 's medium (Andersen *et al.* 2013) or in Euparal[®] (Pinder 1983, 1986, 1989). Morphological measurements follow Epler (1988), and the general terminology follows Sæther (1980). Measurements of the adult male, pupa, and larva are given as ranges, with the holotype measurement in square brackets. Adult female measurements are given as ranges.

Measurements were performed using an Olympus BX51 optical microscope with the Cell-D[®] (Olympus) software. Photographs of morphological features were taken with a Leica DFC295 digital camera attached to a Leica DM5500 B compound microscope. The habitus were photographed using a Leica M165C stereomicroscope with an attached Leica DFC72 camera. The drawings were made by hand using camera lucida attached to a Leica DM750 optic microscope, then scanned for editing.

60

61 The holotypes and some paratypes are housed in the Invertebrate Collection of the Instituto

62 Nacional de Pesquisas da Amazonia (INPA), Manaus, Amazonas, Brazil. Some paratypes are

- 63 housed in the Museu de Zoologia da Universidade de São Paulo (MZUSP), São Paulo, Brazil.
- 64

65 **3. Taxonomy**

66

- 67 Chironomidae Newman, 1834
- 68 Chironominae Newman, 1834
- 69 Stenochironomus Kieffer, 1919
- 70 Stenochironomus (Petalopholeus) Borkent, 1984
- 71
- 72 Stenochironomus (Petalopholeus) sp. 1

73 (Figs. 2–11)

74

75 **Type material**. Holotype, male with pupal and larval exuviae, BRAZIL, Roraima,

- 76 Rorainópolis, Vicinal 12, Recanto da Cachoeira, 00°46'35.1" N, 060°19'58.7" W, 10.i.2018, in
- submerged leaf, leg. G. Amora, slide-mounted in Hoyer (INPA). Paratypes: 4 males with pupal
- and larval exuviae, same data as holotype; 3 males with pupal and larval exuviae, same data as
- ⁷⁹holotype except slide-mounted in Euparal[®] (MZUSP); 2 males with pupal and larval exuviae,
- 80 BRAZIL, Rondônia, Rio Urupá, 11°02'11.2" S, 62°08'40.4" W, 12.ix.2018, leg. N. Hamada; J.
- 81 M. C. Nascimento; J. S. Oliveira; G. Amora, slide-mounted in Hoyer (INPA); 1 male with
- 82 pupal and larval exuviae, BRAZIL, Amazonas, Presidente Figueiredo, Cachoeira da Maroca,
- 83 02°00'58.0" S, 59°51'33.9" W, 18.x.2014, 123 m, leg. J. O. da Silva. & G. G. Amora, slide-
- 84 mounted in Hoyer (INPA); 1 male with pupal and larval exuviae, BRAZIL Amazonas,
- Presidente Figueiredo, Igarapé do Mutum, Cachoeira da Porteira; 2°02'21.1" S, 59°55'12.7" W,
- 86 06.x.2016, 89 m, leg. J. O. da Silva. & G. Amora slide-mounted in Hoyer (MZUSP); 1 male
- with pupal and larval exuviae, BRAZIL, Amazonas, Humaitá; 07°55'23.5" S, 63°00'55.6" W,
- 13.ix.2018, leg. Hamada, N.; Nascimento, J.M.C.; Oliveira, J.S.; Amora, G., slide-mounted in
- 89 Hoyer (INPA); 2 males with pupal and larval exuviae, BRAZIL, Goiás, Alto Paraíso de Goiás,
- 90 Fazenda Aves Grandes, Rio Piçarrão; 14°17'40.8" S, 47°37'22.3" W, 22.xi.2017, leg. N.
- 91 Hamada; G. Amora, slide-mounted in Hoyer (INPA); 1 male with pupal and larval exuviae,
- 92 BRAZIL, Pará, Santarém; Igarapé do Xibé; 03°07'04.3" S 55°03'49.5" W, 21.vi.2016, 90 m,
- 93 leg. C. V. Dutra, D. Godinho, M. D. Santana, slide-mounted in Hoyer (INPA); 1 female with
- 94 pupal and larval exuviae, BRAZIL, Pará, Santarém; Igarapé do Xibé; 03°07'04.3" S
- 95 55°03'49.5" W, 21.vi.2016, 90 m, leg. C. V. Dutra, D. Godinho, M. D. Santana , slide-mounted
- 96 in Hoyer (INPA); 1 female with pupal and larval exuviae, same data as holotype (MZUSP); 1
- 97 female with pupal and larval exuviae, same data as holotype except slide-mounted in Euparal[®]
- 98 (INPA).

99

100 Diagnostic characters. Male: lateral view of thorax with brown patches on preepisternum, anespiternum, posterior anepisternum, epimeron and near espiraculum; anal point broad in 101 fusiform format in dorsal view; superior volsella short, tapering at the apex; inferior volsella 102 103 with apical setae as long as the subapical setae. Female: lateral view of thorax with brown patches on preepisternum, anespiternum, posterior anepisternum, epimeron and near 104 espiraculum; post-genital plate triangular, with round apex. **Pupa:** frontal apotome elongated; 105 T II with posterior row of hooklets not extending to lateral margin of tergite; T VII without 106 shagreens or with small fields of weak shagreens on posterolateral margin; conjunctive III/IV 107 108 and IV/V with shagreen, spur on S VIII with two to six variable size yellowish brown teeth. Larva: spicules of the pecten epipharyngis simple, arranged in a row; labral lamella arranged 109 in one group of irregular spicules with a cleft in the middle; labiohypopharynx with rounded 110 111 lobes and a cleft between them. 112 Etymology. The specific epithet is in honor to Instituto Nacional de Pesquisas na Amazônia 113 (INPA), where all phases of this study were carried out. 114 115 Male (n =16, except when otherwise stated). 116 Total length 4.28–5.55 [4.95] mm. Wing length 2.12–2.58 [2.17] mm. Total length/ wing 117 length 2,15–2.35 [2.27]. Wing length/ length of profemur 3.13–3.66 [3.34]. 118

119

General coloration yellowish. Head: eyes metallic green when in alcohol, flagellum yellowish 120 (Fig. 2A–B). Thorax: with light-brown patch on the anterior portion of the lateral vitta; 121 122 preepisternum with a transverse light-brown band; brown patches on median anespiternum, posterior anepisternum, epimeron and near espiraculum; scutellum without pigmentation; 123 anterior margin of the postnotum with a light-brown patch (Figs. 2B; 3D). Legs: forefemur 124 with a brown patch at the apex; fore tibia with a brown patch near the base and at the apex; all 125 fore tarsus with brown patch in the apex. Mid femur and hind femur with a brown patch at the 126 apex (Figs. 2A–B; 3B). Wings: membrane with a light-brownish medial band (Figs. 2A–B; 127 3E). Abdomen: posterior margin of T II-IV with brown pigmentation; hypopygium yellowish, 128 129 with a brown anal point (Figs. 2A–B; 3C). 130

- 131 Head (Fig. 3A). AR 2.05–2.33 [2.16]. Thirteenth flagellomerum 849–1120 [921] μm long.
- 132 Temporal setae 13–23 [16]. Clypeus with 27–43 [43] setae. Tentorium 154–200 [154] μm
- long; 45–62 [52] μm wide at the sieve pore; 17–25 [18] μm wide at the posterior tentorial pit.
- 134 Stipes $156-179 (n = 3) \mu m \log; 4-6 (n = 3) \mu m wide;$ cibarial pump $260-352 [269] \mu m \log.$
- 135 Palpus with 50–64 [50] setae. Palpomere lengths (1–5 in μm): 37–55 [43]; 26–70 [45]; 168–
- 136 200 [178]; 150–178 [151]; 232–299 [232].
- 137 Thorax (Fig. 3D). Acrostichals 18–25 [18]; dorsocentrals 38–45 [38] in two rows; prealars 9–
- 138 15 [11] in one, two, or three rows. Scutellum with 22–42 [22] setae in two rows. Scutum
- 139 markedly projected anteriorly; anterior edge of the scutum angled in lateral aspect.
- 140 Wing (Fig. 3E). VR 2.15–2.53 [2.17]. Brachiolum 4–5 [4] setae. With 19–25 [21] sensilla
- 141 campaniformia. R with 34–48 [41] setae. R₁ with 35–43 [39] setae. R₄₊₅ with 34–50 [44]
- setae. RM with 0-2 [1] setae. Remaining veins bare. Squama with 8-13 (n = 14) setae.
- 143 Legs (Fig. 3B). Scale of front tibia 37–53 [37] μ m long, with a small apical spine 2–3 [2] μ m
- long; spurs of the mid tibia 33–43 [33] μm and 25–37 [34] μm long; spurs of the hind tibia
- 145 33–49 [40] μm and 36–40 [39] μm long. Apex of the fore tibia 66–84 [73] μm wide, the mid
- tibia 57–68 [57] μ m wide, and the hind tibia 66–74 [68] μ m wide. Lengths (in μ m) and
- 147 proportions of legs as in Table 1.
- 148 Hypopygium (Figs. 4A–C). Anal point broad, fusiform in dorsal view, originating subapically
- on T IX, 139–152 [144] μm long, 20–38 [38] μm wide at the base, 29–37 [35] μm at the
- 150 midpoint, 14–17 [17] μm at the apex. Tergite IX with 38–47 [38] strong setae, caudal apex
- 151 with pre-apical constriction in dorsal aspect. Laterosternite IX with 4–7 [7] setae.
- 152 Phallapodeme 90–124 [90] μm long; transverse sternapodeme 33–51 [33] μm long.
- 153 Gonocoxite 191–244 [220] μm long. Gonostylus 247–274 [249] μm long, swollen
- subapically, with the apex slightly tapering. Superior volsella short, 57-70 [61] μ m long,
- tapering at the apex, with 4-7 [5] setae. Inferior volsella 254–333 [286] μ m long, with 5–7 [5]
- setae; apical setae as long as the subapical one. HR 0.72–0.93 [0.88]; HV 1.56–2.17 [1.99].
- 157
- 158 **Female** (n = 1-3).
- 159 Total length 2.91–4.27 mm. Wing length 2.42–2.77 mm. Total length/wing length 1.21–1.50.
- 160 Wing length/length of profemur 1.25–1.41.
- 161
- 162 General coloration yellow and dark brown. Head: eyes metallic green; antennal flagellomere
- 163 yellowish, dark-brown at the apex. Thorax: with a light-brown patch on the anterior portion of

- 164 lateral vitta; preepisternum with a transversal light-brown band; brown patches on median
- anespiternum, posterior anepisternum, epimeron and near espiraculum; scutellum without
- 166 pigmentation; anterior margin of the postnotum with a light-brown patch. Legs: forefemur
- 167 with a brown patch at the apex; fore tibia with brown patches near the base and at the apex; all
- 168 fore tarsus with brown patch at the apex. Mid femur and hind femur with a light-brown patch
- 169 at the apex. Wings: membrane with a light-brownish band. Abdomen: dark brown, with
- 170 marked dark-brown pigmentation at the posterior margins of T II and T III (Fig. 6A–B).
- 171
- 172 Head. Flagellomere length (in μ m): 73–85; 110–122; 138–157; 139–159; 143–152; 190–226.
- 173 AR 0.30–0.34. Clypeus with 36–42 setae. Tentorium 157–224 μ m long; 28–51 μ m wide at the
- sieve pore; 13–15 μ m wide at the apex. Stipes 94 μ m long. Palpomere length (in μ m): 44–67;
- 175 66–73; 201–218; 158–187; 307–373.
- 176 Thorax. Acrostichals 29–32; dorsocentrals 37–58 in two or three rows; prealars 15–17.
- 177 Scutellum with 21–43 setae in two, or three rows.
- 178 Wing. VR 1.12–1.15. Brachiolum with 6–8 setae. R with 52–62 setae; R₁ with 47–64 setae;
- 179 R_{4+5} with 77–193 setae; RM with 1–2 setae; M with 9–10 setae; remaining veins bare.
- 180 Squama with 12–15 setae.
- 181 Legs. Scale of front tibia 48–55 μ m long, with a small spine 3 μ m long at apex; spurs of mid
- tibia 36–42; spurs of hind tibia 39–45 μm long. Apex of fore tibia 77–86 μm wide, of mid
- tibia 64–87 μ m wide, of hind tibia 78–95 μ m wide. Lengths (in μ m) and proportions of legs as
- in Table 2.
- 185 Genitalia (Fig. 7A–B). Tergite IX with 52–68 setae; gonocoxite IX with 2–5 setae. Post-
- 186 genital plate rounded at apex. Cercus 137–187 μm long. Gonocoxapodeme IX 157–213 μm
- 187 long. Notum 178–243 μm long.
- 188
- **Pupa** (n = 8-11). Total length 6.32–6.76 [6.32 mm]. General coloration brown (Fig. 8 A).
- 190 Cephalotorax 1323–1538 [1323] µm long, with an elongated frontal apotome (Fig. 9A–B);
- 191 frontal warts absent (Fig. 9A) or present in a few specimens (Fig. 9B). Distance between Dc₁
- and $Dc_2 2-6 [3] \mu m$; between Dc_2 and $Dc_3 321-558 [373] \mu m$; between Dc_3 and $Dc_4 4-8 [8]$
- 193 μ m. Median suture granulose.
- 194 Abdomen 4875–5765 [4998] μm long (Fig. 9C–E). T I bare; T II–IV with large field of
- shagreen, not extending to the lateral margin, and with approximately four circular bare areas
- near the posterior margin; T II with a posterior single row of hooklets 276–422 [277] μm long

(Fig. 9C), not extending to the lateral margin of the tergite; pedes spurii B absent. T IV with a 197 field of shagreen on the posterior laterosternite reaching the middle region; T V with a field 198 shagreen more restricted to the median region than the anterior tergites; T VI with two fields of 199 shagreen separated or connected by a thin central band of shagreen, one anterior field 200 somewhat triangular with thinner shagreen, and a posterior field of thicker shagreen; T VII 201 without shagreens or with a very small shagreen restricted near the anterolateral margin; T 202 203 VIII and Anal lobe with shagreen restricted near the anterolateral margin. Conjunctive III/IV and IV/V with shagreen. Abdominal setation: S I without L setae; S II-IV with 3-4 L setae; S 204 V-VII with 4 LS setae; S VIII with 5 LS setae. Spur on S VIII (Fig. 8C-H) with 2–6 [3] 205 206 variable size yellowish-brown teeth. Genital sac 480–565 [480] µm long, overreaching the posterior margin of the anal lobe by 33–57 [44] µm long; anal lobe 390–527 [390] µm long, 207 with fringe of 54 filaments. 208

209

210 4^{th} instar larva (n = 10–11).

Head. Head capsule 277–325 [317] µm long. Antenna (Fig. 10C); lengths of antennal 211 segments (in µm): 71–76 [72]; 18–25 [13]; 9–15 [6]; 7–9 [5]; 2–6 [3]. Labrum (Fig. 10A). 212 Spicules of the pecten epipharyngis simple, arranged in a row (Fig. 10A). Labral lamella 213 arranged in a group of irregular spicules with a cleft in the middle (Fig. 10A). S1 simple, S2 214 pinnate, S3 bifurcated (Fig. 10A). Premandible not measurable. Mandible (Fig. 10A) 138-201 215 [175] µm long. Mentum 129–148 [141] µm wide, with 10 blackish teeth (Fig. 10B); 216 217 ventromental plate 70–109 [90] µm wide (Fig. 10B). Base of the dorsolateral strip originating near the base of the dorsomedian strip. Labiohypopharynx (Fig. 10A, D-F) with rounded 218 ligular lobes, with a parallel-sided cleft between them. Labiohypopharynx and mentum were 219 found damaged in some specimens. 220

221

Taxonomic remarks. In the male identification key of the Neotropical Stenochironomus 222 223 proposed by Dantas et al. (2016), Stenochironomus sp. 1 falls in couplet 20, which distinguishes Stenochironomus fittkaui Borkent, 1984 and Stenochironomus bare Dantas, 224 Hamada & Mendes, 2016, both from Brazil. However, the broad anal point in fusiform format 225 of S. sp. 1. differs from those two species, while the anal point in S. fittkaui and S. bare is 226 227 swollen subapically. Additionally, the new species can be easily distinguished by the inferior volsella, which has a long apical seta, whereas in S. fittkaui and S. bare, the seta is short and 228 thicker. The pupa of S. sp. 1 presents a single row of hooklets in T II (Fig. 9C) that differs from 229

- 230 *S. bare* in which the hooklets are divided in two groups. The spur on S VIII in *S. bare* presents
- one extremely elongate lateral tooth, an elongate penultimate tooth and four smaller medial
- teeth; in *S*. sp. 1 the spur has a variation between two and six irregular size teeth (Fig. 8C–H).
- In addition, S. sp. 1 has the anal lobe with spicules absent, while in S. bare these spicules are
- 234 present.
- 235 The male of *S*. sp. 1 has an anal point broad and an inferior volsella with a long, thin apical
- seta characteristics shared only with *Stenochironomus messias* Reis, Serpa-Filho &
- 237 Ferreira-Keppler, 2013, Stenochironomus oliverai Reis, Serpa-Filho & Ferreira-Keppler, 2013
- and *Stenochironomus crusanticus* Borkent, 1984. These first two species described by Reis *et*
- 239 *al.* (2013) exhibit distinct lateral lobes in T IX, setting them apart from all other known species
- of the genus, including the new species described here. Additionally, the dark-brown
- pigmentation on all thorax dorsal to level of anapleural suture of S. crusanticus differs from
- the thorax with a sequency of brown patches on preepisternum, anespiternum, posterior
- anepisternum, epimeron and near espiraculum in S. sp. 1. Furthermore, the anal point in S.
- 244 *messias*, *S. oliverai* and *S. crusanticus* is wider at the base, while in *S.* sp. 1 the anal point is245 slightly narrow at the base.
- 246 The pupa of S. sp. 1 has rounded warts present on the cephalotorax, similar to those described
- in the pupae of *S. oliverai*, but *S. messias* has two small lateral warts. The frontal apotome in
- 248 S. crusanticus is short, while in the new species it is elongated. Shagreens on T VIII are absent
- in S. crusanticus, S. messias and S. oliverai, whereas S. sp. 1 exhibits shagreen restricted to the
- anterolateral margin on T VIII. Furthermore, S. messias has a large field of shagreens on T I,
- and *S. crusanticus* features two rows of hooklets on T II, differing from *S.* sp. 1, which has T I
- bare and only one row of hooklets.
- 253 The larva of S. sp. 1 has the mandible with two inner teeth, while the larva of S. messias has
- four inner teeth, and *S. oliverai* has three inner teeth. Comparing the labrum, the S1, S2, and
- 255 S3 setae of *S. crusanticus* are all pinnate, while in *S.* sp. 1 they are as follows: S1 simple, S2
- 256 pinnate and S3 bifurcate (Fig. 10A).
- 257 A variation in T IX occurred during slide mounting using Euparal[®], where the lateral portion
- of T IX bent (Fig. 5B), making it impossible to observe the pre-apical constriction on T IX
- 259 (Fig. 5A). Additionally, the pre-apical constriction may not be as visible in improperly
- 260 preserved material or if T IX is crushed during slide mounting. Damage was observed in the
- labiohypopharynx (Fig. 10D–F) and other larval structures, such as the mentum and mandible
- 262 (Fig. 11B).

263 The pupa and larva of the new species present features consistent with the *Stenochironomus*

- 264 (Petalopholeus), as proposed by Borkent (1984). In leaf-mining species, the diagnosis
- includes T II of the pupal abdomen with a posterior row of hooklets restricted to the medial
- 266 portion and the head capsule of the 4th instar larva with dorsolateral stripes originating near
- the base of the dorsomedian stripe. This species was partially described by E. D. A. Reis,
- 268 unpubl. data.
- 269

Distribution and notes on biology. The species occurs in five Brazilian states: Amazonas,
Pará, Rondônia, and Roraima, all of which are part of the Amazon biome, as well as Goiás,
which is situated in the Cerrado biome (Fig. 1). The larvae were found mining leaves in small
aquatic habitats of black-water streams, some located near waterfalls, as well as in larger
habitats, such as rivers backwaters.

275

276 Stenochironomus (Petalopholeus) sp. 2

277 (Figs. 12–16)

278

Type material. Holotype, male with pupal and larval exuviae, BRAZIL, Amazonas, Manaus,
Igarapé Água Branca; 02°55'08.59" S 59°54'44.60" W, 15.xi.2015, leg. G. Amora, slidemounted in Hoyer (INPA). Paratypes: 1 male with pupal and larval exuviae, Brazil, Amazonas,
Manaus, AM 010/Km 26, 02°58'07" S 60°00'20" W. 08-09.x.2011, leg H. F. Mendes, slidemounted in Euparal[®] (MZUSP); 1 male, Brazil, Pará, Parauapebas, FLONA de Carajás,
Igarapé do Cascalho, 5°57'31" S 50°23'49" W, 214 m. 15-20.ix.2023, leg. G. R. Desidério, L.
Moreno. Malaise, slide-mounted in Hoyer (INPA).

Diagnostic characters. Male: anal point narrow, slightly bulbous at the apex; superior 287 288 volsella markedly elongated extend beyond the apex of gonocoxite, slightly curved, and tapering at the apex, with five or six setae distributed in basal portion, and two additional 289 setae in the apical portion; inferior volsella with apical setae thicker than the subapical one. 290 Pupa: frontal apotome elongated; frontal warts with small spines; T II with a posterior row of 291 292 hooklets divided medially into two groups; T VII with a small field of shagreens restricted to 293 the posteromedian region; spur on S VIII with eight yellowish teeth, four larger and four smaller, all sharp. Larva: spicules of the pecten epipharyngis simple, arranged in a row; labral 294 295 lamella arranged in one group with a cleft in the middle of the spicules.
Etymology. The specific epithet is in honor of Emiliano Reis for his collaboration and
valuable contribution to the knowledge of *Stenochironomus* in the Amazon region.

- 299
- 300 **Male** (n = 1-3)

301 Total length 4.05–4.77 [4.76] mm. Wing length 1.78–2.23 [2.23] mm. Total length/ wing

length 2.13–2.35 [2.13]. Wing length/ length of profemur 1.36–1.44 [1.39].

303

304 General coloration yellowish. Head: eyes metallic green when in alcohol, flagellum yellowish

305 (Fig. 12A–B). Thorax: with brown pigmentation on the margin of the lateral vitta;

306 preepisternum with a transverse brown band; brown pigmentation present on the

307 postpronotum, median anespiternum, posterior anepisternum and epimeron, with brown

308 patches; scutellum without pigmentation; anterior margin of the postnotum with a light-brown

patch (Figs. 12B; 13D). Legs: forefemur with a brown patch at the apex; fore tibia with a

brown patch at the posterior region. Mid femur and mid tibia with a brow patch it the anterior

region. Hind femur with a brown patch on the posterior region; hind tibia with a brown patch

on the anterior region (Figs. 12A–B; 13B). Wings membrane with a brownish band (Figs.

313 12A–B; 13E). Abdomen: posterior margin of T I–IV with brown pigmentation; hypopygium

yellowish, anal point and gonostylus brownish or yellowish (Figs. 12A–B; 13C).

315

Head (Fig. 13A). AR [2.03]. Thirteenth flagellomerum [1016] µm long. Temporal setae 12–14

317 [15]. Clypeus with 48–50 [55] setae. Tentorium 157–189 [189] μm long; 39–41, [41] μm wide

at the sieve pore; 11-14 [13] μ m wide at the posterior tentorial pit. Stipes 121 μ m long; 2 μ m

wide. Cibarial pump 235–244 [238] μ m long. Palpus with [46] setae. Palpomere lengths (n =

```
2) (1–5 in μm): 44 [47]; 40 [53]; 159 [186]; 130 [140]; 244 [293].
```

321 Thorax (Fig. 13D). Acrostichals 20–24 [21]; dorsocentrals 13–16 [16] in one row, prealars 6–

- 9 [9] in one row. Scutellum with 17–23 [18] setae in two rows. Scutum markedly projected
- 323 anteriorly; anterior edge of scutum angled in lateral aspect.
- 324 Wing (Fig. 13E). VR 0.90–0.93 [0.91] long. Brachiolum 5 [5] setae. With 20 [20] sensilla
- 325 campaniformia. R with 25–38 [38] setae. R₁ with 37–43 [42] setae. R₄₊₅ with 65–70 [70]
- setae. RM with 1–2 [1] setae. M with 2–4 [4] setae, remaining veins bare. Squama with 8–12
- 327 [8] setae.

- Legs (Fig. 13B). Scale of front tibia 40–43 [43] μ m long, without a spine at the apex; spurs of
- the mid tibia 42 [45] μ m long; spurs of the hind tibia 39 [40] μ m and 38 [39] μ m long. Apex
- of the fore tibia 61–69 [69] μ m wide, the mid tibia 57–68 [68] μ m wide, and the hind tibia 65–
- $70 [70] \mu m$ wide. Lengths (in μm) and proportions of legs as in Table 3.
- Hypopygium (Fig. 14A–B). Anal point narrow, slightly bulbous at the apex, 93–119 [119] μ m
- long, 16–22 [20] μ m wide at the base, 6–9 [9] μ m at the midpoint, 6–7 [7] μ m at the apex.
- Tergite IX with 34–46 [46] setae, caudal apex with pre-apical constriction in dorsal aspect.
- Laterosternite IX with 3–4 [4] setae. Phallapodeme 77–90 [87] µm long; transverse
- 336 sternapodeme 34–43 [43] μm long. Gonocoxite 161–182 [182] μm long. Gonostylus 191–230
- 337 [230] μm long, swollen subapically, with the apex slightly rounded. Superior volsella
- markedly elongate, extending beyond the apex of gonocoxite, 102-132 [132] μ m long, slightly
- 339 curved and tapering at the apex, with 7–8 [8] setae, five or six in the basal portion and two
- setae in the apical portion. Inferior volsella 240–285 [285] μ m long, with 5–7 [5] setae; apical
- setae thicker than the subapical one. HR 0.72–0.86 [0.79]; HV 2.07–2.15 [2.07].
- 342

Pupa (n = 1) Total length [5.92 mm]. General coloration light brown.

344 Cephalotorax [1371] µm long, with and elongated frontal apotome, frontal warts with small

spines (Fig. 15A). Distance between Dc_1 and Dc_2 [2] μ m; between Dc_2 and Dc_3 [258] μ m;

between Dc_3 and Dc_4 [2] μ m. Median suture granulose.

- Abdomen [4552] μm long (Fig. 15C–E). T I with a small field of weak shagreens in the
 middle region; T II–TIII with a large field of shagreen not extending to the lateral margin; T II
- 349 with a posterior row of hooklets divided medially into two groups by $[30] \mu m$, each row [166]
- and [154] µm long, not extending to the lateral margin of tergite; *pedes spurii* B absent. T IV
- 351 with a large field of shagreens with a strong constriction in the anterior region and a slightly
- 352 constriction on posterior region; T V with a field of shagreens restrict to the middle region,
- 353 with the anterior and posterior portions somewhat triangular in shape; T VI with two separated
- fields of shagreen, one anterior field somewhat triangular, with thinner shagreens, and a
- 355 posterior field with thicker shagreen; T VII with a small field of shagreens restricted to the
- 356 posterior region; T VIII without shagreens; Anal lobe with shagreen restricted to the
- anterolateral margin. Conjunctive III/IV with shagreen. Abdominal setation: S I without L
- setae; S II–IV with 1–3 L setae; S V–VI with 4 LS setae; S VII with 3 or 4 LS setae S VIII
- 359 with 5 LS setae. Spur on S VIII (Fig. 15B) with eight yellowish-brown teeth, four larger and

360 four smaller, all sharp. Genital sac [472] µm long, overreaching the posterior margin of the anal lobe by [60] µm long; anal lobe [341] µm long, with fringe of 46 filaments. 361

362

4^{th} instar larva (n = 1). 363

Head. Head capsule [278] µm long. Antenna (Fig. 16B); lengths of antennal segments (in µm): 364 [54]; [19]; [10]; [7]; [4]. Labrum (Fig. 16A). Spicules of the pecten epipharyngis simple, 365 366 arranged in a row (Fig. 16A). Labral lamella arranged in one group with a cleft in the middle of the spicules (Fig. 16A). S1 pinnate, S2 bifurcated; S3 pinnate (Fig. 16A). Premandible not 367 measurable. Mandible (Fig. 16A) [175] µm long. Mentum [142] µm wide, with 10 blackish 368 369 teeth (Fig. 16C); ventromental plate [70] µm (Fig. 16C). Base of the dorsolateral strip 370 originating near the base of the dorsomedian strip. Labiohypopharynx (Fig. 16A) with rounded

ligular lobes, with a parallel-sided cleft between them. 371

372

Taxonomic remarks. In the male identification key of the Neotropical Stenochironomus 373

(Dantas et al. 2016), Stenochironomus sp. 2 falls in couplet 35, leading to Stenochironomus 374

townesi Borkent, 1984 and Stenochironomus nudipupa Borkent, 1984. However, the 375

hypopygium of the new species is easily differentiated from those of the two species 376

377 described by Borkent (1984) by the superior volsella, which extends beyond the apex of the

gonocoxite (Fig. 14B); in S. townesi and S. nudipupa the superior volsella not extending 378

beyond the apex of gonocoxite. The clearest difference between the pupae of S. sp. 2 and S. 379

nudipupa are the elongate frontal apotome and the presence of small spines on the frontal 380

381 warts of the new species (Fig. 15A). In contrast, in S. nudipupa, the frontal apotome is short,

382 and the frontal warts appear more reduced and lack spines on surface. Other differences can

be observed in the abdomen, where the hooklets on T II of S. sp. 2 are clearly divided in two 383

rows (Fig. 15C), while those of S. nudipupa hooklest are arranged in a single row. The 384

shagreens on T VII and T VIII of S. nudipupa are restricted to the anterolateral margins, 385

whereas in S. sp. 2 there is a small field of shagreens restricted to the posteromedian region on 386

T VII (Fig. 15D), and they are absent on T VIII. The larvae of S. sp. 2 and S. nudipupa can be 387

388 easily differentiated by their mandibles: in the new species, there are two inner teeth (Fig.

389 16A), whereas in S. nudipupa there are three inner teeth.

The pupa and larva of the new species present features consistent with the Stenochironomus 390

(Petalopholeus), as proposed by Borkent (1984). In leaf-mining species, the diagnosis 391

includes T II of the pupal abdomen with a posterior row of hooklets restricted to the medial 392

- 393 portion and the head capsule of the 4th instar larva with dorsolateral stripes originating near
- the base of the dorsomedian stripe. This species was partially described by E. D. A. Reis,
- 395 unpubl. data.
- 396

397 Distribution and notes on biology. The species occurs in two Brazilian states, Amazonas and
398 Pará, which are part of the Amazon biome (Fig. 1). The larvae were found mining leaves in
399 small black-water streams.

400

401 Acknowledgments

- 402 We want to thank the Laboratório de Citotaxonomia e Insetos Aquáticos (INPA) team for their
- 403 support. Financial support was provided by: Aquatic insects in South America: integrative
- 404 taxonomy, biology and ecology, CNPq process n. 308970/2019-5; Systematics of aquatic
- 405 insects in South America, CNPq/PROTAX (440616/2015-8);
- 406 CNPq/MCTI/FAP/PROTAXFAPEAM (Fundação de Amparo à Pesquisa do Estado do
- 407 Amazonas) (062.00643/2017); INCT ADAPTA II, which is funded by CNPq (465540/2014-7)
- 408 and FAPEAM (062.1187/2017). CAPES Proequipment (Coordenação de Aperfeiçoamento de
- 409 Pessoal de Nível Superior), We are grateful to CAPES for providing a scholarship to AFDS.
- 410 IBAMA (Brazilian Institute for the Environment and Renewable Natural Resources) for the
- 411 collection permits. We wish to express our special thanks to Jeferson O. Silva, Gizelle Amora,
- 412 Gleison R. Desidério, and Lucas Moreno for their support during fieldwork and specimen
- collection. We also thank Dr. Ruth Keppler and Emiliano Reis for their invaluable cooperation
- 414 in this study.
- 415

416 Disclosure Statement

- 417
- 418 No potential conflict of interest was reported by the authors.
- 419

420 **References**

- 421 Andersen, T., Mendes, H. F. & Pinho, L. C. 2007: Two new species of Stenochironomus
- 422 Kieffer, 1919 from the Brazilian Atlantic Rainforest (Diptera: Chironomidae). *Studia*
- 423 *Dipterologica* 14 (2): 263–269.
- 424 Andersen, T., Ekrem, T. & Cranston, P. 2013: The larvae of the holarctic chironomidae –
- 425 introduction. In: Andersen, T., Cranston P. S. & Epler J. H. (eds.), *The larvae of*

- 426 *Chironomidae (Diptera) of the Holarctic region Keys and diagnoses:* 7–12. Insect
- 427 Systematics & Evolution, Supplement 66.
- Amora, G., Hamada, N., & Pinho, L. C. 2018: *Stenochironomus munteanpurin* sp. n., a new
 leaf-mining species from Brazil (Diptera: Chironomidae). *Zootaxa* 4382(3): 553.
 https://doi.org/10.11646/zootaxa.4382.3.6
- 431 Borkent, A. 1984: The systematics and phylogeny of the *Stenochironomus* complex
- 432 (Xestochironomus, Harrisius, and Stenochironomus) (Diptera: Chironomidae). The
- 433 *Memoirs of the Entomological Society of Canada* 116 (S128): 5–270.
- 434 <u>https://doi.org/10.4039/entm116128fv</u>
- Dantas, G. P. S., Hamada, N. & Mendes, H. F. 2010: A new Neotropical species of the genus *Stenochironomus* Kieffer (Diptera: Chironomidae) with wood-mining larvae. *Zootaxa*2490: 47–54.
- 438 Dantas, G. P. S., Hamada N., & Mendes, H. F. 2016: Contribution to the knowledge of
- 439 *Stenochironomus* Kieffer (Diptera, Chironomidae) from Brazil: seven new species and
 440 description of females and immatures of some previously known species. *Zootaxa*441 4117(1): 1–139. <u>https://doi.org/10.11646/zootaxa.4117.1.1</u>
- 442 Epler, J. H. 1988: Biosystematics of the genus *Dicrotendipes* Kieffer, 1913 (Diptera:
- 443 Chironomidae: Chironominae) of the world. *Memoirs of the American entomological*444 Society 36: 1–214.
- 445 Moubayed, J. 2024: On the genus *Stenochironomus* Kieffer from French Guiana. I. New
- 446 records with description of *S. hallei* sp. n. from the primary rainforest (Diptera,
- 447 Chironomidae, Chironominae). *Ephemera*, 25: 83–90.
- Parise, A. G. & Pinho, L. C. 2016: A new species of *Stenochironomus* Kieffer, 1919 from the
 Atlantic Rainforest in southern Brazil (Diptera: Chironomidae). *Aquatic Insects*, 37:
 1–7. https://doi.org/10.1080/01650424.2015.1115078
- 451 Pinder, L. C. V. 1983: The larvae of Chironomidae (Diptera) of the Holarctic region. In:
- 452 Wiederholm, T. (ed.), *Chironomidae of the Holarctic region. Keys and diagnoses. Part 1.*
- 453 *Larvae*: 7–10. Entomologica scandinavica, Supplement 19.
- 454 Pinder, L. C. V. 1986: The pupae of Chironomidae (Diptera) of the Holarctic region. In:
- 455 Wiederholm, T. (ed.), *Chironomidae of the Holarctic region. Keys and diagnoses. Part 2.*
- 456 *Pupae*: 5–7. Entomologica scandinavica, Supplement 28.

- 457 Pinder, L. C. V. 1989: The adult of Chironomidae (Diptera) of the Holarctic region. In:
- 458 Wiederholm, T. (ed.), *Chironomidae of the Holarctic region. Keys and diagnoses. Part 3.*
- 459 *Adult males*: 5–9. Entomologica scandinavica, Supplement 34.
- 460 Pinho, L. C., Mendes, H. F. & Marcondes, C. B. 2005: A new Brazilian species of
- 461 *Stenochironomus* Kieffer mining decayed leaves in bromeliads (Diptera: Chironomidae).
- 462 *Zootaxa*, 1046: 37–47.
- 463 Reis, E. D. A., Serpa-Filho, A. & Ferreira-Keppler, R. L. 2013: Two new species and records
- 464 of *Stenohironomus* Kieffer from Brazilian Amazon region, with description of immature
- 465 stages (Diptera: Chironomidae). *Zootaxa* 3710 (5): 449–466.
- 466 <u>https://doi.org/10.11646/zootaxa.3710.5.4</u>
- 467 Sæther, O. A. 1980: Glossary of Chironomid Morphology Terminology (Diptera:
- 468 Chironomidae). *Entomologica scandinavica* 14: 1–51.
- 469

471

474 Fig. 1. Distribution of *Stenochironomus* (*Petalopholeus*) sp. 1 and *Stenochironomus*

475 (*Petalopholeus*) sp. 2 (Diptera, Chironomidae) in Brazil.

Fig. 2. *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), male adult, habitus.

478 (A) Dorsal view. (B) Lateral view. Scale bars = 1 mm.

480 Fig. 3. *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), male adult. (A)

481 Head, frontal view. (B) Legs (femur and tibia), from left to right, fore, mid, and hindleg. (C)

482 Thorax, lateral view. (**D**) Abdomen, dorsal view. (**E**) Wing. Scale bars = 200 μ m.

484 Fig. 4. *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), male adult. (A)

485 Hypopygium, dorsal view. (**B**) Hypopygium, with tergite IX removed, dorsal view. (**C**) Anal 486 point, lateral view. Scale bars = $100 \mu m$.

488 Fig. 5. *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), male adult. (A) T IX

489 in Hoyer, dorsal view. (**B**) T IX in Euparal[®], dorsal view. Scale bars = 50 μ m.

491 Fig. 6. *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), adult female, habitus.

492 (A) Dorsal view. (B) Lateral view. Scale bars = 1 mm.

494 Fig. 7. Stenochironomus (Petalopholeus) sp. 1 (Diptera, Chironomidae), adult female. (A)

495 Genitalia, dorsal view. (**B**) Genitalia, ventral view. Scale bars = $100 \ \mu m$.

497 Fig. 8. *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), pupa. (A) Habitus,
498 dorsal view. (B) Habitus, lateral view. (C–H). Variation of the spur on S VIII. Scale bars = 1
499 mm.

501 Fig. 9. Stenochironomus (Petalopholeus) sp. 1 (Diptera, Chironomidae), pupa. (A) Frontal

- 502 apotome. (B) Frontal apotome with frontal warts. (C–E) Abdomen, in dorsal view. (C)
- 503 Tergites I–III. (D) Tergites IV–VI. (E) Tergites VII–Anal lobe.

Fig. 10. *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), larva. (A) A. Labrum,
M, mandible; L, Labiohypopharynx; PE, Pecten epipharyngis; LL, Labral lamellae. (B)
Ventromental plate and mentum. (C) Antennae. (D–E) Examples of damaged
labiohypopharynx. Scale bars = 50 μm.

Fig. 11. *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), larva. (A) Mentum
teeth and mandible damaged. (B) Mentum teeth and mandible non-damaged. Scale bars = 50
μm.

516 Fig. 12. *Stenochironomus (Petalopholeus)* sp. 2 (Diptera, Chironomidae), adult male, habitus.

517 (A) Dorsal view. (B) Lateral view. Scale bars = 1 mm.

518

Fig. 13. *Stenochironomus (Petalopholeus)* sp. 2 (Diptera, Chironomidae), adult male. (A)

520 Head, frontal view. (B) Legs (femur and tibia), from left to right, fore, mid, and hindleg. (C)

521 Thorax, lateral view. (**D**) Abdomen, dorsal view. (**E**) Wing. Scale bars = 200 μ m.

- 524 Fig. 14. *Stenochironomus (Petalopholeus)* sp. 2 (Diptera, Chironomidae), adult male. (A)
- 525 Hypopygium, dorsal view. (**B**) Hypopygium with tergite IX removed, dorsal view. Scale bars
- 526 = $100 \ \mu m$.
- 527

Fig. 15. *Stenochironomus (Petalopholeus)* sp. 2 (Diptera, Chironomidae), pupa. (A) Frontal
apotome. (B) Spur on S VIII. (C–E) Abdomen, in dorsal view. (C) Tergites I–III. (D) Tergites
IV–VI. (E) Tergites VII–Anal lobe.

534 Fig. 16. *Stenochironomus (Petalopholeus)* sp. 2 (Diptera, Chironomidae), larva. (A) A.

Labrum, M, mandible; L, Labiohypopharynx; PE, Pecten epipharyngis; LL, Labral lamellae.

536 (B) Antennae. (C) Ventromental plate and mentum. Scale bars = $50 \mu m$.

	Fe	ti	ta1	ta2	ta3
D1	1433–1690	1269–1719	1797–2013	753–940	709–914
11	[1444]	[1335]	[1750]	[825]	[770]
D ʻ	1191–1462	1042-1254	786–943	358-423	295–368
Γ 4	[1227]	[1083]	[809]	[388]	[312]
D2	1370–1690	1310–1532	955-1200	532–629	430–523
ГJ	[1401]	[1352]	[1045]	[545]	[436]
	ta4	ta5	LR	BV	SV
	630-809	263-328	1.18–1.41	1.62–1.91	1.50-1.76
11	[675]	[282]	[1.31]	[1.77]	[1.58]
D)	162–220		0.68-0.81	3.20-3.40	2.72-3.09
1 4	[167]	87–126 [91]	[0.74]	[3.25]	[2.85]
D2	226–282	97–140	0.72-0.78	2.72–293	2.61-2.90
rj	[231]	[112]	[0.77]	[2.86]	[2.63]

TABLE 1. Lengths (in µm) and proportions of legs of *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), adult male.

TABLE 2. Lengths (in µm) and proportions of legs of *Stenochironomus (Petalopholeus)* sp. 1 (Diptera, Chironomidae), adult female.

	Fe	ti	ta1	ta2	ta3
P1	1703–1899	1447–1600	2128–2480	974–1115	957–1142
P2	1388–1661	1214–1491	906–1058	417–498	330-402
P3	1570–1878	1464–1797	1117–1335	630–711	527–589
	ta4	ta5	LR	BV	SV
P1	858–1005	326–403	1.21–1.55	1.63–1.88	1.41-1.71
P2	204–228	112–147	0.70-0.78	3.22-3.38	2.82-2.97
P3	218–274	118–141	0.74–0.77	2.67-2.87	2.71-2.75

	Fe	ti	ta1	ta2	ta3
P1	1320–1604	1144–1453			
11	[1604]	[1453]	[1798]	[953]	[816]
D1	1069–1280	946–1137			
Γ 4	[1280]	[1137]	677 [741]	315 [349]	268 [296]
D2	1200–1501	1120–1395			
F S	[1501]	[1395]	949 [1039]	518 [562]	426 [465]
	ta4	ta5	LR	BV	SV
P1	[665]	[288]	[1.23]	[1.78]	[1.70]
P2	177 [183]	87 [107]	0.65 [0.65]	3.38 [3.37]	3.23 [3.26]
P3	213 [269]	111 [124]	0.74 [0.74]	2.82 [2.77]	2.77 [2.78]

TABLE 3. Lengths (in µm) and proportions of legs of *Stenochironomus (Petalopholeus)* sp. 2 (Diptera, Chironomidae), adult male.

Capítulo 2

Six new species and new records of *Stenochironomus* Kieffer, 1919 (Diptera: Chironomidae) from the Brazilian Amazon

O Capítulo 2 desta Dissertação foi elaborado e formatado conforme as normas da publicação científica *Austral Entomology*, as quais se encontram no Anexo II.

Austral Entomology

3	
4	Six new species and new records of Stenochironomus Kieffer, 1919 (Diptera:
5	Chironomidae) from the Brazilian Amazon
6	
7	Arthur F D Sousa ¹ *, Galileu P S Dantas ² , Neusa Hamada ² and Jeane M C do Nascimento ¹
8	
9	¹ Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Zoologia (PPGZOOL),
10	Instituto de Ciências Biológicas (ICB), Belém, PA, Brazil.
11	
12	² Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de Pós-graduação em Ciências
13	Biológicas (Entomologia) (PPGEnto), Laboratório de Citotaxonomia e Insetos Aquáticos (LACIA),
14	Manaus, AM, Brazi.
15	
16	*arthurdisousa@gmail.com
17	
18	
19	Six new species of Stenochironomus from Brazil
20	
21	
22	Abstract
23	Currently, thirty species of Stenochironomus are known from Brazil, twenty-five of which occur in the
24	Amazon region. In this study, six new species of Stenochironomus from the Brazilian Amazon are
25	described and illustrated. Three of these species are associated with their respective immature stages, one is
26	associated with the pupal stage, and two are based solely on the adult male. Additionally, new records of S.
27	figueiredoensis Dantas, Hamada & Mendes, S. liviae Dantas, Hamada & Mendes and S. roquei Dantas,
28	Hamada & Mendes are provided.
29	
30	
31	Key words

32 Taxonomy, biodiversity, Chironominae, Chironomini, aquatic insects, Neotropical region

34 INTRODUCTION

- 35 *Stenochironomus* Kieffer, 1919 is a species-rich genus found in all biogeographic regions except
- 36 Antarctica. The taxonomic revision conducted by Borkent (1984) recognized two subgenera based on
- 37 morphology and habitat of immature stages. *Stenochironomus (Petalopholeus)* includes leaf-mining
- 38 species, diagnosed by the presence of a posterior row of hooklets on T II of the pupal abdomen, restricted
- to the medial portion, and by the head capsule of the 4th instar larva, which has dorsolateral stripes
- 40 originating near the base of the dorsomedian stripe. In contrast, *Stenochironomus* (*Stenochironomus*)
- 41 comprises wood-mining larvae, diagnosed by a posterior row of hooklets on T II of the pupal abdomen that
- 42 extends to the lateral margin and by the head capsule of the 4th instar larva, where dorsolateral stripes
- 43 originate in the anterior 2/3 of the dorsomedian stripe.
- 44 Currently, the genus includes more than 100 species recognized worldwide, 39 of which occur in the
- 45 Neotropical region and 30 in Brazil. Most Brazilian species (n = 26) are found in the Amazon region
- 46 (Borkent 1984, Pinho *et al.* 2005, Andersen *et al.* 2007, Dantas *et al.* 2010, Reis *et al.* 2013, Dantas *et al.*
- 47 2016, Parise & Pinho 2016, Amora *et al.* 2018, Moubayed, 2024).
- 48 In the present study, we describe and illustrate six new species of *Stenochironomus* from the Brazilian
- 49 Amazon, three of which are associated with their respective immature stages, one with the pupal stage and
- 50 two based solely on the adult male. Additionally, we provide new distributional records for
- 51 Stenochironomus figueiredoensis Dantas, Hamada & Mendes, 2016, Stenochironomus liviae Dantas,
- 52 Hamada & Mendes, 2016, and *Stenochironomus roquei* Dantas, Hamada & Mendes, 2010 from the state of
- 53 Acre.
- 54

55 MATERIALS AND METHODS

- 56 The collection and rearing of immature stages followed the methodology outlined by Amora (2018).
- 57 Emerged adults, along with corresponding immature exuviae, were preserved in 80% ethanol. Specimens
- of *Stenochironomus* were collected in submerged leaves in streams and rivers in the states of Amazonas,
- 59 Pará, and Roraima. Additional specimens were obtained using Malaise and light traps in Acre, Pará, and60 Roraima.
- 61 The examined specimens were slide-mounted in Hoyer's medium (Andersen *et al.* 2013).
- 62 Morphological measurements follow Epler (1988), while general terminology follows Sæther (1980).
- 63 Measurements of the adult males, pupae, and larvae are given as ranges, with holotype measurement in
- 64 square brackets when applicable.
- 65 Measurements were taken using an Olympus BX51 optical microscope with Cell-D

- ® 53 (Olympus) software. Photographs of morphological features were captured using a Leica DFC295
 digital camera attached to a Leica DM5500 B compound microscope. Habitus images were taken with a
 Leica M165C stereomicroscope equipped with a Leica DFC72 camera. Illustrations were drawn by hand
 using camera lucida attached to a Leica DM750 optical microscope and later scanned for digital editing.
 The holotypes and some paratypes are housed in the Invertebrate Collection of the Instituto Nacional de
 Pesquisas da Amazonia (INPA), Manaus, Amazonas, Brazil. Some paratypes are housed in the Museu de
 Zoologia da Universidade de São Paulo (MZUSP), São Paulo, Brazil
- 73

```
74 RESULTS
```

```
75
```

```
76 TAXONOMY
```

- 77
- 78 Chironomidae Newman, 1843
- 79 Chironominae Newman, 1834
- 80 Stenochironomus Kieffer, 1919
- 81 Stenochironomus (Petalopholeus) Borkent, 1984
- 82
- 83 Stenochironomus (Petalopholeus) sp. nov. 3.
- 84 (Figs. 2–6)
- 85
- 86 Material Examined
- 87
- 88 Holotype
- 89 d, with pupal and larval exuviae, BRAZIL: Amazonas, Manaus, Reserva Florestal Adolpho Ducke,
- Igarapé Bolivia, 2°55'08.6"S, 59°54'44.6"W, 10.iv.2015, in submerged leaf, leg. G. Amora, slide-mounted
 in Hoyer (INPA).
- 92
- 93 Paratypes
- 94 2 $\stackrel{\circ}{\circ}$ with pupal and larval exuviae, same data as holotype (INPA). 1 $\stackrel{\circ}{\circ}$, same data as holotype (MZUSP).
- 95
- 96

97 Diagnosis

- 98 Male: thorax yellowish; tergite IX with dorsal setae placed on a slightly posteriorly projecting lobe,
- 99 posterior margin convex, with setae arising from small lobes. **Pupa:** Frontal apotome short; TII hooklets
- 100 divided into two groups; T VI–VII with two central fields of shagreen, one anterior and one posterior field,
- 101 TVIII with a small central filed of shagreen; anal lobe without shagreen. Larva: spicules of pecten
- 102 epipharyngis elongate and simple, arranged in a row; labral lamella arranged in two groups of elongate
- spicules; S1 simple, S2 simple, S3 bifurcated.
- 104

105 **Description**

- 106 **Male** (n = 1-4)
- 107 Total length 3.31–3.43 [3.43] mm. Wing length 1.47–1.48 [1.47] mm. Total length/wing length 2.32–2.33
- 108 [2.33]. Wing length/ length of profemur 1.49-1.50 [1.50].
- 109 General coloration yellowish (Fig. 2a–b). Head: eyes not metallic green when in alcohol (Fig. 3a),
- 110 flagellum yellowish. Thorax yellowish (Fig. 3d). Legs pale (Fig. 2a–b). Wings lacking dark pigmentation
- 111 (Fig. 3e). Abdomen yellowish, lacking dark pigmentation (Fig. 3c).
- Head (Fig. 3a). AR 1.23–1.35 [1.28]. Thirteenth flagellomerum 575–603 [592] μm long. Temporal setae
- 113 11–12 [11]. Clypeus with 11–12 [11] setae. Tentorium 126–146 [134] μm long; 25–30 [30] μm wide at
- sieve pore; 3–5 [3] μm wide at posterior tentorial pit. Stipes not measurable; cibarial pump 183–207 [183]
- 115 μ m long. Palpus with 40–46 [46] setae. Palpomere lengths (1–5 in μ m): 34–36 [36]; 46–49 [46]; 132–138
- 116 [132]; 103–106 [103]; 167–177 [167].
- 117 Thorax (Fig. 3d). Acrostichals 10–11 [11]; dorsocentrals 9–10 [9] in a single row; prealars 4–5 [4].
- Scutellum with 6 setae in a single row. Scutum projecting anteriorly, with anterior edge angled in lateralaspect.
- 120 Wing (Fig. 3e). VR 1.23–124 [1.23]. Brachiolum with 4–5 [4] setae and about 18 sensilla campaniformia.
- 121 R with 29–33 [29] setae. R_1 with 35–43 [33] setae. R_{4+5} with 33–39 [33] setae. RM with 0–2 [2] setae. M
- with 5 setae, remaining veins bare. Squama with 4–6 [4].
- Legs (Fig. 3b). Scale of front tibia 29–30 [30] μ m long, without spine; spurs of mid tibia 34–37 [34] μ m
- and 32–47 [32] µm long; spurs of hind tibia 33–41 [33] µm and 40–46 [40] µm long. Apex of fore tibia 46–
- 48 [46] μ m wide, of mid tibia 43–47 [43] μ m wide, of hind tibia 46–47 [46] μ m wide. Lengths (in μ m) and
- 126 proportions of legs as in Table 1.
- 127 Hypopygium (Figs. 4a–c). Anal point slender, tapering posteriorly, originating apically on Tergite IX, 70–
- 128 80 [80] μ m long, 20–21 [20] μ m wide at base, 4–5 [4] μ m wide at the midpoint, 2–3 [3] μ m wide at apex.
- 129 Tergite IX with 39–44 [39] dorsal setae, placed on a slightly posteriorly projecting lobe; posterior margin
- 130 convex, with setae arising from small lobes. Laterosternite IX with 3–4 [3] setae. Phallapodeme 77–82 [77]

- 131 μm long; transverse sternapodeme 20–22 [22] μm long. Superior volsella subcylindrical and short, not
- extending beyond the apex of gonocoxite, 43-49 [49] long μ m, with 2 apical setae. Inferior volsella 132–
- 133 137 [136] µm long, with 4–5 [4] setae, apical seta as long as the subapical seta. Gonocoxite 126–142 [142]
- μm long. Gonostylus with width almost uniform, tapering at the apex, 137–159 [159] μm long. HR 0.89–
- 135 0.91 [0.89]; HV 2.16–2.41 [2.16].
- 136
- **137 Pupa** (n = 1–2)
- 138 Total length [3.82]. General coloration brownish.
- 139 Cephalothorax [0.90] mm long, with frontal apotome not elongated (Fig. 5a), frontal warts absent. Distance
- between Dc_1 and Dc_2 [2] μ m; between Dc_2 and Dc_3 [187] μ m; between Dc_3 and Dc_4 4–8 [2] μ m. Median suture granulose.
- Abdomen [2.91] mm long (Fig. 5c–e). T I bare; T II–T III with large field of shagreen not extending to the
- 143 lateral margin, with 2 somewhat circular bare areas near posterior margin; T II with posterior row of
- hooklets not extending to the lateral margin of tergite, divided medially into two groups by 14 μm, each
- row 79–83 [83] µm long; *pedes spurii* B absent. T IV–V with central field of shagreens with a constriction
- 146 near posterior portion; T VI–VII with two central fields of shagreen, one anterior field and a posterior field
- of thicker shagreen; T VIII with a small central filed of shagreen; anal lobe without shagreen. Abdominal
- setation: SI without L setae; SII–SIV with 3 L setae; SV with 4 LS setae; SVI with 3 LS setae; SVII with 4
- LS setae; SVIII with 3 LS setae. Spur on S VIII (Fig. 5b) bearing 4 yellowish teeth of variable sizes.
- 150 Genital sac 326–340 [340] μ m long, overreaching the posterior margin of the anal lobe by 51–54 [54] μ m
- long; anal lobe 148–200 [148] µm long, with fringe of about 28 filaments.
- 152

153 4th **instar larva** (n = 2).

- Head. Antenna as in figure 6d; lengths of antennal segments (in μ m): 49–52 [49]; 12 [12]; 6 [6]; 5 [5]; 2–3
- 155 [3]. Labrum as Figure 6a. Spicules of pecten epipharyngis simple and elongate, arranged in a row (Fig. 6a).
- Labral lamella arranged in two groups of elongate spicules (Fig. 6a). S1 and S2 simple, S3 bifurcated (Fig.
- 6a). Premandible not measurable. Mandible (Fig. 6b) 101–109 [101] μm long. Mentum 76–79 [76] μm
- wide, with 10 blackish teeth; ventromental plate 42–43 [42] µm wide, projecting anteriorly well beyond the
- 159 mentum (Fig. 6e). Base of dorsolateral strip originating at the base of the dorsomedian strip.
- 160 Labiohypopharynx (Fig. 6c) with ligular lobes rounded, with parallel-sided cleft between them.
- 161

162 **Remarks**

- 163 The adult males of *Stenochironomus impendens* Borkent, 1984 *Stenochironomus prolatus* Borkent, 1984
- and *Stenochironomus* sp. 3 share a posteriorly projecting lobe on TIX. The new species also shares a pale

165	thorax with S. prolatus, whereas in S. impendens, the thorax exhibits a circular dark brown patch.
166	Additionally, the Stenochironomus sp. 3 possesses small lateral lobes projecting posteriorly at the caudal
167	apex of T IX, each bearing a seta – a feature not found in any other Neotropical species of the genus. The
168	pupa of S. impendens and the new species share certain characteristics, such as a short frontal apotome and
169	the absence of frontal warts on the cephalothorax. However, they can be distinguished by the distribution
170	of shagreens in the last four abdominal segments. In Stenochironomus sp. 3, TVI-VII have two central
171	fields of shagreen - one anterior and posterior - TVIII has a small central filed of shagreen, and TIX lacks
172	shagreen. In contrast, S. impendens has three fields of shagreen on TVI, one anterior, one median, and one
173	posterior, a small posterior field of shagreen on TVII, fine shagreen restricted to the anterolateral margin of
174	TVIII, and an anterior pair of shagreen on TIX. The larva of Stenochironomus sp. 3 shares a unique
175	combination of three morphological features with Stenochironomus leptopus Borkent, 1984: (1) a
176	ventromental plate that projects anteriorly well beyond the apex of the mentum teeth; (2) pecten
177	epipharyngis spicules that are simple and arranged in a row of elongate spicules; and (3) labral lamella
178	arranged in two groups of elongate spicules.
179 180	Distribution and notes on biology
179 180 181	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were
179 180 181 182	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams.
179 180 181 182 183	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams.
179 180 181 182 183 184	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams. Stenochironomus (Petalopholeus) sp. nov. 4
179 180 181 182 183 184 185	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams. Stenochironomus (Petalopholeus) sp. nov. 4 (Figs. 7–11)
179 180 181 182 183 184 185 186	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams. Stenochironomus (Petalopholeus) sp. nov. 4 (Figs. 7–11)
179 180 181 182 183 184 185 186 187	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams. Stenochironomus (Petalopholeus) sp. nov. 4 (Figs. 7–11) Material Examined
179 180 181 182 183 184 185 186 187 188	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams. Stenochironomus (Petalopholeus) sp. nov. 4 (Figs. 7–11) Material Examined
179 180 181 182 183 184 185 186 187 188 189	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams. Stenochironomus (Petalopholeus) sp. nov. 4 (Figs. 7–11) Material Examined Holotype
179 180 181 182 183 184 185 186 187 188 189 190	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams. Stenochironomus (Petalopholeus) sp. nov. 4 (Figs. 7–11) Material Examined Holotype of, with pupal and larval exuviae, BRAZIL: Pará, Santarém, Igarapé da Onça; 03°33'48.2"S
179 180 181 182 183 184 185 186 187 188 189 190 191	Distribution and notes on biology The species is known only from its type locality in the Brazilian Amazon (Fig. 1). Immature stages were collected mining leaves in black-water streams. Stenochironomus (Petalopholeus) sp. nov. 4 (Figs. 7–11) Material Examined Holotype \Diamond , with pupal and larval exuviae, BRAZIL: Pará, Santarém, Igarapé da Onça; 03°33'48.2"S 54°52'30.90"W, 22.ix.2016, in submerged leaf, leg. C. V. Dutra, D. Godinho, M. D. Santana, slide-

- *Paratypes*

d, with pupal and larval exuviae, BRAZIL: Amazonas, Manaus, Reserva Florestal Adolpho Ducke,

196 Igarapé Barro Branco, 02°58'07" S 60°00'20" W. 30.viii.2013, in submerged leaf, leg. G. Amora, slide-

197 mounted in Hoyer (INPA).

199 Diagnosis

200 Male: Tergite IX markedly broad, with rounded and protruding posterolateral region in dorsal aspect,

truncated at apex; anal point ovoid; superior volsella short, not extending beyond apex of gonocoxite, with

- two setae located basally and two apically; inferior volsella with apical seta shorter and thicker than
- subapical setae. Pupa: Frontal apotome elongated, with small warts; T II hooklets divided in two rows; T I,
- T VII, and T VIII without shagreens; spur on S VIII with 8 yellowish teeth of variable sizes. Larva:
- 205 Spicules of pecten epipharyngis simple, arranged in a row; labral lamella arranged in two groups of
- spicules, with a cleft in the middle; S1 pinnate and S2 pinnate, S3 bifurcated.
- 207

208 **Description**

209 **Male** (n = 1-2).

210 Total length 3.35–3.73 [3.73] mm. Wing length 1.53–1.73 [1.73] mm. Total length/ wing length 2.25–2.19

211 [2.15]. Wing length/ length of profemur 1.52–1.57 [1.52].

212

General coloration yellowish (Fig. 7a–2b). Head: eyes metallic green when in alcohol, flagellum brownish
(Fig. 7a–2b). Thorax: preepisternum with a transversal brown band; postnotum without pigmentation or
with a posterior brown patch (Fig. 8d). Legs: forefemur with an apical light brown band, fore tibia with
light brown band at apex; mid leg pale; hind femur with a basal light brown patch (Fig. 8b). Wings
membrane with a brownish band (Fig. 8b). Abdomen: posterior margin of T II–IV with a brown band;
hypopygium yellowish (Fig. 8c).

219

Head (Fig. 8a). AR 1.61–1.64 [1.64]. Thirteenth flagellomerum 703–742 [742] μm long. Temporal setae

221 10–14 [14]. Clypeus 12–16 [16] setae. Tentorium 140–141 [141] μm long; 25–32 [32] μm wide at sieve

pore; 5–6 [6] µm wide at posterior tentorial pit. Stipes are not measurable. Cibarial pump 164–208 [208]

- μ m long. Palpus with 38–40 [40] setae. Palpomere lengths (1–5 in μ m): 38–42 [42]; 37–43 [43]; 138–157
- 224 [157]; 103–113 [113]; 197–227 [227].
- Thorax (Fig. 8d). Acrostichals 14–15 [15]; dorsocentrals 16–19 [19], in a single row; prealars 5 [5], in a
- single row. Scutellum with 16–18 [18] setae in two rows. Scutum anteriorly projected; anterior edge of
 scutum angled in lateral aspect.
- 228 Wing (Fig. 8e). VR 1.13–1.16 [1.16] mm long. Brachiolum [5] with setae, with about 19–20 [20] sensilla
- campaniformia. R with 21-30 [30] setae; R₁ with 20-25 [25] setae; R₄₊₅ with 29-31 [31] setae; RM with
- 230 0–1 [1] setae; M with 0–1 [0] seta, remaining veins bare. Squama damaged.
- Legs (Fig. 8b). Scale of front tibia 35–36 [35] μm long, without spine; spurs of mid tibia 31–35[31] μm
- 47–48 [48] μm long; spurs of hind tibia 34–38 [34] μm and [30] μm long. Apex of fore tibia 41–52 [52]

- μ m wide, of mid tibia 47–48 [48] μ m wide, of hind tibia 46–52 [52] μ m wide. Lengths (in μ m) and
- proportions of legs as in Table 1.
- Hypopygium (Fig. 9a–b). Anal point broad and ovoid, originating subapically on TIX, 84–97 [97] μm
- 236 long, 37-38 [37] µm wide at base, 31-36 [36] µm wide at the midpoint, 7-8 [7] µm wide at apex. Tergite
- IX with 28–33 [33] setae; markedly broad, with posterolateral margin protruding and rounded in dorsal
- aspect; truncated at apex. Laterosternite IX with 3–4 [3] setae. Phallapodeme 58–63 [63] µm long;
- transverse sternapodeme 24 [18] μm long. Superior volsella short, not extending beyond the apex of
- 240 gonocoxite, 68–70 [70] μm long, tapering at the apex, with 4 setae, two located basally and two apically.
- Inferior volsella 163–168 [168] μ m long, with 4–5 [5] setae, apical seta shorter and thicker than subapical
- setae. Gonocoxite 115 [142] µm long. Gonostylus 142–156 [156] µm long, nearly uniform width, but
- tapering at the apex. HR 0.80–0.91 [0.91]; HV 2.36–2.39 [2.39].
- 244

245 **Pupa** (n = 1).

- Total length [4.96 mm]. General coloration yellowish.
- 247 Cephalotorax [1.16] mm long, with frontal apotome elongated (Fig. 10a); frontal warts absent. Distance
- between Dc₁ and Dc₂ 2–6 [2] μ m; between Dc₂ and Dc₃ 321–558 [231] μ m; between Dc₃ and Dc₄ 4–8 [2] μ m. Median suture granulose.
- Abdomen [3.80] mm long (Fig. 10c-e). T I bare; T II-T III with large field of shagreen with two elliptical 250 bare areas near posterior region, not extending to the lateral margin; T II with posterior row of hooklets not 251 extending to lateral margin of tergite, divided medially into two groups by a distance of [12] µm, with 252 about [130] µm each row; pedes spurii B absent. T IV-T V with central field of shagreen expanding 253 posteriorly; T VI with two fields of shagreen, an anterior, somewhat triangular field of shagreen, and a 254 255 posterior field composed of thicker shagreen; T VII–T VIII without shagreen; anal lobe with shagreen restricted to anterolateral margin. Conjunctive III/IV and IV/V with shagreen. Abdominal setation: SI 256 without L setae; SII-SIV with 3-4 L setae; SV-SVII with 4 LS setae; SVIII with 5 LS setae. Spur on S 257 VIII with 8 yellowish teeth of variable sizes (Fig. 10b). Genital sac [301] µm long, overreaching the 258 posterior margin of the anal lobe by [37] µm long; anal lobe [209] µm long, with fringe of about 26 259 filaments. 260
- 261

262 4^{th} instar larva (n = 1).

Head. Antenna as in figure 11d; lengths of antennal segments (in μ m): [39], [16], [9], [9], [5]. Labrum as in

figure 11a. Spicules of pecten epipharyngis simple, arranged in a row (Fig. 11a). Labral lamella arranged in

two groups of spicules with a cleft in the middle (Fig. 11a). S1 and S2 pinnate, S3 bifurcated (Fig. 11a).

Premandible not measurable. Mandible (Fig. 11b) [107] μm long. Mentum [87] μm wide, with 10 blackish

teeth; ventromental plate [46] µm wide (Fig. 11e). Base of dorsolateral strip originating at the base of the
dorsomedian strip. Labiohypopharynx (Fig. 11c) with ligular lobes rounded, cleft between lobes widening
posteriorly.

270

271 **Remarks**

The new species shares a markedly broadened tergite IX with round posterolateral margins with *Stenochironomus discus* Borkent, 1984. However, in *S. discus*, the rounded edge of T IX has a dense patch
of setae, which is absent in the new species. Additionally, the anal point in *S. discus* is short and narrow,
whereas in *Stenochironomus* sp. 4. it is broad. The pupa of the new species is similar to that of *Stenochironomus albidorsalis* Borkent, 1984. However, in *S. albidorsalis*, shagreens is present on the
anterior portion of T VI and the anterolateral margin of T VIII – features that are absent in *Stenochironomus* sp. 4.

279

Distribution and notes on biology. The species occur in two Brazilian states, Amazonas and Pará (Fig. 1). The mining leaves collected in Pará were found in a small stream with a width of 1.74 m, a depth of 0.20 m, and a water flow of 0.18 m3/s. The stream is characterized by acidic black water (pH = 4.21), a low temperature (25.65°C), low electrical conductivity (17.80 μ S/cm), and a high concentration of dissolved oxygen (7.18 mg/L).

285

286 *Stenochironomus (Petalopholeus)* sp. nov. 5

287 (Figs. 12–16)

288

```
289 Material Examined
```

290

```
291 Holotype
```

292 3° with pupal and larval exuviae, Brazil: Amazonas, Iranduba, Vila do Paricatuba, 03°'08'16.22"S

60°23'49.79"W. 14.viii.2016, in submerged leaf, leg. G. Amora, D. Colpani, J. O. Silva, slide-mounted in
Hoyer (INPA)

25. 1109

295

296 Paratypes

1 ♂, with pupal and larval exuviae, Brazil: Pará, Santarém, Igarapé Maguari, 02°47'23.0" S 55°01'14.9" W.

17.ix.2016, in submerged leaf, leg. C. V. Dutra, D. Godinho, M. D. Santana, slide-mounted in Hoyer

(INPA). 1 \circlearrowleft , with pupal and larval exuviae, same data as paratype (MZUSP)

301 Diagnosis

Male: Thorax yellowish, lacking dark pigmentation; T I–III with brown pigmentation; caudal apex of T IX with markedly pre-apical constriction in dorsal view; anal point fusiform; inferior volsella with apical setae as long as the subapical setae. **Pupa:** Frontal apotome elongated; T II hooklets divided in two rows; T V with three fields of shagreen; T VI with two fields of shagreen; T VII bare; spur on S VIII with 3 yellowish teeth. **Larva:** Spicules of pecten epipharyngis simple, arranged in a row; labral lamella arranged in two groups of spicules, with a cleft in the middle; S1 and S2 pinnate, S3 simple; ventromental plate with some crests near anterolateral margin.

309

310 **Description**

Male (n = 2–3).

Total length 4.63–5.03 [5.03] mm. Wing length 1.94–2.42 [2.42] mm. Total length/ wing length 2.08–2.26

313 [2.08]. Wing length/ length of profemur 1.32 - 1.39 [1.39].

General coloration yellowish (Fig. 12a–b). Head: eyes metallic green when in alcohol, flagellum brown

315 (Fig. 12a–b). Thorax: yellowish, with lateral vittae and postnotum slightly darker (Fig. 13d). Legs:

forefemur with a pre-apical brown band, fore tibia with basal band, fore tarsus with apical bands on ta_{1-3} ;

mid and hind legs yellowish (Fig. 13b). Wings membrane with a brownish band (Fig. 13e). Abdomen:

posterior margin of T I–III with brown pigmentation, hypopygium pale, with a brownish anal point (Fig.

- 319 13c)
- 320

Head (Fig. 13a). AR 1.74–1.80 [1.80]. Thirteenth flagellomerum 842–1011 [1011] μm long. Temporal

setae 12–14 [14]. Clypeus 15–20 [20] setae. Tentorium 165–194 [194] μm long; 42–55 [52] μm wide at

sieve pore; 15–17 [15] μm wide at posterior tentorial pit. Stipes not measurable; cibarial pump 252–306

324 [306] μm long. Palpus with 59 [67] setae. Palpomere lengths (1–5 in μm): 45–64 [64]; 45–59 [59]; 220–

- 325 246 [246]; 140–158 [158]; 206–249 [249].
- 326 Thorax (Fig. 13d). Acrostichals 25–30 [30]; dorsocentrals 16–20 [20] in a single row; prealars 9–12 [12].

Scutellum with 18–28 [28] setae, in two rows. Scutum projecting anteriorly; anterior edge of scutum
angled in lateral aspect.

- Wing (Fig. 13e). VR 1.14–1.80 [1.80] mm long. Brachiolum with 6–7 [6] setae, with about 20–21 [21]
- sensilla campaniformia. R with 33–38 [35] setae. R_1 with 32–38 [38] setae. R_{4+5} with 50–56 [56] setae. RM

with 1-2 [2] setae. Remaining veins bare. Squama with 8-10 [10] setae.

Legs (Fig. 13b). Scale of front tibia 45-52 [52] μ m long, without spines; spurs of mid tibia 42-44 [44] μ m

long; spurs of hind tibia 40–45 [45] μ m and 43–46 [46] μ m long. Apex of fore tibia 63–81 [76] μ m wide,

- of mid tibia 64–70 [70] μm wide, of hind tibia 68–78 [78] μm wide. Lengths (in μm) and proportions of
- legs as in Table 1.
- Hypopygium (Figs. 14a–b). Anal point broad, fusiform in dorsal view, originating subapically on TIX,
- 126-156 [156] μ m long, 29-35 [35] μ m wide at base, 43-47 [47] μ m wide at the midpoint, 13-16 [14] μ m
- 338 wide at apex. Tergite IX with 27–37 [34] strong dorsal setae, caudal apex with strong pre–apical
- constriction in dorsal aspect. Laterosternite IX with 1–3 [3] setae. Phallapodeme 84–122 [122] μm long;
- transverse sternapodeme 32–42 [32] μm long. Gonocoxite 180–219 [219] μm long. Gonostylus enlarging
- posteriorly, tapering at apex, 223–262 [262] μm long. Superior volsella short, not extending beyond the
- apex of gonocoxite, 59–81 [75] μ m long, tapering to the apex, with 4–6 [5] setae. Inferior volsella 218–270
- [270] μm long, with 6–7 [7] setae, apical seta as long as the subapical seta. HR 0.83–0.89 [0.83]; HV 1.92–
 2.07 [1.92].
- 345

Pupa (n = 2-3).

- Total length 5.60–7.08 [7.08] mm. General coloration brown.
- 348 Cephalotorax 1.15–1.35 [1.35] mm long, with frontal apotome elongated. Frontal warts present (Fig. 15a).
- 349 Distance between Dc_1 and Dc_2 3–8 [4] μ m; between Dc_2 and Dc_3 455–621 [621] μ m; between Dc_3 and Dc_4
- 4-8 [3] μ m. Median suture granulose.
- Abdomen 4.44–5.72 [5.72] µm long (Fig. 15c–e). T I bare; T II–T III with large field of shagreen, with two 351 elliptical bare areas near posterior region not extending to the lateral margin; T II with posterior row of 352 hooklets not extending to lateral margin of tergite, divided medially into two groups by 61–66 [66] µm, 353 354 each row about 171–222 [222] µm long; pedes spurii B absent. TIV with central field of shagreen expanding anteriorly and posteriorly, with some bare circular areas in middle region, it connects posteriorly 355 to shagreen fields on paratergite; T V with three fields of shagreen, one anterior somewhat triangular field 356 connecting with a weak field of thinner shagreens in middle region, and a posterior field of shagreen; T VI 357 358 with two small fields of shagreen, one anterior somewhat triangular field of thinner shagreens and a posterior field of thicker shagreen; T VII bare; T VIII-anal lobe with small filed of shagreen restricted near 359 anterolateral margin. Conjunctive III/IV and IV/V with shagreen. Abdominal setation: SI without L setae; 360 SII-SIV with 3 L setae; SV-SVII with 4 LS setae; SVIII with 5 LS setae. Spur on S VIII (Fig. 15b) with 3 361 yellowish teeth. Genital sac 450–520 [520] µm long, overreaching the posterior margin of the anal lobe by 362 79–85 [84] µm; anal lobe 226–296 [296] µm long, with fringe of about 48 filaments. 363
- 364

365 **4**th instar larva (n = 2-3).

Head. Antenna as in figure 16d; lengths of antennal segments (in μ m): 69–78 [78]; 22–27 [27]; 11–14

367 [14]; 10–12 [10]; 5–6 [5]. Labrum as in Figure 16a. Spicules of pecten epipharyngis simple, arranged in a
row (Fig. 16a). Labral lamella arranged in two groups of spicules with a cleft in the middle (Fig. 16a). S1
and S2 pinnate, S3 simple (Fig. 16a). Premandible not measurable. Mandible (Fig. 16b) 170–178 [174] μm
long. Mentum 127–136 [136] μm wide, with 10 blackish teeth; ventromental plate 81–94 [94] μm wide

- 371 (Fig. 16e). Base of dorsolateral strip originating at the base of the dorsomedian strip. Labiohypopharynx
- 372 (Fig. 16c) with ligular lobes rounded, cleft between lobes widening posteriorly.
- 373

374 **Remarks**

- 375 In the male identification key for Neotropical Stenochironomus proposed by Dantas et al. (2016), the lack of thoracic pigmentation and the broad anal point place Stenochironomus sp. 5 in couplet 3, which leads to 376 Stenochironomus prolatus Borkent, 1984, and Stenochironomus vatius Borkent, 1984. However, the 377 fusiform anal point of Stenochironomus sp. 5 differs from the bulbous anal point of S. prolatus and the 378 broader based anal point of S. vatius. Additionally, the new species exhibits a pronounced pre-apical 379 constriction on TIX, a feature absent both species described by Borkent (1984). The pupa of S. vatius has a 380 single field of shagreens on TV-VI, posterolateral fields of shagreens on TVII, and spur on SVIII with two 381 teeth. In contrast, Stenochironomus sp. 5 has three fields of shagreen on fields of shagreen, two on TVI, a 382 bare TVII, and a spur on SVIII with three teeth. The larval labrum of Stenochironomus sp. 5 closely 383 resembles that of *Stenochironomus* sp. 4. Both species share the following characteristics: simple spicules 384 of pecten epipharyngis arranged in a row and labral lamella arranged in two groups of spicules with a cleft 385 in the middle. They also have pinnate S1 and S2 setae; however, S3 is bifurcated in Stenochironomus sp. 4 386 but simple in Stenochironomus sp. 5. Additionally, the mandible mola in Stenochironomus sp. 4 is rounder 387 388 and more swollen compared to that of Stenochironomus sp. 5.
- 389

390 Distribution and notes on biology

The species occurs in the Brazilian states of Amazonas and Pará (Fig. 1). The larvae collected in Pará were found mining leaves in a small stream with a width of 1.73 m, a depth of 0.14 m, and a water flow of 0.11 m3/s. The stream is characterized by acidic black-water (pH = 3.82), a low temperature (26.325°C), low electrical conductivity (19.36 μ S/cm), and a high concentration of dissolved oxygen (7.66 mg/L).

- 395
- 396 Stenochironomus (Petalopholeus) sp. nov. 6.
- 397 (Figs. 17–20)
- 398
- 399 Material Examined
- 400

401 *Holotype*

- 402 ♂, BRAZIL: Roraima, Amajari, Tepequém, Igarapé do Paiva, 03°47'08.8" N 61°42'02.9" W, 17.i.2024, in
 403 submerged leaf, leg. G. Jorge, slide-mounted in Hoyer (INPA).
- 404

405 Paratypes

- 406 d with pupal exuviae, same data as holotype (INPA).
- 407

408 Diagnosis

409 Male: Thorax pale or with a light brow patch on postnotum; anal point with bulbous apical half; superior

410 volsella subcylindrical and short, not extending beyond apex of gonocoxite; inferior volsella with apical

411 seta shorter and thicker than subapical seta. **Pupa:** TIV with central field of shagreen expanding

- 412 posteriorly; T VII–anal lobe bare. Spur on S VIII with one elongated tooth and four smaller yellowish
- 413 teeth.
- 414

415 **Description**

416 **Male** (n = 1–2)

417 Total length 2.76–3.91 [3.91] mm. Wing length 1.59–1.65 [1.65] mm. Total length/ wing length 2.21–2.38

- 418 [2.38]. Wing length/ length of profemur 1.50–1.53 [1.53].
- 419 General coloration yellowish (Fig. 17a–b). Antenna: brown. Head: eyes metallic green (Fig. 17b), antenna
- 420 yellowish. Thorax: pale or with a light brow patch on postnotum (Fig. 18d). Legs: forefemur with a pre-
- 421 apical brown band, fore tibia with basal band, fore tarsus with apical bands on ta_{1-3} ; mid leg yellowish;
- 422 hind femur with an anterior patch brow (Fig. 18b). Wing: medial light-brownish band, apex slightly
- 423 pigmented (Fig. 18e). Abdomen: T II–TIV with posterior dark brown bands (Fig. 18c).
- 424 Head (Fig. 18a). AR 1.59–1.62 [1.59]. Thirteenth flagellomere 710–733 [733] μm long. Temporal setae 12.
- 425 Clypeus with 13 setae. Tentorium 130–151 [130] μm long, 34–36 [34] μm wide at sieve pore, 11 μm wide
- 426 at posterior tentorial pit; cibarial pump 195–196 [196] μm long. Stipes 141 μm long, 7 μm wide. Palpomere
- 427 lengths (1–5 in μm): 33–39 [33], 42–44 [42], 150–151 [151], 109–110 [110], 191–205 [191].
- 428 Thorax (Fig. 18d). Acrostichals 10; dorsocentrals 11, in irregular row; prealars 4. Scutellum with 14 setae,
- biserial. Scutum projected anteriorly; anterior edge of scutum angled in lateral aspect.
- 430 Wing (Fig. 18e). VR 1.11–1.18 [1.11]. Brachiolum with 5 setae, with about 21 sensilla campaniformia. R
- 431 with 38 setae; R_1 with 36 setae; R_{4+5} with 53 setae; M with 2 setae; remaining veins bare. Squama with 7 432 setae.
- 433 Legs (Fig. 18b). Scale of front tibia 34–41 [34] μm long, without spine; spurs of mid tibia 45 μm and 51
- μ m long; spurs of hind tibia 30 μ m and 41 μ m long. Apex of fore tibia 52–54 [52] μ m wide, of mid tibia

435 51-68 [51] µm wide, of hind tibia 54–55 [55] µm wide. Lengths (in µm) and proportions of legs as in 436 Table 4.

Hypopygium (Fig. 19a-c). Anal point 89–102 [102] µm long, with markedly bulbous apical half, in clavate 437 438 format, originating subapically on T IX, with dorsal crests converging posteriorly; 27–38 [38] µm wide at base, 12–14 [14] µm wide at the midpoint, 25 µm wide at posterior bulbous region; in lateral aspect 2/3 of 439 440 dorsal edge of anal point up straight, apex bent ventrally. Tergite IX with 48 dorsal setae, apex truncated in dorsal aspect. Laterosternite IX with 3 setae. Phallapodeme 82–97 [82] µm long; transverse sternapodeme 441 442 13–17 [13] µm long. Superior volsella 40 µm long, subcylindrical and short, not extending beyond the apex of gonocoxite, with 5 setae. Inferior volsella 160 µm long, with 4 setae, apical setae shorter and thicker 443 than subapical setae. Gonocoxite 136-140 [140] µm long. Gonostylus short, tapering towards apex; 120-444 124 [124] µm long. HR 1.12–1.13 [1.12]; HV 2.93–3.16 [3.16]. 445

446

447 **Pupa** (n = 1).

448 Total length 4.72 mm. General coloration brown.

449 Cephalotorax 1.04 mm long; with frontal apotome elongated, with round shaped warts (Fig. 20a). Distance 450 between Dc_1 and Dc_2 5 μ m; between Dc_2 and Dc_3 214 μ m; between Dc_3 and Dc_4 2 μ m. Median suture 451 granulose.

Abdomen 3.67 mm long (Fig. 20c-e). T I bare; T II-T III with large field of shagreen with four elliptical 452 bare areas near posterior region, not extending to the lateral margin; T II with posterior row of hooklets not 453 extending to lateral margin of tergite, divided medially into two groups by 20 µm with about 118 µm each 454 455 row; pedes spurii B absent. TIV with central field of shagreen expanding posteriorly; T V with central field of shagreen expanding anteriorly and posteriorly; T VI with two central field of fine shagreens, connecting 456 457 by a thin central band of shagreens; T VII–anal lobe bare. Conjunctive III/IV and IV/V with shagreen. Abdominal setation: SI without L setae; SII-SIII and SV-SVI with 3 L setae; SIV and SVIII without L 458 setae; SVII with 4 LS setae. Spur on S VIII (Fig. 20b) with one elongated tooth and four smaller vellowish 459 teeth. Genital sac 311 µm long, overreaching the posterior margin of the anal lobe by 20 µm long; anal 460 lobe 228 µm long, with fringe of about 48 filaments. 461

462

463 **Female and larva.** Unknown.

464

465 **Remarks**

466 In the male identification key of the Neotropical *Stenochironomus* proposed by Dantas *et al.* (2016), the

467 lack of thoracic pigmentation and broad anal point place *Stenochironomus (Petalopholeus)* sp. 6 in couplet

468 3, which includes *Stenochironomus prolatus* Borkent, 1984, and *Stenochironomus vatius* Borkent, 1984.

469	However, the new species is easily distinguished from S. vatius by its bulbous apical anal point.
470	Additionally, S. prolatus has a posteriorly projecting lobe on T IX and a markedly elongate thorax, features
471	absent in the new species. The pupa of the S. vatius presents pedes spurii A on T IV and shagreen on T
472	VII-VIII, features absent in the pupa of the new species.
473	
474	Distribution and notes on biology
475	The species is known only from its type locality, in the far north of the Brazilian Amazon (Fig. 1). The
476	immatures were collected while mining leaves in black-water streams.
477	
478	Stenochironomus sp. nov. 7.
479	(Figs. 21–24)
480	
481	Material Examined
482	
483	Holotype
484	🖧, BRAZIL: Pará, Parauapebas, Parque Nacional dos Campos Ferruginosos, Igarapé da Cachoeira, Trilha
485	Timborama, 6°10'08.9" S 50°21'02.9" W, 397 m. 18-21.ix.2023, Malaise, leg. G.R. Desidério, L. Moreno,
486	slide-mounted in Hoyer (INPA).
487	
488	Diagnosis
489	Male: Thorax with dark-brown pigmentation on parapsidal suture, posterior anepisternum and posterior
490	margin of epimeron, light-brown band on prepisternum; forefemur with apical bicolor brown band; mid
491	and hind femur with a sub-basal and a pre-apical brown band; mid tibia with 3 spurs; anal point broad,
492	tapering apically in dorsal aspect; dorsal crests not converging; inferior volsella with apical setae shorter
493	and thicker than subapical setae.
494	
495	Description
496	Male $(n = 1)$
497	Total length 5.64 mm. Wing length 2.58 mm. Total length/ wing length 2.18. Wing length/length of
498	profemur 1.29.
499	General coloration yellowish (Fig. 21a-c). Head: eyes metallic green; pedicel with one rounded brown
500	patch (Fig. 22a). Thorax: dark-brown pigmentation on parapsidal suture, posterior anepisternum and
501	posterior margin of epimeron, light-brown band on prepisternum, postonotum with two anterolateral
502	patches and a posterior patch at apex (Fig. 22d). Legs: forefemur with apical bicolor brown band, anterior

- tibia with a yellowish apical band; mid and hind femur with a subbasal and a pre-apical brown band, mid
- tibia with brown pigmentation in the middle area, hind tibia pale (Fig. 22b). Wings with medial and apical
- 505 brownish bands (Fig. 22e). Abdomen: TI with small patches restricted to anterolateral margin, TII–IV with
- 506 posterior brown band, anal point dark brown, inferior volsella with dark brown apex (Fig. 22e).
- 507 Head (Fig. 22a). Antenna missing. Temporal 22 setae. Clypeus with 46 setae. Tentorium 183 μm long, 52
- μ m wide at sieve pore, 15 μ m wide at posterior tentorial pit. Cibarial pump 304 μ m. Stipes not measurable.
- 509 Palpomere lengths $(1-5 \text{ in } \mu \text{m})$: 62, 64, 168, 204, 317.
- Thorax (Fig. 22d). Acrostichals 43; dorsocentrals 75, tiserial; prealars 14, biserial. Scutellum with 43 setae,
 triserial. Scutum projected anteriorly; anterior edge of scutum angled in lateral aspect.
- 512 Wing (Fig. 21e). VR 1.03. Brachiolum with 9 setae, with about 20 sensilla campaniform, R with 50 setae;
- 513 R_1 with 51 setae; R_{4+5} with 83 setae; M with 1 seta; RM with 2 setae; remaining veins bare. Squama with 514 14 setae.
- Legs (Fig. 22b). Scale of front tibia 56 μm long, without apical spine; spurs of mid tibia 39 μm, 40 μm and
 - 41 μm long (Fig. 23a–b); spurs of hind tibia 39 μm and 40 μm long. Apex of fore tibia 92 μm wide, of mid
 - tibia 68 μ m wide, of hind tibia 95 μ m wide. Lengths (in μ m) and proportions of legs as in Table 5.
 - 518 Hypopygium (Fig. 24a–b). Anal point broad, tapering apically in dorsal view; dorsal crests not converging;
 - 158 μm long, 50 μm wide at base, 48 μm wide at the midpoint, 16 μm wide at apex. Tergite IX with 60
 - 520 dorsal setae, caudal apex wedge-shaped with pre-apical constriction. Laterosternite IX with 4 setae.
 - 521 Phallapodeme 132 µm long; transverse sternapodeme 47 µm long. Superior volsella short, not extending
 - 522 beyond the apex of gonocoxite, tapering to the apex, 70 μm long, with 4-5 setae. Inferior volsella 320 μm
 - 523 long, with 5 setae, subapical setae elongated, and apical setae short and thick. Gonocoxite 207 μm long.
 - 524 Gonostylus 248 μm long, slightly curved; HR 0.83; HV 2.27.
 - 525

526 Female, pupa, and larva. Unknown.

527 **Remarks**

The hypopygium of *Stenochironomus* sp. 7 exhibits features similar to those of *Stenochironomus vatius* Borkent, 1984, and *Stenochironomus gracilis* Dantas, Hamada & Mendes, 2016, such as a broad anal point tapering apically. However, in the new species, the dorsal crest does not converge, as observed in the other two species. The caudal apex of *Stenochironomus* sp. 7 is wedge-shaped with a pre-apical constriction,

- 532 whereas in *S. vatius*, it is rounded or truncated, and in *S. gracilis*, there is no pre-apical constriction.
- 533 Additionally, the thorax of *Stenochironomus* sp. 7 displays a distintic color pattern, with dark-brown
- 534 pigmentation on the parapsidal suture, posterior anepisternum, and posterior margin of the epimeron, along
- with a light brown band on the preepisternum. In contrast, the thorax of *S. vatius* and *S. gracilis* lacks

536	pigmentation. Stenochironomus sp. 7 is the only species in the genus that possesses three spurs on the mid
537	tibia (Fig. 23a–b).
538	
539	Distribution.
540 541	The species is known only from the type locality, in the eastern of the Brazilian Amazon (Fig. 1).
542	Stenachironomus sp. nov. 8
543	(Figs. 25–27)
544	
545	Material Examined
546	
547	Holotype
548	♂, BRAZIL: Pará, Parauapebas, FLONA de Carajás, Igarapé do Carangueijo, 6°10' 17.9"S 50°20'34.3"W,
549	410 m. 15-20.ix.2023, Malaise, leg. G. R. Desidério, L. Moreno, slide-mounted in Hoyer (INPA).
550	
551	Diagnosis
552	Male: Thorax with dark brown pigmentation along the lateral margin of the lateral vittae, extending
553	anteriorly to meet above the anterior point of the scutum; pigmentation present on the median
554	anepisternum and epimerum; with vertical dark-brown band on prepisternum; postnotum all pigmented;
555	dark brown pigmentation on lateral margins of T I-III with circular pale patches around the setae; caudal
556	apex of T IX wedge-shaped; T IX with a posteriorly projecting lobe.
557	
558	Description
559	Male (n = 1)
560	Total length 2.47 mm. Wing length 1.17 mm. Total length/ wing length 2.11. Wing length/ length of
561	profemur 1.47.
562	General coloration yellowish and dark brown (Fig. 25a-b). Head: eyes not metallic. Thorax: dark brown
563	pigmentation along the lateral margin of the lateral vittae extending anteriorly to meet above anterior point
564	of scutum; pigmentation present on the mediam anepisternum and epimerum; with vertical dark-brown
565	band on prepisternum; postnotum all pigmented. (Fig. 25a; 26d). Legs: pale. Wing: lack of pigmentation
566	(Fig. 26e). Abdomen: with dark brown pigmentation on lateral margins of T I–III; with circular pale
567	patches around the setae; T IV-V with pigmentation divided into two areas on anterior and posterior
568	margins; T VI–VII with pigmentation on anterior margin; T VIII with pigmentation divided into two areas
569	on anterior margin, T IX brownish (Fig. 26c).

- μ m wide at sieve pore, 15 μ m wide at posterior tentorial pit; cibarial pump 304 μ m. Stipes not measurable.
- 572 Palpomere lengths (1–5 in μm): 62, 64, 168, 204, 317.
- 573 Thorax (Fig. 26d). Acrostichals 12; dorsocentrals 8, uniserial; prealars 4. Scutellum with 8 setae, uniserial.
 574 Scutum projected anteriorly; anterior edge of scutum slightly rounded in lateral aspect.
- 575 Wing (Fig. 26e). VR 1.12. Brachiolum with 5 setae, with 16 sensilla campaniform. R with 31 setae; R₁
- with 19 setae; R_{4+5} with 44 setae; M with 2 setae; RM with 3 setae; remaining veins bare. Squama with 2 setae.
- 578 Legs (Fig. 26b). Scale of front tibia 28 μm long, without apical spine; spurs of mid tibia 22 and 24 μm
- 579 long; spurs of hind tibia 22 and 23 μ m long. Apex of fore tibia 42 μ m wide, of mid tibia 38 μ m wide, of 580 hind tibia 42 μ m wide. Lengths (in μ m) and proportions of legs as in Table 6.
- 581 Hypopygium (Fig. 27a–b). Anal point narrow in dorsal view, 45 μm long, 5 μm wide at base, 5 μm wide at
- the midpoint, 2 μm wide at apex. Tergite IX with 48 dorsal setae, distributed on posteriorly projected lobe;
- caudal apex wedge-shaped in dorsal aspect. Laterosternite IX with 2 setae. Phallapodeme 73 μ m long;
- transverse sternapodeme 19 μm long. Superior volsella 38 μm long, subcylindrical and short, not extending
- beyond the apex of the gonocoxite, with 3 setae. Inferior volsella 126 μ m long, with 3 setae, subapical
- setae shorter than apical setae, and both thin. Gonocoxite 124 μm long. Gonostylus enlarging slightly to the
 posterior region and narrow at extremities; 127 μm long. HR 0.97; HV 1.94
- 588
- 589 Female, pupa and larva. Unknown.
- 590

591 Remarks

- 592 A posteriorly projecting lobe on TIX is a characteristic found only in *Stenochironomus impendens* Borkent,
- 593 1984, *Stenochironomus prolatus* Borkent, 1984, and *Stenochironomus* (*Petalopholeus*) sp. 3, described
- above. However, these species differ significantly in ways that allow for clear distinctions.
- 595 *Stenochironomus* sp. 8 can be distinguished from *S. impendens* by the thoracic pigmentation:
- 596 Stenochironomus sp. 8 displays dark brown pigmentation along the lateral margins of the lateral vittae,
- 597 extending anteriorly to meet above the anterior point of the scutum, whereas *S. impendens* has a dark
- brown circular patch on the lateral vittae. The differences in coloration patterns between *Stenochironomus*
- sp. 8 and *S. impendens* extends to the abdomen. In *Stenochironomus* sp. 8, dark brown pigmentation is
- present along the lateral margins of T I–III, with circular pale patches around the setae, a feature absent in
- 601 *S. impendens*. Moreover, the apex of T IX in *S. impendens* is truncated in dorsal aspect, whereas in the new
- species, the apex of T IX is wedge-shaped. The thorax coloration of the other two closely related species,
- 603 S. prolatus and Stenochironomus (**Petalopholeus**)sp. 3, lacks pigmentation, which clearly differentiates

604	them from <i>Stenochironomus</i> sp. 8. Additionally, the anal point of <i>S. prolatus</i> is broad and bulbous apically,
605	differing markedly from the narrow anal point of the new species.
606	
607	Distribution
608	The species is known only from the type locality, in the eastern of the Brazilian Amazon (Fig. 1).
609	
610	Stenochironomus figueiredoensis Dantas, Hamada & Mendes, 2016
611	
612	Stenochironomus figueiredoensis Dantas, Hamada & Mendes, 2016: 12–16 (Type locality: BRAZIL:
613	Amazonas, Presidente Figueiredo, AM 240, KM 61, 01°59'32.7"S, 59°31'20.1"W, 22.ii.2009, in decayed
614	leaves, leg. G.P.S. Dantas (INPA); ♂)
615	
616	Material examined
617	
618	BRAZIL: Acre, Mâncio Lima, Parque Nacional da Serra do Divisor, Igarapé Pirapora Grande, afluente à
619	direita do Rio Moa, 7°28'18.3" S 73°42'06.5" W. 08-09.vii.2023, 243 m, Malaise, leg. G.C. Mendes, G. R.
620	Desidério, J. O. da Silva, M. A. R. Pires, R. B. Pinedo-Garcia, slide-mounted in Hoyer (INPA).
621	
622	Distribution
623	New record for Acre, Brazil (Fig. 1), expanding the previously known range from the Brazilian state of
624	Amazonas.
625	
626	Stenochironomus liviae Dantas, Hamada & Mendes, 2016
627	
628	Stenochironomus liviae Dantas, Hamada & Mendes, 2016: 28-32 (Type locality: BRAZIL: Amazonas,
629	Itacoatiara, Madeireira Mil, 02º 46'37.7'' S, 58º 50'38.3'' W, 5.v.2009, in decayed wood, leg. G.P.S.
630	Dantas, S.C. Escarpinati (INPA); 3 , with pupal exuviae.
631	
632	Material examined
633	
634	🖧, BRAZIL: Acre, Mâncio Lima, Parque Nacional da Serra do Divisor, Igarapé Pirapora Grande, afluente
635	à direita do Rio Moa, 7°28'18.3" S 73°42'06.5" W. 08-09.vii.2023, 243 m, Malaise, leg. G.C. Mendes, G.
636	R. Desidério, J. O. da Silva, M. A. R. Pires, R. B. Pinedo-Garcia, slide-mounted in Hoyer (INPA). 3,
637	

638	Distribution
639	New record for Acre, Brazil (Fig. 1), expanding the previously known range from the Brazilian states of
640	Amazonas, Bahia, and Santa Catarina.
641	
642	Stenochironomus roquei Dantas, Hamada & Mendes, 2010
643	
644	Stenochironomus roquei Dantas, Hamada & Mendes, 2010: 48–53 (Type locality: BRAZIL: Amazonas,
645	Itacoatiara, Madeireira Mil, 02°46'43.1''S, 58°38'54.0''W, 14.IV.09, 5.iv.2009, in submerged wood, leg.
646	G.P.S. Dantas, S.C. Escarpinati, slide-mounted in Euparal (INPA); $\stackrel{\circ}{\bigcirc}$, with pupal and larval exuviae).
647	
648	Material examined
649	
650	ै, BRAZIL: Acre, Mâncio Lima, Parque Nacional da Serra do Divisor, Igarapé Pirapora Grande, afluente
651	à direita do Rio Moa, 7°28'18.3" S 73°42'06.5" W. 08-09.vii.2023, 243 m, Malaise, leg. G.C. Mendes, G.
652	R. Desidério, J. O. da Silva, M. A. R. Pires, R. B. Pinedo-Garcia, slide-mounted in Hoyer (INPA). 3 ,
653	
654	Distribution
655	New record for Acre, Brazil (Fig. 1), expanding the previously known range from the Brazilian state of
656	Amazonas.
657	
658	Remarks
659	This study describes and illustrates six new species of Stenochironomus from Amazonas, Pará, and
660	Roraima, all of which belong to the Amazon biome. Consequently, the number of Neotropical species of
661	Stenochironomus has increased from 39 to 45, from 30 to 36 in Brazil, and from 26 to 32 in the Brazilian
662	Amazon. Three new leaf-mining species (Stenochironomus (Petalopholeus) sp.3, Stenochironomus
663	(Petalopholeus) sp. 4 and Stenochironomus (Petalopholeus) sp. 5) were placed in the subgenera
664	Stenochironomus (Petalopholeus) proposed by Borkent (1984), as their immature features align with the
665	subgeneric diagnosis. This includes T II of the pupal abdomen having a posterior row of hooklets restricted
666	to the medial portion and the head capsule of the 4 ^h instar larva exhibiting dorsolateral stripes originating
667	near the base of the dorsomedian stripe. Although the larval stage of Stenochironomus (Petalopholeus) sp.
668	6 remains unknow, its pupal exuviae share the diagnostic features of subgenus, and it was found on
669	submerged leaves. Therefore, for now, this species is also placed in Stenochironomus (Petalopholeus). The
670	remaining species, Stenochironomus sp. 7 and Stenochironomus sp. 8 were, not assigned to any subgenus,
671	as their immature stages and larval habits remain unknown. Finally, new records of S. figueiredoensis

Dantas *et al.* 2016, *S. liviae* and *S. roquei* Dantas *et al.* 2010 are provided for the state of Acre, expanding
the know occurrence of these species to the western Amazon.

674

675 ACKNOWLEDGEMENTS

- 676 We want to thank The Laboratório de Citotaxonomia e Insetos Aquáticos (INPA) team for their support.
- 677 Financial support was provided by: Aquatic insects in South America: integrative taxonomy, biology and
- ecology, CNPq process n. 308970/2019-5; Systematics of aquatic insects in South America,
- 679 CNPq/PROTAX (440616/2015-8); CNPq/MCTI/FAP/PROTAXFAPEAM (Fundação de Amparo à
- 680 Pesquisa do Estado do Amazonas) (062.00643/2017); INCT ADAPTA II, which is funded by CNPq
- 681 (465540/2014-7) and FAPEAM (062.1187/2017). CAPES Proequipment (Coordenação de
- 682 Aperfeiçoamento de Pessoal de Nível Superior), We are grateful to Capes for providing a scholarship to
- 683 AFDS. IBAMA (Brazilian Institute for the Environment and Renewable Natural Resources) for the
- 684 collection permits. We wish to express our special thanks to Ana Pes, Jeferson O. Silva, Gizelle Amora,
- Gabrielle J. de Melo, Gleison R. Desidério, and Lucas Moreno for their support during fieldwork and
 specimen collection.
- 687

688 Conflict of Interest Statement

- 689 No potential conflict of interest was reported by the authors.
- 690

691 **REFERENCES**

- Andersen T, Mendes HF & Pinho LC. 2007. Two new species of *Stenochironomus* Kieffer, 1919 from the
 Brazilian Atlantic Rainforest (Diptera: Chironomidae). *Studia Dipterologica* 14 (2): 263–269.
- 694

Andersen T, Ekrem T & Cranston P. 2013. The larvae of the holarctic chironomidae – introduction. In:
Andersen, T., Cranston P. S. & Epler J. H. (eds.), *The larvae of Chironomidae (Diptera) of the Holarctic region – Keys and diagnoses*: 7–12. Insect Systematics & Evolution, Supplement 66.

698

Amora G, Hamada N & Pinho LC. 2018. *Stenochironomus munteanpurin* sp. n., a new leaf-mining species
from Brazil (Diptera: Chironomidae). *Zootaxa* 4382(3): 553. https://doi.org/10.11646/zootaxa.4382.3.6

701

Borkent A. 1984. The systematics and phylogeny of the *Stenochironomus* complex (*Xestochironomus*,

- 703 Harrisius, and Stenochironomus) (Diptera: Chironomidae). The Memoirs of the Entomological Society of
- 704 *Canada* **116** (S128): 5–270. https://doi.org/10.4039/entm116128fv

705							
706	Dantas GPS, Hamada N & Mandes HF. 2010. A new Neotropical species of the genus Stenochironomus						
707	Kieffer (Diptera: Chironomidae) with wood-mining larvae. Zootaxa 2490: 47–54.						
708							
709	Dantas GPS, Hamada N & Mendes HF. 2016. Contribution to the knowledge of Stenochironomus Kieffer						
710	(Diptera, Chironomidae) from Brazil: seven new species and description of females and immatures of some						
711	previously known species. Zootaxa 4117(1): 1-139. https://doi.org/10.11646/zootaxa.4117.1.1						
712							
713	Epler JH. 1988. Biosystematics of the genus Dicrotendipes Kieffer, 1913 (Diptera: Chironomidae:						
714	Chironominae) of the world. Memoirs of the American entomological Society 36: 1–214.						
715							
716	Moubayed J. 2024. On the genus Stenochironomus Kieffer from French Guiana. I. New records with						
717	description of S. hallei sp. n. from the primary rainforest (Diptera, Chironomidae, Chironominae).						
718	<i>Ephemera</i> . 25 : 83–90						
719							
720	Parise AG & Pinho LC. 2016. A new species of Stenochironomus Kieffer, 1919 from the Atlantic Rainforest						
721	in southern Brazil (Diptera: Chironomidae). Aquatic Insects 37: 1–7.						
722	https://doi.org/10.1080/01650424.2015.1115078						
723							
724	Pinder LCV. 1983. The larvae of Chironomidae (Diptera) of the Holarctic region. In: Wiederholm, T. (ed.),						
725	Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae: 7-10. Entomologica						
726	scandinavica, Supplement 19.						
727							
728	Pinder LCV. 1986. The pupae of Chironomidae (Diptera) of the Holarctic region. In: Wiederholm, T. (ed.),						
729	Chironomidae of the Holarctic region. Keys and diagnoses. Part 2. Pupae: 5–7. Entomologica scandinavica,						
730	Supplement 28.						
731							
732	Pinder LCV. 1989. The adult of Chironomidae (Diptera) of the Holarctic region. In: Wiederholm, T. (ed.),						
733	Chironomidae of the Holarctic region. Keys and diagnoses. Part 3. Adult males: 5–9. Entomologica						
734	scandinavica, Supplement 34.						
735							
736	Pinho LC, Mendes HF & Marcondes CB. 2005. A new Brazilian species of <i>Stenochironomus</i> Kieffer mining						
737	decayed leaves in bromeliads (Diptera: Chironomidae). Zootaxa 1046: 37–47.						
738							

- Reis EDA, Serpa-Filho A & Ferreira-Keppler RL. 2013. Two new species and records of *Stenohironomus*Kieffer from Brazilian Amazon region, with description of immature stages (Diptera: Chironomidae). *Zootaxa* 3710 (5): 449–466. https://doi.org/10.11646/zootaxa.3710.5.4
- 742
- 743 Sæther OA. 1980. Glossary of Chironomid Morphology Terminology (Diptera: Chironomidae).
 744 *Entomologica scandinavica* 14: 1–51.
- 745
- 746
- 747 Tables
- 748
- Table 1. Lengths (in μm) and proportions of legs of Stenochironomus (*Petalopholeus*) sp. 3 nov. (Diptera:
 Chironomidae), adult ♂.
- 751

	fe	ti	ta ₁	ta ₂	ta ₃
P1	984–988 [984]	804-821 [804]	638	520	519
P2	825–847 [825]	742–725 [742]	528–523 [528]	282–287 [282]	203–205 [205]
P3	856–883 [883]	886–897 [897]	680–864 [864]	419–420 [419]	314–318 [314]
			I D	D17	077
	ta4	ta5	LK	BV	SV
P1	453	ta 5	0.77	BV 1.46	SV 2.83
P1 P2	ta4 453 122–116 [116]	tas 180 72–76 [76]	0.77 0.71–0.72 [71]	BV 1.46 3.0–3.05 [3.0]	2.83 2.96–3.0 [2.96]

P1, front leg; P2, mid leg; P3, hind leg; fe, femur length; ti, tibia length; ta₁-ta₅, tarsomere lengths 1–5; LR,

753 leg ratio; BV, Beinverhältnisse; SV, Schenkel–Schiene–Verhältnisse.

- 754
- **Table 2.** Lengths (in μ m) and proportions of legs of *Stenochironomus (Petalopholeus)* sp. 4 (Diptera, Chironomidae), adult 3.

	fe	ti	ta1	ta2	ta3
P1	979–1139	855 000 [000]	1153–1275	623 682 [682]	526 584 [584]
11	[1139]	000-770[770]	[1275]	023-002 [002]	520-584 [584]
P2	847–954 [954]	763–821 [821]	494–549 [549]	260–279 [279]	216–242 [242]
D2	943–1096	910–1014	[722]	[412]	[224]
F 3	[1096]	[1014]	[/33]	[413]	[334]
	ta4	ta5	LR	BV	SV

D1		1.28–1.34			1.59–1.66
F I	_	_	[1.28]	—	[1.66]
DJ	142 157 [157]	71 01 [01]	0.64–0.66	2 04 [2 04]	3.23-3.25
F 2	142–137 [137]	/4-04 [04]	[0.66]	5.04 [5.04]	[3.23]
P3	[218]	[85]	[0.72]	[2.70]	[2.87]

<sup>P1, front leg; P2, mid leg; P3, hind leg; fe, femur length; ti, tibia length; ta₁-ta₅, tarsomere lengths 1–5; LR,
leg ratio; BV, Beinverhältnisse; SV, Schenkel–Schiene–Verhältnisse.</sup>

Table 3. Lengths (in μ m) and proportions of legs of *Stenochironomus* (*Petalopholeus*) sp. 5 (Diptera: Chironomidae), adult 3.

	fe	ti	ta1	ta2	ta3
D1	1396–1749	1248–1719	1863–2308	928–1190	750 090 [090]
11	[1749]	[1512]	[2308]	[1190]	730–980 [980]
D2	1191–1227	1042–1083	796 900 [900]	250 200 [200]	205 212 [212]
P 2	[1227]	[1083]	/80-809 [809]	338-388 [388]	295-512 [512]
D2	1435–1645	1317–1576	995–1159	5 00 601 [601]	401 460
P3	[1645]	[1576]	[1159]	380-081 [081]	421-402
	ta4	ta5	LR	BV	SV
D1	660–855 [855]	220 288 [288]	1.50–1.52	1.68–1.77	1.41–1.43
11] 229–208 [208]	[1.52]	[1.68]	[1.41]
DJ	252 259	05 115	0.66–0.74	2.08.2.02	206 211
r2	232–238	95–115	[0.74]	2.98-3.03	3.06-3.11
D2	252 292 [292]	05 140 [140]	0.69–0.73	2.67-271	2.77-2.87
P 3	232-282 [282]	95–140 [140]	[0.73]	[2.67]	[2.77]

P1, front leg; P2, mid leg; P3, hind leg; fe, femur length; ti, tibia length; ta₁-ta₅, tarsomere lengths 1–5; LR,
leg ratio; BV, Beinverhältnisse; SV, Schenkel–Schiene–Verhältnisse.

Table 4. Lengths (in μm) and proportions of legs of *Stenochironomus (Petalopholeus)* sp. 6 (Diptera:
Chironomidae), adult 3.

	fe	ti	ta1	ta2	ta3
P1	1064–1078	860			
	[1.78]		—	—	—
P2	864–924 [924]	770–806 [806]	554–619 [619]	295–308 [308]	241–234 [234]

D2	992–1057	945–1020	5–1020 731–759 [759] .020]	106 109 [106]	211 250 [250]
F 3	[1057]	[1020]		400-408 [400]	544-558 [558]
	ta4	ta5	LR	BV	SV
P1	—	_	—	—	—
DJ	142–143 [143]	65–70 [65]	0.71–0.76	2.92-3.14	2.81 - 2.94
Γ2			[0.76]	[3.14]	[2.81]
D2	208–209 [208] 79–93 [93]	70 02 [02]	0.74–0.77	2.56-2.66	2.64-2.73
P3		[0.74]	[2.66]	[2.73]	

P1, front leg; P2, mid leg; P3, hind leg; fe, femur length; ti, tibia length; ta₁-ta₅, tarsomere lengths 1–5; LR,
leg ratio; BV, Beinverhältnisse; SV, Schenkel–Schiene–Verhältnisse.

769

Table 5. Lengths (in μ m) and proportions of legs of *Stenochironomus* sp. 7 (Diptera: Chironomidae), adult $\sqrt[3]{}$.

	fe	ti	ta1	ta2	ta3
P1	2000	1672	_	_	_
P2	1520	1257	848	446	355
P3	1800	1620	—	—	—
	ta4	ta5	LR	BV	SV
P1	_	-	-	-	-
P2	224	112	0.67	3.18	3.27
P3	_	—	—	_	—

P1, front leg; P2, mid leg; P3, hind leg; fe, femur length; ti, tibia length; ta₁–ta₅, tarsomere lengths 1–5; LR,

⁷⁷³ leg ratio; BV, Beinverhältnisse; SV, Schenkel–Schiene–Verhältnisse.

774

Table 6. Lengths (in μ m) and proportions of legs of *Stenochironomus* sp. 8 (Diptera: Chironomidae), adult \vec{O} .

	Fe	ti	ta1	ta2	ta3
P1	798	600	846	483	380
P2	664	546	366	196	139
P3	732	660	519	310	225
	ta4	ta5	LR	BV	SV
P1	302	131	1.41	1.73	1.65
P2	79	66	0.67	3.28	3.30

P3	128	67	0.78	2.61	2.68

P1, front leg; P2, mid leg; P3, hind leg; fe, femur length; ti, tibia length; ta₁-ta₅, tarsomere lengths 1–5; LR,
leg ratio; BV, Beinverhältnisse; SV, Schenkel–Schiene–Verhältnisse.

780 Figures and legends

781

782 Fig. 1. Distribution map for the new species and new records of *Stenochironomus* species analyzed in this

783 study.

Fig. 2. *Stenochironomus (Petalopholeus)* sp. 3 (Diptera: Chironomidae), male adult, habitus. (a) Dorsal
view. (b) Lateral view. Scale bars = 1 mm.

Fig. 3. *Stenochironomus (Petalopholeus)* sp. 3 (Diptera: Chironomidae), male adult. (a) Head, frontal
view. (b) Legs (femur and tibia), from left to right, fore, mid, and hindleg. (c) Thorax, lateral view. (d)
Abdomen, dorsal view. (e) Wing. Scale bars = 200 µm.

Fig. 4. *Stenochironomus (Petalopholeus)* sp. 3 (Diptera: Chironomidae), male adult. (a) Hypopygium,
dorsal view. (b) Hypopygium, with tergite IX removed, dorsal view. (c) Anal point, lateral view.

Fig. 5. *Stenochironomus (Petalopholeus)* sp. 3 (Diptera: Chironomidae), pupa. (a) Frontal apotome. (b)
Spur on T VIII. (c–e) Abdomen, in dorsal view. (c) Tergites I–III. (d) Tergites IV–VI. (e) Tergites VII–
Anal lobe. Scale bars = 250 μm.

Fig. 6. *Stenochironomus (Petalopholeus)* sp. 3 (Diptera: Chironomidae), larva. (a) Labrum, PE, Pecten
epipharyngis; LL, Labral lamellae. (b) Mandible. (c) Labiohypopharynx (d) Antennae. (e) Ventromental
plate and mentum. Scale bars = 50 μm.

Fig. 7. *Stenochironomus (Petalopholeus)* sp. 4 (Diptera: Chironomidae), male adult, habitus. (a) Dorsal
view. (b) Lateral view. Scale bars = 1 mm.

Fig. 8. *Stenochironomus (Petalopholeus)* sp. 4 (Diptera: Chironomidae), male adult. (a) Head, frontal
view. (b) Legs (femur and tibia), from left to right, fore, mid, and hindleg. (c) Thorax, lateral view. (d)
Abdomen, dorsal view. (e) Wing. Scale bars = 200 µm.

- 817 Fig. 9. *Stenochironomus (Petalopholeus)* sp. 4 (Diptera: Chironomidae), male adult. (a) Hypopygium,
- 818 dorsal view. (b) Hypopygium, with tergite IX removed, dorsal view.

Fig. 10. *Stenochironomus (Petalopholeus)* sp. 4 (Diptera: Chironomidae), pupa. (a) Frontal apotome. (b)
Spur on S VIII. (c–e) Abdomen, in dorsal view. (c) Tergites I–III. (d) Tergites IV–VI. (e) Tergites VII–
Anal lobe. Scale bars = 250 μm.

Fig. 11. *Stenochironomus (Petalopholeus)* sp. 4 (Diptera: Chironomidae), larva. (a) Labrum, PE, Pecten
epipharyngis; LL, Labral lamellae. (b) Mandible. (c) Labiohypopharynx (d) Antennae. (e) Ventromental
plate and mentum. Scale bars = 50 μm.

Fig. 12. *Stenochironomus (Petalopholeus)* sp. 5 (Diptera: Chironomidae), male adult, habitus. (a) Dorsal
view. (b) Lateral view. Scale bars = 1 mm.

(a)

(d)

Fig. 13. *Stenochironomus (Petalopholeus)* sp. 5 (Diptera: Chironomidae), male adult. (a) Head, frontal
view. (b) Legs (femur and tibia), from left to right, fore, mid, and hindleg. (c) Thorax, lateral view. (d)
Abdomen, dorsal view. (e) Wing. Scale bars = 200 µm.

839

Fig. 14. *Stenochironomus (Petalopholeus)* sp. 5 (Diptera: Chironomidae), male adult. (a) Hypopygium,
dorsal view. (b) Hypopygium, with tergite IX removed, dorsal view.

Fig. 15. *Stenochironomus (Petalopholeus)* sp. 5 (Diptera: Chironomidae), pupa. (a) Frontal apotome. (b)
Spur on S VIII. (c–e) Abdomen, in dorsal view. (c) Tergites I–III. (d) Tergites IV–VI. (e) Tergites VII–
Anal lobe. Scale bars = 250 μm.

Fig. 16. *Stenochironomus (Petalopholeus)* sp. 5 (Diptera: Chironomidae), larva. (a) Labrum, PE, Pecten
epipharyngis; LL, Labral lamellae. (b) Mandible. (c) Labiohypopharynx (d) Antennae. (e) Ventromental
plate and mentum. Scale bars = 50 μm.

Fig. 16. *Stenochironomus (Petalopholeus)* sp. 6 (Diptera: Chironomidae), male adult, habitus. (a) Dorsal
view. (b) Lateral view. Scale bars = 1 mm.

Fig. 17. *Stenochironomus (Petalopholeus)* sp. 6 (Diptera: Chironomidae), male adult. (a) Head, frontal
view. (b) Legs (femur and tibia), from left to right, fore, mid, and hindleg. (c) Thorax, lateral view. (d)
Abdomen, dorsal view. (e) Wing. Scale bars = 200 μm.

Fig. 18. *Stenochironomus (Petalopholeus)* sp. 6 (Diptera: Chironomidae), male adult. (a) Hypopygium,
dorsal view. (b) Hypopygium, with tergite IX removed, dorsal view. (c) Anal point, lateral view.

Fig. 19. *Stenochironomus (Petalopholeus)* sp. 6 (Diptera: Chironomidae), pupa. (a) Frontal apotome. (b)
Spur on S VIII. (c–e) Abdomen, in dorsal view. (c) Tergites I–III. (d) Tergites IV–VI. (e) Tergites VII–
Anal lobe. Scale bars = 250 μm.

Fig. 20. *Stenochironomus* sp. 7 (Diptera: Chironomidae), male adult, habitus. (a) Dorsal view. (b) Lateral
view. Scale bars = 1 mm.

Fig. 21. *Stenochironomus* sp. 7 (Diptera: Chironomidae), male adult. (a) Head, frontal view. (b) Legs
(femur and tibia), from left to right, fore, mid, and hindleg. (c) Thorax, lateral view. (d) Abdomen, dorsal
view. (e) Wing. Scale bars = 200 μm.

Fig. 22. *Stenochironomus* sp. 7 (Diptera: Chironomidae), male adult. (a) Spurs on mid femur (left). (b)

882 Spurs on mid femur (right). Scale bars = $100 \ \mu m$.

883

Fig. 23. *Stenochironomus* sp. 7 (Diptera: Chironomidae), male adult. (a) Hypopygium, dorsal view. (b)
Hypopygium, with tergite IX removed, dorsal view.

Fig. 24. *Stenochironomus* sp. 8 (Diptera: Chironomidae), male adult, habitus. (a) Dorsal view. (b) Lateral
view. Scale bars = 1 mm.

Fig. 25. *Stenochironomus* sp. 8 (Diptera: Chironomidae), male adult. (a) Head, frontal view. (b) Legs
(femur and tibia), from left to right, fore, mid, and hindleg. (c) Thorax, lateral view. (d) Abdomen, dorsal
view. (e) Wing. Scale bars = 200 µm.

Fig. 26. *Stenochironomus* sp. 8 (Diptera: Chironomidae), male adult. (a) Hypopygium, dorsal view. (b)
Hypopygium, with tergite IX removed, dorsal view.

CONCLUSÕES GERAIS

O presente estudo descreve oito novas espécies de *Stenochironomus* neotropicais, das quais sete são exclusivas da Amazônia brasileira, com exceção de *Stenochironomus* sp. 1, que também ocorre no Cerrado (Goiás). Assim, após um inventário taxonômico, o número de espécies desse gênero foi ampliado de 39 para 47 na região Neotropical, de 30 para 38 no Brasil e de 27 para 35 na região Amazônica.

Seis das novas espécies descritas (*Stenochironomus* (*Petalopholeus*) sp. 1, *Stenochironomus* (*Petalopholeus*) sp. 2, *Stenochironomus* (*Petalopholeus*) sp. 3, *Stenochironomus* (*Petalopholeus*) sp. 4, *Stenochironomus* (*Petalopholeus*) sp. 5 e *Stenochironomus* (*Petalopholeus*) sp. 6) foram alocadas no subgênero *S.* (*Petalopholeus*), proposto por Borkent (1984), com base em características dos estágios imaturos. Tais características incluem a presença de uma fileira posterior de ganchos restrita à porção medial no segmento T II do abdome pupal e linhas dorsolaterais originadas próximo à base da listra dorsomediana na cápsula cefálica da larva de quarto instar. Embora a larva de *Stenochironomus* sp. 6 ainda seja desconhecida, sua exúvia pupal é compatível com a diagnose do subgênero e foi obtida em folhas submersas. Por isso, até o momento, essa espécie foi incluída no subgênero *Stenochironomus* (*Petalopholeus*).

As espécies restantes, *Stenochironomus* sp. 7 e *Stenochironomus* sp. 8, não foram atribuídas a nenhum subgênero, uma vez que seus estágios imaturos e hábitos larvais permanecem desconhecidos. Atualmente, das 47 espécies de *Stenochironomus* descritas para a região Neotropical, 29 são conhecidas em sua fase pupal, e 23 possuem registros da fase larval. Assim, quase metade das espécies neotropicais é conhecida exclusivamente com base nos adultos.

Embora este trabalho tenha associado os estágios imaturos de seis novas espécies, outras duas foram descritas apenas com base em exemplares adultos, já que não foram obtidas durante as coletas de substratos em corpos d'água, e sim, somente em armadilhas de captura de adultos.

Estudos futuros sobre o gênero *Stenochironomus* devem priorizar a associação de estágios imaturos das espécies já conhecidas, com ênfase na coleta de substratos adequados. Essa abordagem permitirá ampliar o conhecimento taxonômico, biológico e geográfico do grupo, contribuindo significativamente para a compreensão de sua biodiversidade e ecologia na região Neotropical.

ANEXOS

Anexo 1 - Normas da revista Annales Zoologici Fennici, na qual já foi publicado o capítulo I dessa Dissertação

Detailed Instructions to Authors

It is expected that the authors make the data underlying published articles available on request. Any impediments to data sharing should be brought to the attention of the editors at the time of submission.

Ethical compliance: Details of animal experimentation permission, or its equivalent along with the name of the institution that granted permission for the study should be given in the paper. We also recommend that authors familiarize themselves with e.g., "Guidelines for the treatment of animals in behavioural research and teaching" (Animal Behaviour 83: 301 [] 309), and AVMA Guidelines for the Euthanasia of Animals.

Submissions

The entire manuscript (incl. figures and tables) should be converted into PDF and sent by e-mail as one PDF file along with a properly-completed submission form directly to the Editorial Office. For details please select 'SUBMISSION' from the menu above.

Revised or final versions of manuscripts

When sending a corrected/finalised version of a manuscript, use short filenames **including the article ID number** always ending in appropriate extensions added by the programme with which the files have been created. Do not use the article title for a filename. The article (i.e., text, tables, figure captions) should be sent as MSWord .doc or .rtf file. Before saving (e.g. MSWord), remove all comments and accept all track changes. See HERE for details on figure preparation and graphic file formats. As a reference, a PDF file of the entire article should also be provided.

Use either **British or American English** consistently throughout the text. Change the language settings for the document accordingly. Write in a clear style and preferably avoid the use of passive voice. Instead, the pronouns I (we), me (us), and my (our) should be used thus indicating the responsibility of the author(s) towards the study. The authors bear full responsibility for the quality

of the language. If English is not your first language, make sure that the manuscript is checked by a native English speaker preferably familiar with the subject and terms used in the paper. We routinely check the language of all accepted manuscripts and if we find it to be inadequate, manuscripts are returned for further corrections. Certain elements of the manuscript layout that are requested in the instructions below — but not present in the published articles — are necessary to facilitate the typesetting process.

Tenses [top]

In scientific writing, only two tenses — present simple and past simple — are normally used. Socalled 'perfect tenses' (e.g. present perfect) should be avoided. Thus, there are the following rules that should be observed:

Established knowledge (results of previous studies) is given in the present simple tense; Description of methods and results in the current paper are in the past simple tense; Attributions (e.g. Jones (1995) reported that ...) are in the past simple tense.

Dashes [top]

- A hyphen (the shortest dash "-") is used for example in hyphenation and compound words,
- An en-dash ("-"; coded in a manuscript with two hyphens "--") is chiefly used as a minus in subtraction (5 2 same as five minus two; NOTE: spaces before and after the dash) or in ranges of values or dates (2-5 same as from two to five; NOTE: no spaces before and after the dash),
- An em-dash (the longest dash "—"; coded in a manuscript with three hyphens "---") is chiefly used to separate an explanatory phrase in a sentence or in references (see below).

Numbers [top]

- Always use decimal points '.', NOT commas ','.
- Always use leading zeros in decimal fractions.
- In long numerals (five and more digits), the digits should be marked off in groups of three by spaces (not commas!), starting from the left (e.g., 15 369).
- Numbers from 1 to 10 (also ordinals) in a text should be written out (not '5' but 'five').

Symbols [top]

- **One-letter symbols** representing variables or constants, regardless of their position (normal, in subscript or superscript), must always be italicised.
- **Multi-letter symbols** representing variables or constants, regardless of their position (normal, in subscript or superscript), are never italicised.
- Vectors are set in boldface italic.
- Matrices are set in boldface but not italics.
- Usage of a multiplication symbol 'x' is not recommended. If, however, its presence in an equation is required for reasons of clarity please use 'x' instead of a dot.
- Abbreviations or acronyms (e.g., 'tot' meaning 'total') are not italicised.
- Check that the same symbol does not have multiple meanings (e.g., P = phosphorus and P = significance level or N = nitrogen and N = number of samples).
- Improper typesetting of symbols may result in misinterpretations.

Italicisation [top]

- Latin names of genera and lower taxa (e.g., Salmo trutta).
- Words which are originally not English (e.g., in vitro).
- Ship (vessel) names.
- Titles of books.
- For italicisation of symbols see above.

Units [top]

- Only SI system units should be used (with some exceptions e.g., $1 \square m$ not 10--6 m).
- In composite units, use numbers in superscript instead of divisions (e.g., 30 m s--1 not 30 m/s) consistently throughout the entire article (also in figures and tables).
- The above style should be used consistently throughout the entire article (also in figures and tables).
- If units follow axes titles in figures, they should be given in parentheses '()' not brackets '[]' or after a comma.

Dates [top]

- Dates should be written according to the following format: day.month.year (e.g., 12 Dec. 1972 or 12 December 1972 or 12.XII.1972, not December 12, 1972).
- Months should be written in full (e.g., January), abbreviated (e.g., Jan.) or expressed with roman numerals (January "I", February "II" and so on).
- Years should never be abbreviated (eg. 2003 not 03).

Time [top]

• The 24-hour system should exclusively be used. The day begins at midnight (00:00) and ends at 23:59.

Abbreviations and acronyms [top]

- Each abbreviated word should end in a full stop (e.g., Professor = Prof., Volume = Vol.).
- There is no punctuation used in acronyms unless the English grammar rules dictate otherwise.

Geographic nomenclature [top]

• Always use internationally recognised and existing names. In questionable cases, refer to the Times Atlas of the World or Merriam-Webster's Geographic Dictionary to make sure that a name you intend to use is listed in their indexes, and its spelling is correct. Use of coordinates (latitude and longitude) is strongly recommended.

Text [top]

- Use exclusively your word processor's **NORMAL** style settings for the entire manuscript (default font Times New Roman, size 12 points, no indentation, no boldface, no capitalisation, left justified, without multiple spaces or tabulators, or other unusual formatting).
- Insert a blank line before each element of the text (headings, subheadings, paragraphs, tables and so on)
- Remove section and page breaks from the text.

- Number chapter headings as follows:
- Chapter headings (Introduction, Material and methods, Results, Discussion and other headings) are numbered decimally starting with "1.". Abstract, References and Acknowledgements, are not numbered.
- Sub-chapter headings should be numbered e.g.: "1.1.", "1.1.1.", and so on, depending on how many levels of sub-chapters you have in your article.
- Numbering of chapters is for editorial purposes only and will not appear in published papers, hence DO NOT REFER TO PARTS OF YOUR OWN ARTICLE USING CHAPTER NUMBERS.
- Graphics (except for equations) should not be placed within the text file.
- Refer to tables and figures parenthetically.
- **Title:** Not capitalised or in boldface, not centred; short version of the title. The title of an article descibing a new species should include the new species Latin name.
- Author: For all authors, first name in full followed by initials (if any) and surname (James T. Brown, not J. T. Brown) should be given. Authors should be arranged according to the degree of their contributions to the research and writing of the paper with the first contributing the most and the last, the least. The authors' order should not be changed after submission. Please note that there can be only one corresponding author.
- Address: As complete as possible (including e-mail). Each author's affiliation should be identified with numbers in superscript. Please note that an institutional affiliation is not only an address for correspondence, but also indicates the institution (1) where the actual research work was done and (2) which financed (in full or in part) the research. If those two conditions are not fulfilled, a private not institutional address should be provided.
- Abstract: Should consist of only one paragraph of up to 150 words. References to literature are not allowed in abstracts.
- **Conclusions** should conclude the paper, not be a subsection of Discussion. Keep in mind that the most readers have read the paper, when they read the conclusions, hence avoid statements like "we have shown this and that by using this and that method" because this is what the read has just read. Proper conclusions should tell the reader what can be done with the newly acquired knowledge. Answer the question "So what?".
- Appendixes: They should present data that are helpful but not essential to comprehending the research and its results. If there is only one appendix, it can be referred to in the text as 'Appendix' without the number; otherwise, appendices should be numbered. All supplementary material (tables and figures) should be presented in appendixes.

- Footnotes: They are allowed only in tables (rarely in the text).
- Equations: Each equation occupies a separate line. Place an equation's number on the righthand side e.g.: N = 0.3Wln(a + b) (1). Equations should be referred to as "Eq.", followed by an equation number. Please remember that there is only limited space for equations (column width); therefore, if equation is unusually long, it should be split in two or more parts connected with operators. Equations embedded in the text should preferably be written with either MSEquation Editor of MathType.

Tables [top]

Detailed instruction as to how tables should be prepared and saved are available HERE (PDF file, Acrobat Reader 7 or higher needed for viewing and printing). Other requirements to be considered are:

- Tables should be sized so as to fit a B5-sized page in portrait orientation; landscapeoriented tables are not allowed.
- Vertical lines in tables are not allowed.
- As tables are entirely text elements, no other background than white is allowed.
- Tables with their captions should be comprehensible without reference to the main text.
- Do not place tables within the text. They should be placed at the end of the text file (after references).
- A TABLE SHOULD NOT BE DIVIDED INTO PARTS OR SECTIONS IDENTIFIED WITH LETTERS. THE PARTS SHOULD EITHER BE JOINED OR EACH SECTION OF SUCH A TABLE SHOULD BE PRESENTED AS A SEPARATE TABLE.
- All tables should be referred to in the text in the proper numerical order (e.g., the first reference to Table 2 cannot precede the first reference to Table 1).
- Refer to tables parenthetically; e.g. '... (Table 1)'. 'Table 1 shows ...' type statements should be avoided.
- IF YOU REFER TO TABLES PUBLISHED ELSEWHERE, THE REFERENCE SHOULD BE FOLLOWED BY 'table' (note that the lowercase □t□ should be used).

Figures (photographs, computer-generated images and scanned drawings) [top]

Detailed instruction as to how figures should be prepared and saved are available HERE. Other requirements to be considered are:

- **Photographs** for publishing purposes should be taken with a high quality DSLR or compact camera. If needed, they should be processed with an appropriate software. True resolution of a photograph or a figure comprising several photographs should not be lower than 300 dpi. Preferred file formats ar TIF or JPG format
- **Computer-generated images** (graphs, drawings and the like) should be submitted as vector graphics. File formats supporting vector graphics are EPS, PDF, WMF, EMF or SVG (please note that those file formats can also hold bitmaps, thus even if a figure is saved in a correct format it does not automatically mean that it is vector graphics). **File formats such as JPG**,

TIF, PNG, BMP or GIF cannot be used to submit computer-generated images.

- Scanned drawings should be submitted in TIF or JPG format.
- **Preferred figure widths** (max. height 21 cm) are as follows: 7 cm (colums width), 10.5 cm and 15 cm (page width). Figures exceeding those widths must withstand size reduction.
- Figures with their captions should be comprehensible without reference to the text.
- Figures of any type must always be referred to as "Fig.", followed by a number.
- Refer to figures parenthetically; e.g. '... (Fig. 1)'. 'Fig. 1 shows ...' type statements should always be avoided when referring to figures presenting results.
- All figures should be referred to in the text in numerical order (e.g., the first reference to Fig. 2 cannot precede the first reference to Fig. 1).
- IF YOU REFER TO FIGURES PUBLISHED ELSEWHERE, THE REFERENCE SHOULD BE FOLLOWED BY 'fig.' (note the lowercase 'f') e.g.: Turchin et al. 2003: fig. 3.
- All figure captions should be placed at the end of the article (after references).
- Avoid fancy designs (especially 3-D).
- Avoid presenting data in pie-charts; present these data in tables or bar charts.
- Use solid (colour or shades of grey) not pattern fillings in computer-generated figures.
- Use the same font in all figures and within a figure. Arial is recommended. Freehand lettering is unacceptable.
- The axes in graphs should always be named and units, if needed, should be given in parentheses.
- Axes titles should be placed parallel to the respecive axis.
- Explain all graphic symbols (e.g. squares, triangles and so on) within the figure, not in the caption. A legend should be placed under the figure not next to it.

- If a figure contains scale bars to indicate dimensions of object presented in the figure, the scale-bar lengths should be proportional to sizes of the respective objects.
- Relate the size of letters, the thickness of lines (preferably uniform for all figure items), and the size of other parts of a figure, to the size of the figure itself.
- Identify parts of a composite figure with capital letters, not numbers, preferably placed in the upper left corner of each part. In the figure itself, letters identifying panels (parts) of a composite figure should NOT be placed in parentheses. In photographs, letters, numbers and scale bars with numbers and units (if present) should be placed on the background, not on the object depicted in the image.
- In the figure caption, the letter identifying a panel in a composite figure should be placed in parentheses, e.g. (A), before the text describing the content of that panel (figure part) not after it.

References [top]

The references should be verified by the author(s) against the original documents. If an article has not been read by the author(s) but its conclusions found in another publication (secondary source), it may be cited in the text only as follows: e.g. Miller's (1972) results as cited in Ashworth (1996) In the reference list, however, only the secondary source (i.e. Ashworth 1996) can be given.

- Referring to literature in the text [top]
- Publication with one author only: H□nninen (1990) or (H□nninen 1990).
- Publication with two authors: Kurt□n and Anderson (1980) or (Kurt□n & Anderson 1980).
- Publication with more than two authors: Mihok et al. (1985) or (Mihok et al. 1985).
- If you wish to indicate specific pages that contain information used in the paper, please give these page numbers after the reference (e.g. H□nninen 1990: 160).
- When referring to more than one publication, arrange them as follows (numbered in order of precedence):
 - Year of publication (ascending),
 - Alphabetical order for the same year of publication.
- The reference list [to download the EndNote template click HERE] [top]
- Arrange the references as follows (numbered in order of precedence):
 - Alphabetical order and number of authors (ascending) for publications in which the first author is the same.
 - Year of publication for publications by the same author or authors.

- In the references, with few exceptions (e.g., PLoS), journals' names should be given in full and italicised.
- Article in a printed journal (DOI can be added at the end if available):
 - one author: Adams, D. C. 2014: A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. --- Systematic Biology 63: 685--697.
 - **two authors** (note no comma before '&'): Martins, E. P. & Hansen, T. F. 1997: Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data --- American Naturalist 149: 646--667.
 - more than two authors (note that all auhors should be given regardless of their numbers; in other words, there should be no 'et al.' in author's listing): Pagono, A. M., Cutting, A., Nicassio-Hiskey, N., Hash, A. & Williams, T. M. 2019: Energetic costs of aquatic locomotion in a subadult polar bear. --- Marine Mammal Science 35: 649--659.
 - article in a foreign language with English summary or abstract: Hyt nen, J. & Wall, A. 1997: Metsitettyjen turvepeltojen ja viereisten suometsien ravinnem rate [Nutrient amounts of afforested peat fields and neighbouring peatland forests]. --- Suo 48: 33--42. [In Finnish with English summary].
- Article in an online-only journal (printed version does not exist; if DOI is not available, URL should be given instead): Kumar, V., Lammers, F., Bidon, T., Pfenninger, M., Kolter, L., Nilsson, M. A. & Janke, A. 2017: The evolutionary history of bears is characterized by gene flow across species. --- Scientific Reports 7, 46487, https://doi.org/10.1038/srep46487.
- **Chapter in a book** (book's title italicised; all the authors and editors, regardless of their number, should always be listed; publisher's name and location should be given).
 - H□nninen, H. 1990: Modelling dormancy release in trees from cool and temperate regions. --- In: Dixon, R. K., Melhdahl, R. S., Ruak, G. A. & Warren, W. G. (eds.), Process modelling of forest growth responses to environmental stress: 159--165. Timber Press Portland.
 - Please note that page numbers are those of the first and last pages of the chapter that is refrerred to. If you wish to indicate specific pages that contain information used in the paper, please give these page numbers after the reference (e.g. H□nninen, H. 1990: 160).
- **Book** (book's title italicised; all the authors or editors, regardless of their number, should always be listed; publisher's name and location should be given).
 - Anderson, R. M. & May, R. M. 1982: Population biology of infectious diseases. ---Springer-Verlag, Berlin.

- Finnish Meteorol. Inst. 1989: Climatological data 1988. --- Meteorol. Yearb. Finland 88.
- **Referring to websites**: URL (link) should be placed in the text where appropriate not in the reference list.
- Article or book printed entirely in Cyrillic: Give the authors' names both transliterated and [in brackets] in Cyrillic: Only English translation of the title should be given in brackets. If the title translation is not given in the publication please provide your own. Do not transliterate the title. Give the transliterated book publisher's name and place, or journal's title e.g.:
 - Abramov, A. L. & Abramov, I. I. [Абрамов А.Л. & Абрамов И.И.] 1956: [Mnium immarginatum (Lindb.) Broth. from Mongolia]. --- Bot. Zh. 41: 89- -91. [In Russian].
- Article or book printed entirely in non-Roman scripts other than Cyrillic (e.g. Arabic, Chinese, Japanese): Give the transliterated authors' names. Only English translation of the title should be given in brackets. If the title translation is not given in the publication please provide your own. Do not transliterate the title. Give the transliterated book publisher's name and place, or journal's title e.g.:
 - Ho, T. N. 1985: [A study on the genus Gentiana of China, IV]. --- Bulletin of Botanical Research 5(4): 1--22. [In Chinese].
- Article or book printed in non-Roman scripts but with English summary or abstract: Give the transliterated authors' names. Only English translation of the title should be given. If the title translation is not given in the publication please provide your own. Do not transliterate the title. Give the transliterated book publisher's name and place, or journal's title e.g.:
 - Korbut, V. V. 1989: Nest building of hooded crows. 1. Utilisation of different substrata. -Zool. Zh. 68: 88--95. [In Russian with English summary].
- An article in press may be included in the references list. The name of the journal and the publication year (possibly also the volume number) must, however, be given. "[In press]" should be added at the end of the reference.
- Material in preparation, unpublished or submitted cannot be included in the reference list, and can only be referred to in the text using author's initial(s) and name followed by "unpubl. data" or "pers. comm.".

Proofs [top]

The corresponding author will receive by e-mail proofs (PDF file) of the article. Errors caused by editorial or linguistic alterations will be corrected free of charge. Other errors, especially if their

correction affects the layout, may be corrected for a fee. We do not assume responsibility for misinterpretation of illegibly marked corrections. Annotated PDF file should be returned to the Editorial Office exclusively by e-mail within 48 hours of their arrival. Errors found after the proofs had been returned may not be corrected.

Anexo 2 - Normas da revista Austral Entomology, na qual foi preparado para submissão o capítulo II dessa Dissertação

Your Open Access fees might be covered

Effective with the 2019 volume, this journal will be published in an online-only format.

Print subscription and single issue sales are available from Wiley's Print-on-Demand Partner. To order online click through to the ordering portal from the journal's subscribe and renew page on WOL.

CONTENTS

- 1. SUBMISSION
- 2. AIMS AND SCOPE
- 3. MANUSCRIPT CATEGORIES AND REQUIREMENTS
- 4. PREPARING YOUR MANUSCRIPT
- 5. EDITORIAL POLICIES AND ETHICAL CONSIDERATIONS
- 6. AUTHOR LICENSING
- 7. PUBLICATION PROCESS AFTER ACCEPTANCE
- 8. POST PUBLICATION
- 9. EDITORIAL OFFICE CONTACT DETAILS

1. SUBMISSION

Thank you for your interest in *Austral Entomology*. Please read the complete Author Guidelines carefully prior to submission. Note that submission implies that the content has not been published or submitted for publication elsewhere except as a brief abstract in the proceedings of a scientific meeting or symposium, or presented in a non-peer reviewed journal.

Submission Checklist

Before submitting your manuscript, please check that:

- □ The reference section is in the proper format.
- □ All references cited in the text are included in the reference section.
- □ All figures and tables are cited in the text.
- □ The pages are numbered.

The journal has also put together a **checklist for authors submitting Taxonomic Papers**, to reduce changes required at revision stages.

Austral Entomology

Once you have prepared your submission in accordance with the Guidelines, manuscripts should be submitted online via the Research Exchange submission portal: https://wiley.atyponrex.com/journal/aen.

For technical help with the submission system, please review our FAQs or contact submissionhelp@wiley.com.

You are strongly encouraged to download and follow the structure outlined in the templates for <u>Original</u> <u>Articles</u> and <u>Taxonomic Articles</u>. Use of these templates will make it much easier for you to prepare your paper in a manner conforming to the journal's requirements.

The submission system will prompt you to use an ORCiD (a unique author identifier) to help distinguish your work from that of other researchers. Click <u>here</u> to find out more.

We look forward to your submission.

2. AIMS AND SCOPE

Austral Entomology is a scientific journal of entomology for the Southern Hemisphere. It publishes Original Articles that are peer-reviewed research papers from the study of the behaviour, biology, biosystematics, conservation biology, ecology, evolution, forensic and medical entomology, molecular biology, public health, urban entomology, physiology and the use and control of insects, arachnids and myriapods. The journal also publishes Reviews on research and theory or commentaries on current areas of research, innovation or rapid development likely to be of broad interest – these may be submitted or invited. Book Reviews will also be considered provided the works are of global significance. Manuscripts from authors in the Northern Hemisphere are encouraged provided that the research has relevance to or broad readership within the Southern Hemisphere. All submissions are peer-reviewed by at least two referees expert in the field of the submitted paper. Special issues are encouraged; please contact the Chief Editor for further information.

Austral Entomology is the official publication of the <u>Australian Entomological Society</u>, an incorporated nonprofit Australian company limited by guarantee. Membership of the Society is open to any person interested in entomology in its broadest sense. Application forms are available from the Australian Entomological Society website (<u>http://www.austentsoc.org.au/</u>).

3. MANUSCRIPT CATEGORIES AND REQUIREMENTS

Austral Entomology publishes the following article types:

- Original Articles
- Research Communications
- Reviews
- Book Reviews
- Editorials

Original Articles

Original Articles are peer-reviewed research papers from the study of the behaviour, biology, biosystematics, conservation biology, ecology, evolution, forensic and medical entomology, molecular biology, public health, urban entomology, physiology and the use and control of insects, arachnids and myriapods.

Austral Entomology

Please click on this link for further details on how Original Articles should be formatted: <u>Template for</u> <u>Original Articles</u>.

Original Articles (Taxonomic Papers)

For taxonomic papers, authors must follow the International Code of Zoological Nomenclature (ICZN). Revisionary papers and small monographs will be accepted provided they occupy no more than 25 printed journal pages due to competition for space. The Introduction of all taxonomic papers must provide a clear statement outlining the context and purpose of the paper - why the work was done and what it aims to achieve. Further detail about requirements for taxonomic papers are available here: **Template for Taxonomic Papers**.

The journal has also put together a **checklist for authors submitting Taxonomic Papers**, to reduce changes required at revision stages.

Research Communications

Austral Entomology also accepts Research Communications to allow publication of quality articles that break new ground but either:

- contain a smaller data set than Original Articles
- are largely observational in nature
- relate to development or improvement of scientific methods

Generally, Research Communications are shorter, non-taxonomic papers and are no longer than six typeset pages. They should contain an abstract of no more than 300 words and a limit of up to 8 figures and/or tables. There is no limit on the number of references.

Reviews

Reviews may be invited or submitted by prospective authors on any research topic provided they are of broad interest. Commentaries or overviews on current areas of research, innovation or rapid development are particularly welcome. The structure of Review papers is optional, but they must include an Abstract and Introduction, and preferably end with a Conclusion and/or Future Directions. Page length is optional, but Reviews are typically 5,000–20,000 words. Note that one or two Review papers will be made freely available to the general public each year based on the recommendation of the Chief Editor.

Book Reviews

Book Reviews will be considered provided the works are of global significance. Book Reviews are typically less than 2,000 words.

Editorials

Editorials are opinion pieces or commentaries on particular topics of broad interest prepared by the Chief Editor.

4. PREPARING YOUR MANUSCRIPT

You are strongly encouraged to download and follow the structure outlined in the templates for **Original Articles** and **Taxonomic Articles**. Use of these templates will make it much easier for you to prepare your paper in a manner conforming to the journal's requirements.

Austral Entomology

Style and Formatting

Manuscripts can be uploaded either as a single document (containing the main text, tables and figures), or with figures and tables provided as separate files. Should your manuscript reach revision stage, figures and tables must be provided as separate files. The main manuscript file can be submitted in Microsoft Word (.doc or .docx) format.

Name the manuscript file as: authorname.doc.

• Submissions should be typed in 12 pt Times New Roman and have 1.5 line spacing.

• All margins should be set to 2.5 cm.

• The first paragraph under each heading is not indented; indent following paragraphs, with no blank line between paragraphs.

• Ensure that all mark-up ('Track Changes') done during manuscript preparation is removed ('Accept All Changes' on Reviewing Toolbar) so that reviewers have a clean copy on which to insert suggested changes and comments.

Abbreviations and Units

SI units (metre, kilogram etc.), as outlined in the latest edition of *Units, Symbols and Abbreviations: A Guide for Medical and Scientific Editors and Authors* (Royal Society of Medicine Press, London), should be used wherever possible. Give statistics and measurements in figures; that is, 10 mm, except where the number begins the sentence. When the number does not refer to a unit measurement, it is spelt out, except where the number is greater than nine. Use only standard abbreviations. Shorten the word 'Figure' to Fig. unless starting a sentence.

The journal uses Australian spelling and authors should therefore set the Language in MS Word to English (Australia) (accessible under the Tools menu in MS Word) and follow the latest edition of the Macquarie Dictionary. Manuscripts that do not conform to this requirement and the following format will be returned to the author prior to review for correction.

Parts of the Manuscript

Title page

The title page should contain:

(i) an informative title that contains the major key words. The title should contain the scientific name of the insect, with the order and family placed in parentheses;

(ii) the full names of the authors;

(iii) the author's institutional affiliations at which the work was carried out;

(iv) a short running title of less than 50 characters including spaces.

(iv) the email address of the author to whom correspondence about the manuscript should be sent.

Abstract

All manuscripts must include a brief but informative abstract intelligible without reference to the main text. It should not exceed 350 words and should describe the scope of the work and the main findings. Both common and scientific names of the insect should be included. Authorities to species names are not required except for taxonomic papers. References to scientific literature must not be included. Use the passive voice in the Abstract. DO NOT use the uninformative phrase 'Results are discussed.'

Key Words

Austral Entomology

Up to 10 additional key words should be provided below the Abstract.

Main Text Sections

• *Introduction:* This section should include sufficient background information to set the work in context. The aims and goals of the manuscript should be clearly stated. The introduction should not contain findings or conclusions.

• *Materials and Methods:* This should be concise but provide sufficient detail to allow the work to be repeated by others.

• *Results:* This should be presented in a logical sequence in the text, tables and figures; repetitive presentation of the same data in different forms is not permissible. The results should not contain material appropriate to the Discussion.

• *Discussion:* This should consider the results in relation to any hypotheses advanced in the Introduction and place the study in the context of other work.

Acknowledgements

The source of financial grants and other funding must be acknowledged, including a frank declaration of the author's industrial links and affiliations. Financial and technical assistance may be acknowledged here. If tables or figures have been reproduced from another source, or copyright is not held by any of the authors, then written permission from the copyright holder must be mentioned in the Acknowledgements.

Ethical Considerations

Research permits

When the research is carried out in areas for which research permits are required (e.g. nature reserves or National Parks), or when it deals with organisms for which collection or import/export permits are required (e.g. protected species), the authors must clearly state these permits in the Acknowledgements.

Human/Animal Ethics

Where research is carried out involving humans or materials of human origin (e.g. blood sera, DNA), or involves the use of animals, the permit number and issuing body must be included in the Acknowledgements.

Conflict of Interest

The journal requires that all authors disclose any potential sources of conflict of interest. Any interest or relationship, financial or otherwise, which might be perceived as influencing an author's objectivity is considered a potential source of conflict of interest. These must be disclosed when directly relevant or indirectly related to the work that the authors describe in their manuscript. Potential sources of conflict of interest include but are not limited to patent or stock ownership, membership of a company board of directors, membership of an advisory board or committee for a company, the testing of a commercial product paid or sponsored by the manufacturer, distributor or seller of that product, and consultancy for or receipt of speaker's fees from a company, or paid travel to present the information at a conference. The existence of a conflict of interest does not preclude publication in this journal. It is the responsibility of the corresponding author to review this policy with all authors and to collectively list on the front page of the manuscript and in the manuscript (under the Acknowledgments), ALL pertinent commercial and other relationships. You are also required to state if no conflict of interests exist.

Austral Entomology

References

The Harvard (author, date) system of referencing is used.

• In the text give the author's name followed by the year in parentheses: Sago (2000).

• When reference is made to a work by three or more authors, the first name followed by *et al.* should be used: Powles *et al.* (1998).

• Within parentheses, groups of references should be cited in chronological order.

• Personal communication, unpublished data and publications from informal meetings are not to be listed in the reference list but should be listed in full in the text (e.g. A. Smith, 2000, unpublished data).

• Titles of journals should be given in full.

• If several manuscripts by the same author(s) and from the same year are cited, a, b, c etc. should be put after the year of publication.

• 'In press' should only be used to cite manuscripts actually accepted for publication in a journal. Citations such as 'manuscript in preparation' or 'manuscript submitted' are not permitted. Data from such manuscripts can only be mentioned in the text as 'unpublished data'.

• Pre-print publications are to be cited as websites, not cited as published papers because they have not been peer reviewed.

• References should be listed in alphabetical order at the end of the manuscript.

• Cite the names of all authors when there are six or fewer; when seven or more cite the first three plus *et al.*

• Authors are responsible for the accuracy of the references.

• References can be formatted using the **EndNote style** for AEN. Please click **AEN EndNote style** to access the style.

References should be listed in the following form:

Journal articles

North RC & Shelton AM. 1996. Ecology of Thysanoptera within cabbage fields. *Environmental Entomology* **15**, 520–526.

Books

Eberhard WG. 1985. Sexual Selection and Animal Genitalia. Harvard University Press, Harvard.

Chapters in books

Bray RA. 1994. The leucaena psyllid. In: *Forage Tree Legumes in Tropical Agriculture* (eds RC Gutteridge & HM Shelton) pp. 283–291. CAB International, Oxford.

Website

Bureau of Meteorology. 2014. Southern Oscillation Index Archives – 1876 to present. Available from: http://www.bom.gov.au/climate/current/soihtm1.shtml [Accessed 5 March 2014]

Tables

Tables must be constructed using the 'Table' function of your word processor and must not have the Enter key used in any cell. Tables should be self-contained and complement, but not duplicate, information contained in the text. Tables should be numbered consecutively in Arabic numerals. Each table should be presented on a separate page at the end of the text with a comprehensive but concise legend above the table. Tables should be double-spaced and vertical lines should not be used to separate columns. Column headings should be brief, with units of measurement in parentheses; all abbreviations should be defined in footnotes. Use superscript letters (not numbers) for footnotes and keep footnotes to

Austral Entomology

a minimum. *, **, *** should be reserved for *P*-values. The table and its legend/footnotes should be understandable without reference to the text.

Figure Legends

Legends should be concise but comprehensive – the figure and its legend must be understandable without reference to the text. Include definitions of any symbols used and define/explain all abbreviations and units of measurement.

Figures

Only scientifically necessary illustrations should be included. Magnifications should be indicated using a scale bar on the illustration. Figures should be cited in consecutive order in the text.

Preparing Figures: Although we encourage authors to send us the highest-quality figures possible, for peer-review purposes we are happy to accept a wide variety of formats, sizes, and resolutions. Please note that it is preferable that line figures (e.g. graphs and charts) are supplied in black and white so that they are legible if printed by a reader in black and white.

<u>Click here</u> for the basic figure requirements for figures submitted with manuscripts for initial peer review, as well as the more detailed post-acceptance figure requirements.

Supporting Information

Supporting information is information that is complementary to the article but that provides greater depth and background. It is hosted online, and appears without editing or typesetting. It may include appendices, tables, figures, videos, datasets, etc. <u>Click here</u> for Wiley's FAQs on supporting information.

Note, if data, scripts or other artefacts used to generate the analyses presented in the paper are available via a publicly available data repository, authors should include a reference to the location of the material within their paper.

Wiley Author Resources

Wiley Editing Services offers expert help with English Language Editing, as well as translation, manuscript formatting, figure illustration, figure formatting, and graphical abstract design – so you can submit your manuscript with confidence. Also, check out our resources for **Preparing Your Article** for general guidance about writing and preparing your manuscript. In particular, authors may benefit from referring to Wiley's best practice tips on **Writing for Search Engine Optimization**.

5. EDITORIAL POLICIES AND ETHICAL CONSIDERATIONS

Editorial Review and Acceptance

Manuscripts must not present work that has been published, accepted for publication or is currently under consideration for publication elsewhere. Submission of a manuscript must be approved by all authors.

All manuscripts are reviewed by a Subject Editor of the Editorial Board and two specialist referees before acceptance. If a reviewed manuscript that is returned to the author for revision is not resubmitted within three months, it will be considered to have been withdrawn unless an extension has been granted by the Chief Editor. Revised manuscripts may be subject to further external review at the discretion of the Subject Editor. Final acceptance or rejection rests with the Chief Editor.

Austral Entomology

The Editors and the Publisher reserve the right to modify manuscripts to eliminate ambiguity and repetition, and to improve communication between author and reader. To encourage the valuable ongoing services of highly qualified reviewers and to avoid unnecessary delays, authors are strongly advised to have their manuscripts thoroughly reviewed by impartial colleagues prior to submission, especially if English is not their first language.

Scientific Names

The complete scientific name (genus and species), and cultivar or strain where appropriate, should be given for all animals when first mentioned; authorities are only needed for taxonomic papers. The generic name may be abbreviated to an initial in subsequent references except at the start of sentences and where intervening references to other genera would cause confusion. Common names of organisms, if used, should conform to the list on <u>http://www.ces.csiro.au/aicn/intro.htm</u>. All names must conform to the Articles and Recommendations of the fourth edition of the International Code of Zoological Nomenclature. Common names of pesticides listed in *Pesticides – Synonyms and Chemical Names* (Australian Dept of Health, Canberra) must be used.

Author Zoobank registration number

The zoobank registration numbers are to be added by the author after the manuscript has been accepted.

Nucleotide Sequence Data

All DNA sequences must be lodged with GenBank and should not be repeated in the paper unless highly relevant. The GenBank registration number must be provided for each sequence (e.g. in Supporting Information).

Author statements

Papers are accepted for publication in the journal on the understanding that the content has not been published or submitted for publication elsewhere.

Authorship

All listed authors should have contributed to the work and be in agreement with the final version of the manuscript.

Data Sharing and Data Accessibility

The journal encourages authors to share the data and other artefacts supporting the results in the paper by archiving it in an appropriate public repository. Authors should include a data accessibility statement, including a link to the repository they have used, in order that this statement can be published alongside their paper.

Publication Ethics

This journal is a member of the <u>Committee on Publication Ethics (COPE</u>). Note this journal uses iThenticate's CrossCheck software to detect instances of overlapping and similar text in submitted manuscripts. Read our Top 10 Publishing Ethics Tips for Authors<u>here</u>. Wiley's Publication Ethics Guidelines can be found at <u>https://authorservices.wiley.com/ethics-guidelines/index.html</u>

Artificial Intelligence Policy

Austral Entomology

Artificial Intelligence Generated Content (AIGC) tools—such as ChatGPT and others based on large language models (LLMs)—cannot be considered capable of initiating an original piece of research without direction by human authors. They also cannot be accountable for a published work or for research design, which is a generally held requirement of authorship (as discussed in the previous section), nor do they have legal standing or the ability to hold or assign copyright. Therefore—in accordance with **COPE's position statement on AI tools**—these tools cannot fulfill the role of, nor be listed as, an author of an article. If an author has used this kind of tool to develop any portion of a manuscript, its use must be described, transparently and in detail, in the Methods and Acknowledgements section. The author is fully responsible for the accuracy of any information provided by the tool and for correctly referencing any supporting work on which that information depends. Tools that are used to improve spelling, grammar, and general editing are not included in the scope of these guidelines. The final decision about whether use of an AIGC tool is appropriate or permissible in the circumstances of a submitted manuscript or a published article lies with the journal's editor or other party responsible for the publication's editorial policy.

6. AUTHOR LICENSING

If your paper is accepted, the author identified as the formal corresponding author will receive an email prompting them to log in to Author Services, where via the Wiley Author Licensing Service (WALS) they will be required to complete a copyright license agreement on behalf of all authors of the paper.

Authors may choose to publish under the terms of the journal's standard copyright agreement, or **OnlineOpen** under the terms of a Creative Commons License.

General information regarding licensing and copyright is available <u>here</u>. To review the Creative Commons License options offered under OnlineOpen, please <u>click here</u>. (Note that certain funders mandate that a particular type of CC license has to be used; to check this please click <u>here</u>.)

Self-Archiving definitions and policies. Note that the journal's standard copyright agreement allows for self-archiving of different versions of the article under specific conditions. Please click here for more detailed information about self-archiving definitions and policies.

Open Access

This journal is a subscription journal that offers an open access option. You'll have the option to choose to make your article open access after acceptance, which will be subject to an APC.

For more information on this journal's APCs, please see the Open Access page.

You can **read more about APCs** and whether you may be eligible for waivers or discounts, through your institution, funder, or a country waiver.

Funder Open Access: Please click <u>here</u> for more information on Wiley's compliance with specific Funder Open Access Policies.

7. PUBLICATION PROCESS AFTER ACCEPTANCE

Accepted article received in production

When your accepted article is received by Wiley's production team, you (corresponding authors) will receive an email asking you to login or register with <u>Author Services</u>. You will be asked to sign a publication licence at this point.

Proofs

Austral Entomology

Authors will receive an e-mail notification with a link and instructions for accessing page proofs online. Page proofs should be carefully proofread for any copyediting or typesetting errors. Online guidelines are provided within the system. No special software is required, all common browsers are supported. Authors should also make sure that any renumbered tables, figures, or references match text citations and that figure legends correspond with text citations and actual figures. Proofs must be returned within 48 hours of receipt of the email. Return of proofs via e-mail is possible in the event that the online system cannot be used or accessed.

Early View

The journal offers rapid speed to publication via Wiley's Early View service. **Early View** (Online Version of Record) articles are published on Wiley Online Library before inclusion in an issue. Note there may be a delay after corrections are received before your article appears online, as Editors also need to review proofs. Once your article is published on Early View no further changes to your article are possible. Your Early View article is fully citable and carries an online publication date and DOI for citations.

Wiley's Author Name Change Policy

In cases where authors wish to change their name following publication, Wiley will update and republish the paper and redeliver the updated metadata to indexing services. Our editorial and production teams will use discretion in recognizing that name changes may be of a sensitive and private nature for various reasons including (but not limited to) alignment with gender identity, or as a result of marriage, divorce, or religious conversion. Accordingly, to protect the author's privacy, we will not publish a correction notice to the paper, and we will not notify co-authors of the change. Authors should contact the journal's Editorial Office with their name change request.

Correction to Authorship

In accordance with Wiley's **Best Practice Guidelines on Research Integrity and Publishing Ethics** and the **Committee on Publication Ethics**' guidance, *Austral Entomology* will allow authors to correct authorship on a submitted, accepted, or published article if a valid reason exists to do so. All authors – including those to be added or removed – must agree to any proposed change. To request a change to the author list, please complete the **Request for Changes to a Journal Article Author List Form** and contact either the journal's editorial or production office, depending on the status of the article. Authorship changes will not be considered without a fully completed Author Change form. [Correcting the authorship is different from changing an author's name; the relevant policy for that can be found in Wiley's Best Practice **Guidelines** under "Author name changes after publication."]

8. POST PUBLICATION

Article Promotion Support

Wiley Editing Services offers professional video, design, and writing services to create shareable video abstracts, infographics, conference posters, lay summaries, and research news stories for your research – so you can help your research get the attention it deserves.

Access and sharing

When your article is published online:

- You receive an email alert (if requested).
- You can share your published article through social media.
- As the author, you retain free access (after accepting the Terms & Conditions of use, you can view your article).

Austral Entomology

• The corresponding author and co-authors can nominate up to ten colleagues to receive a publication alert and free online access to your article.

However, you are not allowed to make your paper freely available on platforms such as ResearchGate or institution websites.

Now is the time to start promoting your article. Find out how to do that here.

Measuring the impact of your work

Wiley also helps you measure the impact of your research through our specialist partnerships with <u>Kudos</u> and <u>Altmetric</u>.

9. EDITORIAL OFFICE CONTACT DETAILS

Dr Richard V Glatz Chief Editor *Austral Entomology* <u>chiefeditor@austentsoc.org.au</u>

Author Guidelines updated 17 July 2024

Sign up for email alerts

Enter your email to receive alerts when new articles and issues are published.

Email address

Enter email

Continue

Submit an article

As of March 1, 2022, all new *Austral Entomology* manuscripts are submitted through the **Research Exchange** platform.

Start your submission

For submissions started prior to March 1, 2022, please visit Manuscript Central to manage or complete your submission.

Official Journal of the Australian Entomological Society

Taxonomic Article templet:

Austral Entomology

- A new tribe of bee flies (Diptera: Bombyliidae), based on *Phthiraxia bowdeni*, gen. et sp. nov. from Western Australia The Title must include the higher classification (Order: Family), the name of the new species where a single species is newly described, author(s) if all authors on the manuscript are not authors of the new species, and the authority for previously described species/genera when this is mentioned in the title. Use the following format for species names: *Genus name*| *Species name*| Author(s) name(s), sp. nov. Only include authorities on new names if they differ from the author list for the paper. James B Author^{1*}, John K Wiley¹ and Alice P Manuscript² ¹Department of Insect Studies, Australian Entomological Society, Authorville, VIC 3001, Australia. ²Department of Entomological Science, Austral Entomology, Pseudoauthorville, NSW 2001, Australia. *james.author@australianentomologicalsociety.edu.au Author: Zoobank registration number This Paper Zoobank registration number Links to the ZooBank registration numbers are to be added by the author after the manuscript has been accepted. Only authors who are authorities on new taxa need to included. **Running Title** The short running title should be less than 50 characters, including spaces. Abstract The Abstract should not exceed 350 words and should describe the scope of the work and the main findings. Both common and scientific names of the insect should be included. Authorities for species names are required for taxonomic papers. References to the literature should not be included. The higher classification in the Title (Order: Family) must not be duplicated in the Abstract. Bold expressions of new taxonomic actions (eg. sp. nov., gen. et sp. nov.)

43 Key words

- 44 Up to 10 additional key words should be provided below the Abstract; these should not duplicate words or45 phrases already listed in the Title.

48 INTRODUCTION

- 49 The Introduction section should include sufficient background information to set the work in context. The
- 50 aims and goals of the manuscript should be clearly stated. The introduction should not contain findings or
- conclusions, such as the names of new taxa or name changes. All manuscripts must follow the
- 52 recommendations of the International Code of Zoological Nomenclature.
- 54 Preferred abbreviations for new nomenclatural acts (new names) or changes to names, are as follows:
- sp. nov. = new species
- 56 gen. nov. = new genus
- 57 gen. et sp. nov. = new genus and new species
- 58 fam. nov. = new family
- 59 stat. rev. = revised status
- 60 syn. nov. = new synonymy
- 61 comb. nov. = new generic combination
- 62 reinst. stat. = previously synonymized name made valid again
- 63 64

53

65 MATERIALS AND METHODS

- 66 The Materials and Methods section should be concise but provide sufficient detail to allow the work to be
- 67 repeated by others. A list of acronyms such as repositories for museums should be listed at the end.
- 68

69

70 **RESULTS**

- 71 The Results section is not compulsory but should be included when data cannot be easily accommodated in
- the Taxonomy section below, such as the results of phylogenetic analysis or statistical analysis of
- 73 morphological data. The Results should not contain material appropriate to the Discussion.
- 74
- 75

76 TAXONOMY

Note that subheaders may vary depending on taxon level and on the amount and type of data; however, themore commonly used ones their sequence are as follows.

79

83

80 Higher level taxon name and Authority

Synonymies may be included, also type genus should be listed. Reference to a comprehensive checklist or
 recent review, if available, is sufficient. New combinations and new synonymies need to be indicated.

- 84 Key to taxa
- 85
- 86 **Taxon name and Authority**
- 87 (Figs)
- 88 ZooBank registration number link
- 89 List the Zoobank registration number for newly described taxa, such as a new species.
- 90
- 91

92 **Type locality**:

- 93 List the type locality of the species.
- 94

95 96 97	List synonymy for established taxa. Use '&' instead of 'and' for authority citations. Here are some examples:
00	Platisus Emisheon 1847
98	(Eigen 1 6)
99	(Figs 1-0)
100	Platiana Erichaon, 1942, 216 (type analiss, Platiana chaowing Erichaon, 1942, by monotymy)
101	<i>Platisus</i> Effensori, 1842, 210 (type species: <i>Platisus obscurus</i> Effensori, 1842, by monotypy).
102	<i>Ipsapnes</i> Pascoe, 1865: 59, pl. 5, lig. 9 (type species: <i>Ipsapnes moerosus</i> Pascoe, 1865, by monotypy);
103	Blackburn 1903: 136 (Synonymy).
104	
105	$\mathbf{D}_{\mathbf{L}}$ (D 19(2))
106	Platisus moerosus (Pascoe, 1863)
107	(Figs Ic, 2c, 3c, 4c, 5c, 6c)
108	
109	Ipsaphes moerosus Pascoe, 1863: 40, pl. 3, fig. 9.
110	<i>Platisus moerosus</i> (Pascoe). – Blackburn 1903: 136.
111	
112	
113	Pachygrontha austrina Kirkaldy, 1908
114	
115	Pachygrontha austrina Kirkaldy, 1908: 771; Slater 1955: 61; Slater 1964: 719; Slater 1966: 57; Cassis
116	1993: 113; Cassis & Gross 2002: 264.
117	
118	
119	Alotanypus Roback, 1971
120	(Fig. 1)
121	
122	Alotanypus Roback, 1971: 95.
123	Alotanypus Roback. – Roback 1978: 162 (as subgenus of Macropelopia Thienemann, 1916).
124	Alotanypus Roback. – Niitsuma 2005: 136 (emended diagnosis).
125	Alotanypus Roback. – Siri, Donato, Orpella & Massaferro 2011: 55 (emended diagnosis).
126	
127	
128	Somethus castaneus (Attems, 1944) comb. nov.
129	(Figs 4, 6AC, 7)
130	
131	Australiosoma castaneum Attems, 1944: 249, fig. 40; Jeekel 1968: 26 (unnamed genus); Jeekel 1982: 121.
132	Oncocladosoma castaneum (Attems). – Jeekel 1985: 27; McKillup 1988: 35–45; Jeekel 2002: 66.
133	Oncocladosoma castaneum castaneum (Attems). – Jeekel 1985: 27; Nguyen & Sierwald 2013: 1174.
134	Oncocladosoma castaneum ingens Jeekel, 1985: 27–30, figs 4, 5; Jeekel 2002: 66, 72; Nguyen & Sierwald
135	2013: 1174, syn. nov.
136	Oncocladosoma clavigerum Jeekel, 1985: 31–33, figs 8, 9; Jeekel 2002: 72, fig. 8; Nguyen & Sierwald
137	2013: 1174, syn. nov.
138	Oncocladosoma conigerum Jeekel, 1985: 30–31, figs 6, 7; Jeekel 2002: 74; Nguyen & Sierwald 2013:
139	1174–75, syn. nov.
140	
141	
142	Type Species:
143	List the type species if describing a new genus.
144	
145	

140
Material Examined
<i>Holotype / Lectotype</i> \Im or \Im Use symbols for type material Include collection details, registration numbers and the institution in which the type is held. Here are some examples:
♂ "42.8905S°, 147.29362°E, Mt Wellington chalet, TAS, 1050m, 14 JAN. 1992, P. B. McQuillan, on dolerite scree in subalpine woodland"; "Databased 105258 PBMcQ"; "Holotype: <i>Kunanyia stephaniae</i> Byrne & Wei" (TMAG).
d "Merredin, WA, L.J. Newman"; "TYPE: Omoplatica holopolia Turner" (ANIC).
<i>Paratypes / Paralectotypes</i> ∂, ♀ Use symbols for type material.
Other material
Description The Description section is mandatory, please use telegraphic style. Once a new species has been diagnosed and described, subsequent reference to the taxon in the manuscript should not include, for example, "sp. nov.", except in the captions of Tables and Figures.
Diagnosis The Diagnosis section is mandatory. It should be a comparative or differential diagnosis that clearly states how the taxon differs from closely related taxa.

173 Remarks

The Remarks section is generally used to make comments about nomenclature, type material, history of 174 175 discovery etc.

176 177 Etymology

- Inclusion of Etymology is recommended but not mandatory. 178
- 179

182

146 147 148

149

150

151 152

153

154

155 156

157 158

159

160 161 162

163

164

165

166

167 168

169 170

171

172

180 **Distribution**

The Distribution section is optional. 181

Biology 183

- The Biology section is optional. 184
- 185
- 186

DISCUSSION 187

- The Discussion section is mandatory, and it should consider the results in relation to any hypotheses 188 advanced in the Introduction and place the study in the context of other work. 189
- 190
- 191

192 ACKNOWLEDGEMENTS

- 193 The source of financial grants and other funding and research permits for field work must be
- acknowledged, including a frank declaration of the author's industrial links and affiliations. Financial and
- 195 technical assistance may be acknowledged here.
- 196
- 197

198 **REFERENCES**

- 199 The Harvard (author, date) system of referencing is used. See Author Guidelines.
- 200
- 201

202 SUPPORTING INFORMATION

Supporting Information can be a useful way for an author to include important but ancillary informationwith the online version of an article.

- 205
- 206
- 207
- 208 Tables
- 209 210
- 210 211 Figu

211 Figure Legends

- Figure legends should be prepared on a separate page. Refer to a recent AEN paper for format.
- 213 214

PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA UNIVERSIDADE FEDERAL DO PARÁ /MUSEU PARAENSE EMÍLIO GOELDI

