

JOÃO PAULO SOUSA DA SILVA

ADSORÇÃO MONOCOMPONENTE E BINÁRIA DE ANTIINFLAMATÓRIOS NÃO ESTEROIDAIS (IBUPROFENO E DICLOFENACO) DO MEIO AQUOSO POR CARVÃO ATIVADO DE RESÍDUOS DA CASTANHA-DO-BRASIL (*Bertholletia excelsa* H.B.K.)

> Belém-PA Agosto de 2024

ADSORÇÃO MONOCOMPONENTE E BINÁRIA DE ANTIINFLAMATÓRIOS NÃO ESTEROIDAIS (IBUPROFENO E DICLOFENACO) DO MEIO AQUOSO POR CARVÃO ATIVADO DE RESÍDUOS DA CASTANHA-DO-BRASIL (*Bertholletia excelsa* H.B.K.)

JOÃO PAULO SOUSA DA SILVA

Dissertação apresentada ao Programa de PósGraduação em Engenharia Química (PPGEQ) da Universidade Federal do Pará (UFPA), como parte dos requisitos necessários para a obtenção do título de Mestre em Engenharia Química.

Orientadora: Profa. Dra. Samira Maria Leão de

Carvalho

Coorientadora: Profa. Dra. Melissa Gurgel

Adeodato Vieira

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Sistema de Bibliotecas da Universidade Federal do Pará Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo(a) autor(a)

S586a Silva, João Paulo Sousa da.

ADSORÇÃO MONOCOMPONENTE E BINÁRIA DE ANTIINFLAMATÓRIOS NÃO ESTEROIDAIS (IBUPROFENO E DICLOFENACO) DO MEIO AQUOSO POR CARVÃO ATIVADO DE RESIDUOS DA CASTANHA-DO-BRASIL (Bertholletia excelsa H.B.K.) / João Paulo Sousa da Silva. — 2024. 148 f. : il. color.

Orientador(a): Prof^a. Dra. Samira Maria Leão de Carvalho Coorientação: Prof^a. Dra. Melissa Gurgel Adeodato Vieira Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Programa de Pós-Graduação em Engenharia Química, Belém, 2024.

1. Remoção. 2. Farmacos. 3. Carvão Ativado. 4. Resíduo agroindustrial. I. Título.

CDD 660.284235

JOÃO PAULO SOUSA DA SILVA

ADSORÇÃO MONOCOMPONENTE E BINÁRIA DE ANTIINFLAMATÓRIOS NÃO ESTEROIDAIS (IBUPROFENO E DICLOFENACO) DO MEIO AQUOSO POR CARVÃO ATIVADO DE RESÍDUOS DA CASTANHA-DO-BRASIL (Bertholletia excelsa H.B.K.)

Defesa de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Química da Universidade Federal do Pará, como parte dos requisitos necessários para obtenção do título de Mestre em Engenharia Química, na área de Desenvolvimento concentração de de Processos.

Data da Aprovação: 12/09/2024

BANCA EXAMINADORA:

SAMIRA MARIA LEAO DE CARVALHO Data: 13/09/2024 21:05:59-0300 Verifique em https://validar.iti.gov.br

Profa. Dra. Samira Maria Leão de Carvalho (PPGEQ/ITEC/UFPA – Orientadora)

Documento assinado digitalmente MELISSA GURGEL ADEODATO VIEIRA Data: 14/09/2024 08:52:05-0300 Verifique em https://validar.iti.gov.br

Profa. Dra. Melissa Gurgel Adeodato Vieira (FEQ/UNICAMP - Coorientadora)

Rosinelson da Silva Pena Data: 19/09/2024 19:54:46-0300 Verifique em https://validar.iti.gov.br

Documento assinado digitalmente

Prof. Dr. Rosinelson da Silva Pena (PPGEQ/ITEC/UFPA - Membro)

Prof. Dr. Daniel Nobre Nunes da Silva (CAMPUS SALINAS/UFPA -

Membro)

DETICATÓRIA

A Ti, meu Deus, Pai Celestial e Criador, dedico todo o esforço e cada conquista deste trabalho, com infinita gratidão em Cristo.

AGRADECIMENTOS

Primeiramente, agradeço a Deus, pela força e sabedoria concedidas ao longo desta jornada. Em segundo lugar, à Virgem Maria, pela sua intercessão e proteção constantes.

Agradeço de todo o meu coração à minha mãe, Maria das Graças Brito Sousa, e ao meu pai, Claucidio Romão da Silva e ao meu irmão, Lucas Sousa da Silva. Mamãe, você foi exemplo de amor puro à sua profissão, de companheirismo, humildade e fortaleza. Papai, sua força e determinação no trabalho na cerâmica não só sustentaram nossa família, mas também me ensinaram o verdadeiro significado do esforço e valor das coisas. Obrigado por segurarem minha mão com tanto carinho e firmeza em todos os momentos da minha vida. Sem o amor incondicional e o apoio de vocês, eu jamais teria chegado até aqui. Tudo o que conquistei é, em grande parte, por vocês e para vocês.

Agradeço a todas as pessoas que me apoiaram e incentivaram ao longo desta jornada. Socorro Sousa, Antonio Claudio e Ayres Oliveira, sou grato por cada palavra de incentivo e, especialmente, por terem me encorajado a seguir em frente e fazer o mestrado.

As minhas amigas de laboratório, Isabela Lopes, Lais Lena Nunes, por todos os momentos que dividimos durante a realização das nossas pesquisas.

À Profa. Dra. Samira Maria Leão de Carvalho, minha orientadora, expresso minha mais profunda gratidão. Você é a referência de profissional que almejo me tornar, não apenas pelo conhecimento que compartilhou, mas por sempre acreditar que eu podia ir além. Cada conversa que tivemos naquele laboratório, sem exceção, contribuiu de maneira significativa para o meu crescimento, tanto acadêmico quanto pessoal. Obrigado por me guiar com tanta firmeza e confiança.

À Profa. Dra. Melissa Gurgel Adeodato Vieira, minha coorientadora, agradeço pelas valiosas contribuições, pela confiança e pelo suporte ao longo desta caminhada.

Ao CNPq e à FAPESPA pelo apoio financeiro e pelas oportunidades que foram fundamentais para a realização deste trabalho.

À CAPES pelo financiamento da Pós-Graduação no Brasil.

Agradeço a todos os meus amigos da UFPA, e de São Miguel, A RCC e todos os meus irmãos em Cristo.

Aos meus amigos de Psicologia, obrigado pelo apoio e compreensão por inúmeras vezes, durante esse período.

"Há uma força motriz mais poderosa que o vapor, a eletricidade e a energia atômica: a vontade."

(Albert Einstein)

ADSORÇÃO MONOCOMPONENTE E BINÁRIA DE ANTIINFLAMATÓRIOS NÃO ESTEROIDAIS (IBUPROFENO E DICLOFENACO) DO MEIO AQUOSO POR CARVÃO ATIVADO DE RESÍDUOS DA CASTANHA-DO-BRASIL (Bertholletia excelsa H.B.K.)

JOÃO PAULO SOUSA DA SILVA **RESUMO**

Orientadora: Profa. Dra. Samira Maria Leão de Carvalho **Coorientadora:** Profa. Dra. Melissa Gurgel Adeodato Vieira **Área de Concentração:** Engenharia de Processos Orgânicos

Os contaminantes emergentes (CEs) presentes em baixas concentrações têm causado danos aos corpos d'água. Este trabalho investigou a adsorção monocomponente e binária de ibuprofeno (IBU) e diclofenaco (DIC) sódicos utilizando carvão ativado (CA) produzido a partir de cascas da Castanha-do-Brasil. O processo de adsorção monocomponente de IBU e DIC por CA foi denominado de (CA_IBU e CA_DIC) e o processo de adsorção binária foi denominado de (CA_IBU+DIC). O CA foi sintetizado por ativação química utilizando ácido fosfórico (H₃PO₄) como agente ativador. O CA foi caracterizado por meio de análises físicas, químicas e texturais, incluindo umidade, cinzas, rendimento, Análise Termogravimétrica/ Análise Térmica Diferencial (ATG/ATD), Difração de Raios X (DRX), Espectroscopia de Infravermelho por Transformada de Fourier (FT-IR), Microscopia eletrônica de Varredura/Espectroscopia de Energia Dispersiva de Raios X (MEV/EDS), pH de superfície, pH de ponto de carga zero (pH_{PCZ}), titulação de Boehm e adsorção/dessorção de Nitrogênio (N₂) a 77 K. O CA apresentou teores de umidade e cinzas de 8,62% e 4,2%, respectivamente. A análise de DRX confirmou o caráter amorfo do CA, enquanto as análises de FT-IR, pH de superfície e pH de ponto de carga zero (pH_{PCZ}) indicaram seu caráter ácido. A área superficial específica (S_{BET}) do CA foi de 1.383,624 m². g⁻¹, com predominância de microporos $(V_{MIC}=77,88\%)$. A partir da análise do Delineamento Composto Central Rotacional (DCCR), as condições experimentais dos ensaios de cinética e equilíbrio de adsorção foram definidas para adsorção monocomponente: (i) IBU (pH = 6,1; concentração inicial do adsorbato, $C_0 = 50$ mg.L⁻¹; dosagem do adsorvente, DA = 0.5 g.L⁻¹) e (ii) DIC (pH = 5,5; $C_0 = 50 \text{ mg.L}^{-1}$; $DA = 0.5 \text{ g.L}^{-1}$). No estudo de cinética de adsorção monocomponente, os modelos de pseudoprimeira ordem (PSO) e pseudossegunda ordem (PPO) resultaram nos melhores ajustes aos dados experimentais dos processos de adsorção CA_IBU e CA DIC, respectivamente e a transferência de massa externa foi a etapa controladora dos processos. No estudo de equilíbrio de adsorção monocomponente, as isotermas de Langmuir, Freundlich, Sips, Dubinin-Radushkevich e Redlich-Peterson foram investigadas. Os modelos de Sips e Freundlich apresentaram as melhores correlações para CA_IBU e CA_DIC, respectivamente. Os parâmetros termodinâmicos calculados a partir das isotermas de adsorção, mostraram que para CA_IBU e CA_DIC os processos são espontâneos, favoráveis e exotérmicos. No DCCR, as condições experimentais dos ensaios de cinética e equilíbrio de adsorção binária foram definidas: (i) CA IBU+DIC $(C_{0IBU} = 50 \text{ mg. } L^{-1}; C_{0DIC} = 50 \text{ mg. } L^{-1}; DA = 0.5 \text{ g.}L^{-1})$. A adsorção binária indicou, por meio do cálculo do parâmetro fator de separação, que a ordem de preferência de adsorção pelo adsorvente é IBU > DIC e a interação entre os adsorbatos foi antagônica. No processo de adsorção binária, o modelo PPO foi bem ajustado aos dados experimentais de cinética de IBU e DIC; os modelos cinéticos de difusão intrepartícula (DIP) e a Equação de Boyd foram correlacionados aos dados experimentais e a transferência de massa externa foi a etapa controladora dos processos de adsorção. As isotermas da adsorção binária (CA IBU+DIC) em diferentes temperaturas (26 °C, 45 °C e 55 °C) mostram pontos de inflexão e após esses pontos de inflexão, há um aumento dos valores de capacidade de adsorção do CA (q_e) . Os valores de q_e da adsorção binária (CA_IBU+DIC) foram menores do que os valores de q_e dos processos de adsorção monocomponente dos adsorbatos IBU e DIC. Os percentuais de redução dos valores de q_e foram de aproximadamente 35% a 48% para IBU e cerca de 52% a 53% para DIC.

Palavras-chave: Remoção; Farmacos; Carvão Ativado; Resíduo agroindustrial.

SINGLE-COMPONENT AND BINARY ADSORPTION OF NON-STEROIDAL ANTI-INFLAMMATORIES (IBUPROFEN AND DICLOFENAC) FROM THE AQUEOUS MEDIUM BY ACTIVATED CARBON FROM BRAZIL NUT RESIDUES (Bertholletia xxcelsa H.B.K.)

JOÃO PAULO SOUSA DA SILVA

ABSTRACT

Advisor: Prof. Dr. Samira Maria Leão de Carvalho Co-Advisor: Prof. Dr. Melissa Gurgel Adeodato Vieira Area of Concentration: Organic Process Engineering

Emerging contaminants (ECs) present in low concentrations have caused damage to water bodies. This study investigated the single-component and binary adsorption of sodium ibuprofen (IBU) and diclofenac (DIC) using activated carbon (AC) produced from Brazil nut shells. The single-component adsorption process of IBU and DIC by AC was denoted as (AC_IBU and AC_DIC), and the binary adsorption process was denoted as (AC_IBU+DIC). The AC was synthesized by chemical activation using phosphoric acid (H3PO4) as the activating agent. The AC was characterized through physical, chemical, and textural analyses, including moisture content, ash content, yield, Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDS), surface pH, point of zero charge (pHPZC), Boehm titration, and nitrogen (N2) adsorption/desorption at 77 K. The AC presented moisture and ash contents of 8.62% and 4.2%, respectively. The XRD analysis confirmed the amorphous nature of the AC, while FT-IR, surface pH, and pHPZC analyses indicated its acidic nature. The specific surface area (SBET) of the AC was 1,383.624 m².g⁻¹, with a predominance of micropores (V_{MIC} =77.88%). From the analysis of the Central Composite Rotational Design (CCRD), the experimental conditions for the kinetic and equilibrium adsorption tests were defined for single-component adsorption: (i) IBU (pH = 6.1; initial adsorbate concentration, $C_0 = 50 \text{ mg.L}^{-1}$; adsorbent dosage, $DA = 0.5 \text{ g.L}^{-1}$) and (ii) DIC (pH = 5.5; $C_0 = 50$ mg.L⁻¹; DA = 0.5 g.L⁻¹). In the single-component adsorption kinetics study, the pseudofirst-order (PFO) and pseudo-second-order (PSO) models resulted in the best fits to the experimental data for the AC_IBU and AC_DIC adsorption processes, respectively, and external mass transfer was the rate-controlling step of the processes. In the singlecomponent adsorption equilibrium study, the Langmuir, Freundlich, Sips, Dubinin-Radushkevich, and Redlich-Peterson isotherms were investigated. The Sips and Freundlich models showed the best correlations for AC IBU and AC DIC, respectively. The thermodynamic parameters calculated from the adsorption isotherms showed that the AC_IBU and AC_DIC processes are spontaneous, favorable, and exothermic. The CCRD, the experimental conditions for the binary adsorption kinetics and equilibrium tests were defined: (i) AC_IBU+DIC ($C_{0IBU} = 50 \text{ mg.L}^{-1}$; $C_{0DIC} = 50 \text{ mg.L}^{-1}$; DA = 0.5g.L⁻¹). Binary adsorption indicated, through the calculation of the separation factor parameter, that the adsorption preference order by the adsorbent is IBU > DIC, and the interaction between the adsorbates was antagonistic. In the binary adsorption process, the PSO model was well fitted to the experimental kinetics data of IBU and DIC; the intraparticle diffusion (IPD) kinetic models and the Boyd equation were correlated with the experimental data, and external mass transfer was the rate-controlling step of the adsorption processes. The isotherms of binary adsorption (AC IBU+DIC) at different

temperatures (26 °C, 45 °C, and 55 °C) showed inflection points, and after these inflection points, there was an increase in the adsorption capacity values of AC (qe). The qe values of binary adsorption (AC_IBU+DIC) were lower than the qe values of the single-component adsorption processes of the adsorbates IBU and DIC. The reduction percentages of the qe values were approximately 35% to 48% for IBU and about 52% to 53% for DIC.

Keywords: Removal; Pharmaceuticals; Activated carbon; Agro-industrial residue.

LISTA DE FIGURAS

Figura 3.1 – Esquema equilíbrio de adsorção	25
Figura 3.2- classificação das isotermas para o equilíbrio fluido-sólido	27
Figura 3.3 - Formas de <i>loop</i> de histerese	29
Figura 3.4 - classificação das isotermas para o equilíbrio liquido-sólido	30
Figura 3.5- Ilustração do processo de carbonização e ativação física do precursor síntese de CA	na 46
Figura 4.1- Materia prima utilizada	59
Figura 4.2 - Fluxograma da síntese de CA.	60
Figura 4.3 – Ensaios de caracterização de amostras de CA.	61
Figura 5.1 – Síntese de carvão ativado com H_3PO_4 : (a) amostra antes da síntese; (b) C químico; (c) e (d) amostras secas granuladas.	CA 78
Figura 5.2 – Difratometria de raios x do CA	79
Figura 5.3 – Análises de TGA /ATD	80
Figura 5.4 – Espectros de FT-IR do CA Antes e depois da Adsorção: CA(a) (antes adsorção); b) CA_IBU (após adsorção); c) CA_DIC (após adsorção) e d) CA_IBU+C (após adsorção)	da CA 81
Figura 5.5 – Isotermas de adsorção de nitrogênio do CA	84
Figura 5.6 – Micrografias CA (I.a e I.b com ampliações de 100x; I.c e I.d com ampliaçõe de 1000x; I.e e I.f com ampliações de 5000x; I.g e I.h com ampliações de 10000x)	ies 86
Figura 5.7 – Determinação de ponto de carga zero (pH_{PCZ}) do CA	88
Figura 5.8 – Efeito do pH da solução nos valores de q_e e $R\%$ para CA_DIC(a) e CA_IB (b) ($C_0 = 50 \text{ mg.L}^{-1}$; $DA = 0.5 \text{ g·L}^{-1}$ e $t = 3 \text{ h}$).	3U 90
Figura 5.9 – Gráfico de Pareto de variáveis independentes: CA_IBU_R%(a) q_e (b) CA_DIC R%(c) q_e (d)	b); 95
Figura 5.10 – Superfície de resposta, variável dependente (R%), sistema CA_IBU e função das variáveis independentes: (a) $DA \ e \ pH$; (b) $DA \ e \ C_0$; (c) $C_0 \ e \ pH$	em 98
Figura 5.11 – Superfície de resposta, variável dependente (R%), sistema CA_DIC e função das variáveis independentes: (a) $DA \ e \ pH$; (b) $dos agem \ e \ C_0$; (c) $C_0 \ e \ pH$	em 99
Figura 5.12 Ajuste cinético de PPO e PSO aos dados experimentais em relação (CA_IBU; b) CA_DIC	(a) 02
Figura 5.13 – Ajuste do modelo de DIP 10	04
Figura 5.14 - Modelo de Boyd da adsorção de CA_IBU (a), CA_DIC (b) 10	04
Figura 5.15 – Equilibrio de adsorção: CA_IBU(a); CA_DIC(b) 10	05
Figura 5.16 – Ajuste dos modelos matemáticos, sistemaCA_IBU: Freundlich (a Langmuir (b); Sips (c); R-D(d); R-P (e)	a); 08
Figura 5.17 – Ajuste dos modelos matemáticos, sistemaCA_DIC: Freundlich (a Langmuir (b); Sips (c); R-D(d); R-P (e)	a); 10
Figura 5.18 – Ajuste linear para obtenção de K^{0}_{Eq} nas temperaturas de 26, 45 e 55 ° :CA_IBU(a); CA_DIC(b)	°C 11

Figura 5.19 – Ajuste linear de ln(Ce) versus $1/K$ (K ⁻¹) para ΔH_{ST} nos sistemas:CA_IBU(a); CA_DIC(b) 113
Figura 5.20 - Gráfico de Pareto de variáveis independentes: CA_IBU(+DIC), $q_e(a) R\%$ (b); CA_DIC(+IBU) $q_e(c) R\%(d)$
Figura 5.21 – Desejabilidade geral para otimização da adsorção binária de IBU+DIC.
Figura 5.22 – Fator de separação da mistura binária 122
Figura 5.23 - Ajuste dos modelos de PPO e PSO à mistura binária 124
Figura 5.24 – Ajuste do modelo DIP à mistura binária
Figura 5.25 – Ajuste do modelo de Boyd à adsorção de CA_IBU(+DIC) (a), CA_DIC(+IBU) (b)
Figura 5.27 – Equilíbrio de adsorção sistema binário CA_IBU+DIC nas temperaturas estudadas: 26 C° (a); 45C (b); 55C°(c)

LISTA DE TABELAS

Tabela 3.1 - Aplicações de diferentes adsorventes em processos de adsorção	. 43
Tabela 3.2 - CA com H ₃ PO ₄ de diferentes biomassas utilizados em processos de adsorç	;ão. . 47
Tabela 3.3 - Classificação química dos AINEs.	. 51
Tabela 3.4 - Resumo de artigos da literatura sobre adsorção de IBU e DIC apresenta- no Estado da Arte desse trabalho	dos . 57
Tabela 4.1 - Propriedades físico-químicas dos fármacos estudados	. 60
Tabela 4.2 – Variáveis reais e codificadas do DCCR (monocomponentes)	. 68
Tabela 4.3 – Matriz do DCCR monocomponente	. 70
Tabela 4.4 - Modelos cinéticos de reação e difusão	. 71
Tabela 4.5 – Modelos equilíbrio de adsorção	. 71
Tabela 4.6 – Matriz do DCCR da adsorção de mistura binária (IBU+DIC) por CA	. 73
Tabela 4.7 – Variáveis rais e codificadas da adsorção de mistura binária (IBU+DIC) CA	por . 74
Tabela 4.8 – Modelos matemáticos de equilíbrio de adsorção (multicomposto)	. 75
Tabela 4.9 – Equações para tratamento estatístico	. 76
Tabela 5.1 – Teor de umidade e cinzas da amostra de CA	. 78
Tabela 5.2 – Resultados da penometria	. 84
Tabela 5.3 – EDS da amostra CA	. 85
Tabela 5.4 – Grupos funcionais da amostra de CA.	. 88
Tabela 5.5 – Avaliação do efeito do pH inicial da solução no processo adsortivo CA_IBU e CA_DIC. Condições exp.: $C_0 = 50 \text{ mg.L}^{-1}$; $DA = 0.5 \text{ g} \cdot \text{L}^{-1}$ e $t = 3 \text{ h}$	do . 89
Tabela 5.6 – Diferença das médias entre $q_e \in R(\%)$, para sistema CA_IBU e CA_D	91C. 92
Tabela 5.7 – Resultados experimentais do DCCR.	. 93
Tabela 5.8 – Análise da variância (ANOVA): DCCR monocomposto CA_IBU	. 96
Tabela 5.9 – Análise da variância (ANOVA): DCCR monocomposto CA_DIC	. 97
Tabela 5.10 – Parâmetros dos modelos cinéticos dos modelos de PPO e PSO (CA_DI CA_IBU)	C e 101
Tabela 5.11- Resultados dos parâmetros estatísticos e cinéticos para o modelo DIP adsorção.	' de 103
Tabela 5.12 - Parâmetros dos ajustes do modelo de difusão de Boyd	105
Tabela 5.13 – Equilíbrio de adsorção, do processo de adsorção (CA_IBU), parâmetro estatísticas dos modelos de Freundlich, Langmuir, Sips, D-R e R-P	os e 106
Tabela 5.14 – Equilíbrio de adsorção do processo de adsorção (CA_DIC), parâmetro estatísticas dos modelos de Freundlich, Langmuir, Sips, D-R e R-P	os e 107
Tabela 5.15 – Valores de ln (K^{0}_{Eq}) e R^{2} , calculados a partir dos sister monocomponentes nas temperaturas estudadas (26, 45 e 55 °C)	nas 112
Tabela 5.16 – Valores de ΔG° , ΔH° , ΔS° para os sistemas CA_IBU e CA_DIC	112

Tabela 5.17 – Valores de ΔH_{st} , para os sistemas CA_IBU e CA_DIC temperaturas (26, 45 e 55 °C)
Tabela5.18 – Resultados experimentais do DCC mistura binária 115
Fonte:Autor (2024)
Tabela 5.19 – Análise da variância (ANOVA): DCCR binário CA_IBU(+DIC) 117
Tabela 5.20- Análise da variância (ANOVA): DCCR binário CA_DIC(+IBU) 118
Tabela 5.21 – valores de $R\%$ e q_e máximos e mínimos obtidos a partir do modelo matemático do DCCR
Tabela 5.22 – Modelos cinéticos de adsorção multicomposto binária 123
Tabela 5.23 - Parâmetros dos ajustes do modelo de difusão de Boyd 126
Tabela 5.24 - Ciclos de adsorção/dessorção monocomponente e binário dos fármacos estudados. 129

1 INTRODUÇÃO	19
2 OBJETIVOS	22
2.1 Objetivo geral	. 22
2.2 Objetivos especificos	. 22 22
3 REVISAO BIBLIOGRAFICA	23 . 23
3.1.1 Sistemas de adsorção	. 24
3.1.2 Equilíbrio de adsorção	. 25
3.1.2.1 Isoterma de Langmuir	. 31
3.1.2.2 Isoterma de Freundlich	. 32
3.1.2.3 Modelo de Sips	. 32
3.1.2.4 Isoterma de Dubinin-Radushkevich (D-R)	. 33
3.1.2.5 Isoterma de Redlich-Peterson (R-P)	. 34
3.1.3 Cinética de adsorção	. 35
3.1.3.1 Pseudoprimeira Ordem(PPO)	. 35
3.1.3.2 Pseudossegunda Ordem(PSO)	. 36
3.1.3.3 Modelo de difusão intrapartícula (DIP)	. 36
3.1.3.4 Modelo de Boyd	. 37
3.1.4 Termodinâmica de adsorção	. 38
3.1.5 Adsorção multicomposto	. 39
3.1.5.1 Fator separação	. 40
3.1.5.2 Equilíbrio de adsorção para multicomposto	. 41
3.2 Principais adsorventes	. 42
3.3 Carvão ativado	. 44
3.3.1 Materiais precursores da síntese de CA	. 45
3.3.2 Produção do Carvão Ativado	. 46
3.3.3 Grupos Funcionais de Superfície de CA	. 47
3.3.4 pH do ponto de carga zero (pHPCZ)	. 49
3.4 Contaminantes emergentes	. 49
3.4.1 Fármacos	. 50
3.4.1.1 Diclofenaco (DIC)	. 51
3.4.1.2 Ibuprofeno (IBU)	. 52
3.4.1.3 Impactos ambientais	. 53
3.5 Planejamento experimental	54
3.6 Estado da Arte 4 MATERIAIS E MÉTODOS	56 50
4.1 Matéria prima (precursor) usado na síntese do CA	. 59
4.2 Adsorbatos	. 59

SUMÁRIO

4.3 Síntese de CA4.4 Ensaios de caracterização do CA	.60 61
4.4.1 Determinação do teor de cinzas	61
4.4.2 Determinação do teor de umidade	62
4.4.3 Análises térmicas (ATG/ATD)	63
4.4.4 Difração de raios X (DRX)	63
4.4.5 Microscopia Eletrônica de Varredura (MEV) e Espectroscopia por Ener Dispersiva (EDS)	gia 63
4.4.6 Área superficial específica (S _{BET})	63
4.4.7 Picnometria a Gás Hélio	63
4.4.8 Espectroscopia no Infravermelho por Transformada de Fourier (FTIR)	64
4.4.9 Determinação de grupos funcionais de superfície	64
4.4.9.1 Grupos ácidos	64
4.4.9.2 Grupos básicos	65
4.4.10 Determinação do pH de superfície	65
4.4.11 Determinação ponto de carga zero (pH _{PCZ})	66
4.4.12 Índice de hidrofobicidade/hidroficilidade (IH)	66
4.5 Ensaios de adsorção	66
4.5.1 Ensaios de adsorção monocomponente, sistemas adsortivos (CA_IBU e CA_DI análise de variáveis de processos, usando a técnica de planejamento experimental	C), 68
4.5.2 Ensaios de cinética de adsorção, equilíbrio de adsorção e determinação parâmetros termodinâmicos, mocomponente dos sistemas adsortivos CA_IBU e CA_D	de DIC 69
4.5.3 Ensaios de adsorção binária (DIC+IBU) usando a técnica de planejamental	nto 73
4.5.4 Função índice de desejabilidade	74
4.5.5 Ensaios de adsorção binária (IBU+DIC): cinética e equilíbrio de adsorção	75
4.6 Tratamento estatístico (modelos matemáticos cinéticos e de equilíbrio adsorção)	de 76
4.7 Ensaios de adsorção/dessorção	76
5 RESULTADOS E DISCUSSÃO 5.1 Sintese do CA 5.2 Caracterização do CA	.78 .78 78
5.2.1 Determinação do teor de cinzas e teor umidade	78
5.2.2 Difração de raios X (DRX)	79
5.2.3 Analise termogravimétrica (ATG/ATD)	79
5.2.4 Espectroscopia no infravermelho com transformada de Fourier(FTIR)	81
5.2.5 Área superficial específica (<i>S</i> _{BET}) e volume de poros	83
5.2.6 Análise de varredura de superfície	85

5.2.7 Índice de Hidrofobicidade/Hidrofilicidade(IH)	87
5.2.8 pH de ponto de carga zero (pH _{PCZ}), pH de superfície, grupos funcionais superficie	de 87
5.3 Ensaios de adsorção	89
5.3.1 Definição do pH inicial da solução	89
5.3.2 Delineamento Composto Central Rotacional (DCCR) da adsorção monocompos CA_IBU e CA_DIC	sto 92
5.3.3 Cinética de adsorção monocomponente 10	00
5.3.4 Equilíbrio de Adsorção monocomponente (CA_DIC e CA_IBU) 10	05
5.3.5 Termodinamica de adsorção monocomponente 1	11
5.4 Ensaios de adsorção de sistemas binário1	14
5.4.1 Delineamento Composto Central Rotacional (DCCR) da adsorção binán CA_(IBU+DIC)	ria 14
5.4.2 Função índice de desejabilidade	20
Fonte: Autor (2024)	21
5.4.3 Fator de separação	21
5.4.4 Cinética de adsorção binária (CA_IBU+DIC)	23
5.4.5 Equilibrio de adsorção binária (CA_IBU+DIC)12	26
5.5 Ciclos de adsorção/dessorção	29
6 CONCLUSÃO1	30
7 SUGESTÕES PARA TRABALHOS FUTUROS	31
KEFEKENUIAS	52

1 INTRODUÇÃO

No século XXI, um dos principais desafios é garantir a qualidade da água, visto que as atividades humanas crescentes têm causado impactos significativos no meio ambiente. Os corpos hídricos são continuamente contaminados por efluentes industriais e domésticos, o que aumenta a carga de compostos orgânicos e inorgânicos e, consequentemente, degrada esses ecossistemas além de sua capacidade natural de autodepuração (Morin-Crini *et al.*,2022). Dentro desse contexto, a preocupação com uma nova classe de poluentes, os Contaminantes Emergentes (CEs), tem crescido.

Esses compostos naturais e sintéticos estão presentes em baixas concentrações. Eles recebem essa classificação devido ao conhecimento limitado sobre sua ocorrência, destino e possíveis efeitos na saúde humana e animal (Vasilachi *et al.*,2021). Tanto novos compostos que são continuamente sintetizados, quanto aqueles que têm sido lançados no ambiente há décadas, mas que só foram detectados recentemente graças ao uso de técnicas analíticas avançadas (Dey; Bano e Malik, 2019). Esta categoria inclui, Produtos farmacêuticos (PFs), produtos químicos industriais, produtos de cuidado pessoal (PCPs), compostos desreguladores endócrinos (CDEs), surfactantes e pesticidas. Esses compostos, foram identificados em águas subterrâneas e superficiais ao redor do mundo.

Dentre os PFs, enquadram-se os Anti-inflamatórios não Estereoidais (AINEs), amplamente utilizados para aliviar a dor, reduzir a inflamação e diminuir a febre (Balamurugan; Lakshmanan, 2021). O Diclofenaco (DIC) e Ibuprofeno (IBU) são AINEs amplamente utilizados e frequentemente encontrados de forma persistente em matrizes aquáticas devido ao uso extensivo (Mansouri *et al.*, 2024). O DIC é o 12° fármaco mais consumido no mundo, sendo conhecido como o AINE com maior ecotoxicidade, apresentando efeitos adversos significativos em organismos aquáticos, como peixes e invertebrados (Lonappan *et al.*, 2016).

Da mesma forma, o IBU também representa um risco ambiental, pois pode afetar o desenvolvimento e a reprodução de organismos aquáticos, como algas e peixes, aumentando sua preocupação ambiental. Ademais, a constante introdução desses fármacos em ambientes aquáticos pode formar uma mistura complexa (Peña-Guzmán *et al.*, 2019). Ambos os fármacos possuem baixo índice de remoção em sistemas convencionais de tratamento de água, resultando na presença contínua desses medicamentos em ambientes aquáticos. Devido a essa problemática, o DIC foi incluído na primeira lista de substâncias potencialmente perigosas da Diretiva 39/2013 da União Europeia. A presença contínua do IBU no ambiente também é motivo de preocupação, destacando a necessidade de aprimorar os tratamentos de águas residuais para reduzir seu impacto ambiental (Lonappan *et al.*, 2016).

Atualmente, existem várias tecnologias de tratamento para remover fármacos em águas destinadas ao abastecimento público. Entre elas, destacam-se a ozonização catalítica (Issaka *et al.*,2022), a oxidaçãofotocatalítica (Dindas *et al.*,2020), a ultrafiltração (Wang *et al.*,2022), a nanofiltração (Gomes *et al.*,2020) e a adsorção (Osman *et al.*,2024). Contudo, devido à complexidade tecnológica e aos altos custos dessas técnicas, a adsorção por Carvão Ativado (CA), se mostra técnica promissora na remoção de CEs. Isso se deve tanto à possibilidade de recuperação do adsorvente quanto à capacidade de não gerar subprodutos. A adsorção monocomposto de IBU e DIC já vem sendo estudada e reportada na literatura (Viotti *et al.*, 2019; Sahin *et al.*,2020; Hmoudah *et al.*, 2023; Chenarani; Lotfollahi, 2024). Todavia, a adsorção multicomponente de fármacos é escassa e limitada, e até o momento, há poucos estudos sobre a adsorção simultânea de fármacos (Pauletto *et al.*,2021).

O CA pode ser produzido por ativação física ou química, e suas propriedades dependem do grau de ativação. A ativação física usa vapor, nitrogênio e dióxido de carbono, enquanto a química aplica um agente químico desidratante (Danish; Ahmad, 2018; Silva *et al.*, 2019; Mansour *et al.*, 2018). O uso de resíduos orgânicos e biomassas como materiais precursores na produção de CA tem ganhado cada vez mais atenção da comunidade científica. Isso se deve à ampla disponibilidade desses materiais, ao baixo custo e à sua composição rica em carbono (Gayathiri *et al.*, 2022; Reza *et al.*, 2020).

Nesse sentido, a Castanha-do-Brasil (*Bertholletia excelsa*), fruto de possui ampla distribuição na floresta Amazônica, tem grande potencial para produção de CA. A parte externa do fruto, chamada de ouriço, constitui o pericarpo, e a parte interna é composta pelas cascas das sementes, de onde são extraídas as amêndoas (Bouvie *et al.*, 2016). Aproximadamente 1/3 do fruto é composto por sementes, enquanto os outros 2/3 são considerados resíduo, que também podem ser aproveitados (Souza; Silva, 2021).

Na busca de otimizar necessidade o processo de adsorção, o planejamento experimental pelo Delineamento Composto Central Rotacional (DCCR) surge como uma abordagem robusta e eficiente para realizar ensaios de adsorção mono e multicomponente. Esta metodologia permite a avaliação sistemática dos fatores que influenciam o processo de adsorção, como concentração inicial dos fármacos, pH, tempo

de contato e quantidade de adsorvente, otimizando as condições experimentais para maximizar a eficiência de remoção dos contaminantes. Com isso, o DCCR facilita a construção de modelos matemáticos que descrevem o comportamento do sistema de adsorção (Montgomery, 2017).

Portanto, neste trabalho foi investigado a adsorção mono e multicomponente de IBU DIC utilizando um carvão ativado produzido a partir da biomassa residual da Castanha-do-Brasil. O processo foi conduzido por meio de um planejamento experimental, utilizando o DCCR para elucidar as variáveis de processo.

2 OBJETIVOS

2.1 Objetivo geral

Investigar o desempenho do carvão ativado (CA) sintetizado de resíduos da castanha-do-Brasil na adsorção monocomponente e binária dos antiinflamatórios não esteroidais, ibuprofeno (IBU) e diclofenaco (DIC), em soluções aquosas.

2.2 Objetivos específicos

- Sintetizar o CA usando H₃PO₄ como agente de ativação;
- Caracterizar o CA usando técnicas analíticas como DRX, MEV/EDS, FTIR, S_{BET}, e outras;
- Realizar ensaios de adsorção monocomponente dos processos (CA_IBU e CA_DIC) usando Delineamento Composto Central Rotacional (DCCR) para analisar a influência das variáveis: pH, concentração inicial do adsorbato e dosagem de CA;
- Investigar a cinética, o equilíbrio e a termodinâmica da adsorção mocomponente dos processos (CA_IBU e CA_DIC);
- Estudar os efeitos das variáveis concentração inicial do adsorbato e dosagem de CA na adsorção binária de (IBU+DIC) por CA usando DCCR;
- Investigar a cinética e o equilíbrio da adsorção binária de (IBU+DIC) por CA.
- Estudar ciclos de adsorção/dessorção dos adsorbatos IBU e DIC e da mistura (IBU+DIC).

3 REVISÃO BIBLIOGRAFICA

Neste capítulo, serão abordados os principais aspectos da adsorção, fundamentos, sistemas de adsorção, destacando os métodos em batelada e contínuo. O equilíbrio de adsorção será abordado com foco nas isotermas e nos modelos matemáticos, além da cinética de adsorção, enfatizando os modelos matemáticos que descrevem o processo. A termodinâmica de adsorção será explorada, juntamente com a adsorção multicomposto, analisando as interações entre múltiplos adsorbatos. Além disso, serão descritos os principais adsorventes, seus materiais e suas aplicações na remoção de poluentes. Ademais, serão discutidos contaminantes emergentes e seus impactos, com foco específico em fármacos IBU e DIC. Finalmente, será abordado o planejamento experimental utilizado na otimização de estudos de adsorção. Este capítulo oferece uma base sólida para o entendimento e aplicação prática da adsorção em diversas áreas

3.1 Adsorção

A adsorção é um processo de transferência de massa que estuda a capacidade dos sólidos porosos (adsorventes) de, seletivamente concentrar moléculas (adsorbatos) existentes em fluidos líquidos ou gasosos, permitindo a separação desses componentes dos fluidos. Quanto maior for a área por unidade de massa sólida, mais favorável será a adsorção, uma vez que as substâncias adsorvidas se concentram na superfície das partículas (Ruthven, 1984).

O processo de adsorção é baseado em três diferentes mecanismos: estérico, equilíbrio e cinético. No caso do mecanismo estérico, os materiais adsorventes possuem dimensões características que permitem a entrada de certas moléculas e a exclusão de outras. Já no mecanismo de equilíbrio, têm-se as habilidades dos diferentes sólidos em acomodar diversas espécies de adsorbatos, que são preferencialmente adsorvidos em relação a outros compostos. Por fim, o mecanismo cinético se baseia nas diferentes propriedades de difusividade nos poros do adsorvente (Do, 1998).

Na discussão sobre os fundamentos da adsorção, é importante fazer uma distinção entre a adsorção física (fisiossorção) e a adsorção química (quimiossorção). Embora essa distinção seja útil do ponto de vista conceitual, existem casos intermediários que tornam difícil categorizar um sistema de forma absoluta (Ruthven, 1998). Na adsorção física, as forças de atração são relativamente fracas, ocorrendo principalmente por meio de interações de Van der Waals ou interações eletrostáticas, esta última ocorrendo apenas quando há adsorventes com estruturas iônicas. Esse tipo de adsorção normalmente acontece em baixas temperaturas, e as taxas de adsorção e dessorção são relativamente altas. Além disso, é importante destacar que a adsorção física é um processo reversível, exotérmico, rápido e geralmente limitado pelos processos de difusão (Faust; Aly, 1987).

A quimiossorção, por outro lado, é um processo irreversível que envolve interações fortes, como ligações químicas. As entalpias da quimiossorção estão na faixa de -10 a -100 kcal.mol⁻¹, o que é da mesma ordem de grandeza das entalpias envolvidas nas ligações químicas (Atkins; Paula, 2008; Schmal, 2010). Em comparação com a adsorção física, na quimissorção há transferência significativa de elétrons, equivalente à formação de uma ligação química entre o adsorbato e a superfície sólida. Tais interações são mais fortes e mais específicas do que as forças de adsorção física. Fatores como pressão, temperatura, natureza do adsorvente e do tipo de adsorbato influenciam diretamente na intensidade das forças de atração entre as moléculas ou íons do adsorbato presentes no fluido que irão aderir à superfície do sólido adsorvente (Rutheven, 2021). Nesse tipo de adsorção, as interações são seletivas, resultando na fixação das moléculas adsorvidas em posições específicas na superfície e impedindo sua livre migração (Faust; Aly, 1987).

Desse modo, a grande maioria dos processos industriais de adsorção prefere a adsorção física devido à sua reversibilidade, o que permite a realização de múltiplos ciclos de adsorção-dessorção utilizando o mesmo adsorvente. No entanto, em correntes com baixas concentrações de compostos alvo e em altas temperaturas, a quimissorção se torna um processo mais seletivo e dominante (Silva *et al.*, 2020).

3.1.1 Sistemas de adsorção

O processo de adsorção pode ocorrer de várias maneiras. Com relação ao modo sistema operacional ou configuração do sistema operacional, os mais utilizados são: batelada, continuo.

Quanto aos testes de adsorção em batelada, são usados para estudar as principais propriedades que afetam o mecanismo de adsorção, como pH, tempo de contato e concentração do adsovato/adsorbato (Nascimento *et al.*, 2020). O emprego dos sistemas de adsorção em batelada geralmente envolve estudos preliminares das características do mecanismo do processo, devido ao uso de uma quantidade pequena de solução. Experimentos em batelada são mais fáceis de desenvolver, sendo estes, de fundamental importância pois, fornecem informações sobre o processo de adsorção e parâmetros de equilíbrio e cinética (Lopes *et al.*, 2022).

Esse método de operação tem a capacidade de fornecer informações importantes sobre a compreensão da velocidade de reação, os mecanismos de adsorção, as interações iônicas e especialmente na avaliação da eficiência de diferentes adsorventes para um determinado adsorbato, ou vice-versa. Isso auxilia na tomada de decisões em um curto período de tempo, em comparação ao processo contínuo (Faust; Aly, 1987).

Todavia, a aplicação da adsorção contínua em leitos fixos consiste na passagem constante do fluido através de um leito de sólido adsorvente, onde as partículas sólidas capturam os compostos presentes no fluido. Este método, apesar ser considerado mais complexo devido à resistência à transferência de massa e à natureza não estacionária do processo, oferece várias vantagens, como a operação, a construção, a elevação de escala e a automação, permitindo o tratamento contínuo de grandes volumes de solução com uma quantidade definida de adsorvente (Geankoplis, 1993; Rodrigues, 2002; Raszl, 2021). Ainda que o processo contíno possa tratar grandes volumes de contaminantes, a saturação do adsorvente limita a eficiência, necessitando de ciclos de regeneração para restaurar a capacidade adsortiva do leito (Vilar *et al.*, 2008; Borba, 2006; Bueno, 2022).

3.1.2 Equilíbrio de adsorção

O equilíbrio de adsorção ocorre quando a taxa de adsorção (moléculas ou íons se ligando à superfície sólida) é igual à taxa de dessorção (moléculas ou íons se desprendendo da superfície sólida). Isso significa que a quantidade de adsorbato na superfície do adsorvente permanece constante ao longo do tempo, estabelecendo uma condição de equilíbrio (Figura 3.1) (Faust; Aly, 1987).

Fonte:Adaptado, Melo (2014).

Ao estudar o equilíbrio de adsorção, é possível determinar a capacidade de adsorção de um material e sua seletividade em relação a diferentes adsorbatos. Essas informações são fundamentais para o desenvolvimento de materiais adsorventes mais eficientes e seletivos, além de auxiliarem na otimização de processos, como a relação adsorvente-adsorbato, solução, pH, competição entre adsorbatos, temperatura no que diz respeito à relação dos parâmetros termodinâmicos, como a variação da energia de Gibbs padrão (ΔG°), variação de entalpia padrão (ΔH°) e variação de entropia padrão (ΔS°) (Dilekoglu; Yapici, 2023).

No estudo do equilíbrio, se faz necessária a construção das isotermas de adsorção, onde os adsorventes são expostos a diferentes concentrações de adsorbato em solução. Após atingir o equilíbrio, a quantidade de adsorbato removida (*qe*) é medida e relacionada à concentração de equilíbrio no fluido (*C_e*). Esse processo é repetido para diferentes concentrações iniciais do adsorbato no fluido (Faust; Aly, 1987). A curva resultante da construção da isoterma de adsorção pode variar de acordo com a natureza do adsorvente e do adsorbato, bem como das condições experimentais, como temperatura e tempo de equilíbrio/contato. Existem vários modelos matemáticos que podem ser utilizados para ajustar os dados experimentais e obter parâmetros importantes, como a capacidade de adsorção máxima (*q_{max}*) e a constante de equilíbrio (K) (Do, 1998).

Tendo isso como base, as isotermas de adsorção foram inicialmente relacionadas pela classificação Braunauer, Deming, Deming e Teller (BDDT), que categoriza as isotermas de adsorção ao tamanho e propriedades dos poros do adsorvente em cinco formas, organizadas em classes I até V, proposta por Braunauer *et al.* (1940). Assim, a partir dessa pesquisa, a IUPAC classifica as isotermas em 6 tipos. Desse modo, Thommes *et al.* (2015), propuseram um modelo classificando os VI tipos de isotermas evidenciando os *loops* de histereses para o equilíbrio fluido-sólido, como mostrado na Figura 3.2.

Isoterma com curvatura descendente é chamada de isoterma favorável, enquanto uma isoterma que se inclina de forma ascendente é denominada isoterma desfavorável (Santos, 2019).

De acordo com Thommes *et al.* (2015), a isoterma do tipo I ocorre principalmente em processos de adsorção, onde o adsorvente é um sólido microporoso. Este tipo de isoterma possui características côncavas em relação ao eixo que correspondem à pressão relativa (P/P^0). A isoterma do tipo I pode ser dividida em dois subtipos: tipo I (a), isoterma específica de materiais com poros estreitos (largura < 1 nm), e tipo I (b) encontrada em materiais com ampla distribuição de largura de poros superficiais, entre 1 nm a 2,5 nm.

Figura 3.2- classificação das isotermas para o equilíbrio fluido-sólido

As isotermas do tipo II são mais comuns na adsorção física de gases por materiais sólidos que não contenham porosidade ou materiais macroporosos, ou seja, materiais cuja largura do poro é maior do que 2,5 nm. Este tipo de isoterma possui uma curvatura mais gradual (ou seja, um Ponto B menos distinto) que é uma indicação de uma quantidade significativa de sobreposição da cobertura da monocamada e o início da adsorção multicamada. A espessura da multicamada adsorvida geralmente parece aumentar sem limite quando ($P/P_0 = 1$).

No caso de uma isoterma do Tipo III, não há ponto B e, portanto, nenhuma formação de monocamada identificável; as interações adsorvente-adsorvido são relativamente fracas e as moléculas adsorvidas são agrupadas em torno dos locais mais

favoráveis na superfície de um sólido não poroso ou macroporoso. Em contraste com uma isoterma do Tipo II, a quantidade adsorvida permanece finita na pressão de saturação (ou seja, em $P/P_0 = 1$).

Isotermas do Tipo IV, característicos por adsorventes mesoporosos (adsorventes industriais e peneiras moleculares mesoporosas). O comportamento de adsorção em mesoporos é determinado pelas interações adsorvente-adsorbato e também pelas interações entre as moléculas no estado condensado (a condensação do poro é o fenômeno pelo qual um gás condensa a uma fase semelhante a um líquido em um poro a uma pressão P menor do que a pressão de saturação P_0 do líquido). Estas isotermas são semelhantes ao tipo II por apresentarem adsorção monocamada e multicamada. Nas isotermas Tipo IV, ocorre a formação do platô de saturação, que divide as isotermas Tipo IV em duas categorias: tipo IV(a), a condensação capilar é acompanhada por histerese. Isso ocorre quando a largura do poro excede uma determinada largura crítica, que é dependente do sistema de adsorção e temperatura; e Tipo IV(b), são completamente reversíveis e comuns em sólidos que têm mesoporos cônicos e cilíndricos.

A isoterma do tipo V, no intervalo de baixos valores de P/P_0 são semelhantes às isotermas do tipo III e isso pode ser atribuído às interações adsorvente-adsorbato relativamente fracas. Por exemplo, isotermas do Tipo V são observadas para adsorção de água em adsorventes microporosos e mesoporosos hidrofóbicos.

O fenômeno da histerese significa que o caminho da dessorção será diferente do caminho da adsorção, resultando na formação de um *loop*, associado a um formato de poro. A explicação adequada do fenômeno da histerese de adsorção está relacionada com a teoria da condensação capilar, especificamente em mesoporos onde ocorre a adsorção em multicamadas (Weber; Morri, 1963). A condensação ocorre somente quando uma camada espessa de adsorbato se forma nas paredes dos poros, sendo classificada como um processo secundário.

Além disso, Bardestani, Patience e Kaliaguine (2019) mostraram uma divisão dos formatos de histereses, como mostrado na Figura 3.3

Existem dois tipos diferentes de sólidos mesoporosos que são característicos dos tipos H1 e H2. O tipo H1 apresenta uma distribuição uniforme de poros estreitos esféricos e cilíndricos, enquanto o tipo H2 possui uma estrutura mais complexa de poros estreitos interconectados, comum em materiais inorgânicos, em que a distribuição do tamanho e formato dos poros não são bem definidos.

Figura 3.3 - Formas de *loop* de histerese

Fonte: Bardestani, Patience e Kaliaguine (2019).

Segundo uma teoria simplificada, a entrada do poro é mais estreita do que o fundo. Histereses tipo H3 são observados em processos de adsorção, cujas partículas dos sólidos adsorventes consistem em placas não rígidas agregadas, como as argilas (Bardestani; Patience e Kaliaguine, 2019). O tipo H4, por outro lado, é característico de sólidos microporosos que apresentam isotermas do tipo I, com poros estreitos em forma de fenda. Para alguns materiais microporosos, a curva de dessorção fica acima da curva de adsorção em baixos valores de pressão relativa esse comportamento pode ser causado pelo aumento de volume dos microporos flexíveis, pela adsorção irreversível de moléculas do adsorvato (desde que a abertura do poro permaneça inalterada) ou por interações químicas. Asssim, histereses dos tipos H3 e H4 não exibem qualquer adsorção limitante em altas pressões relativas (Bardestani; Patience e Kaliaguine, 2019).

Com relação à adsorção de um adsorbato a partir da fase líquida, Giles *et al.* (1960) apresentaram uma forma de classificação das isotermas, baseada no comportamento inicial dos dados de equilíbrio e sua evolução com o aumento da concentração de equilíbrio do adsorbato na fase líquida, como apresentado na Figura 3.4. Giles *et al.* (1960), propuseram uma classificação mais simples em quatro modelos de isotermas (H, L, S e C), além de subgrupos (1,2,3,4, mx) descritos para cada classe, com base nas formas das partes superiores das curvas.

A isoterma do tipo L, apresenta uma curva côncava atribuído à relação entre a concentração do adsorbato remanescente na fase líquida e a concentração do adsorbato adsorvida na superfície do adsorvente é diretamente proporcional, ou seja, a concentração

remasnecente na fase liquida aumenta à medida que a concentração inicial de adsorbato aumenta, indicando a saturação do adsorvente. A isoterma do tipo H, é um caso particular da isoterma do tipo L, com uma inclinação inicial elevada, que indica grande afinidade do adsorbato pelo adsorvente. A isoterma do tipo C, é uma linha que parte da origem (zero) e significa que a razão entre as concentrações em equilíbrio e adsorvida do adsorbato a mesma em qualquer tempo (*t*) do processo de adsorção. Esta relação é definida pelo coeficiente de partição: K_p ou K_d (L.kg⁻¹). A isoterma do tipo "S" é uma curva, com ponto de inflexão. Esse tipo de isoterma é menos comum e frequentemente está associado a interações específicas, como adsorção cooperativa ou fortes interações adsorvato-adsorvente (Giles *et al.*, 1960).

Figura 3.4 - classificação das isotermas para o equilíbrio liquido-sólido

Fonte: Adaptado, Giles et al. (1960)

Quanto aos subgrupos, o subgrupo 1 representa os casos em que a monocamada de adsorbato não foi completada. O subgrupo 2, indica o grau de saturação da superfície do adsorvente, em que o adsorbato tem maior afinidade pelo solvente do que pelas moléculas adsorvidas. O subgrupo 3 é caracterizado por uma curva que sobe após o ponto crítico. Subgrupo 4, evidencia adsorbatos que formam adsorções multicamadas. Subgrupo Mx, a isoterma mostra um máximo em altas concentrações. Este é um caso raro, mostrando que em altas concentrações do adsorbato em solução, a interação adsorbato-adsorbato aumenta muito mais rápido do que as interações adsorbato-adsorbato-adsorbato. 1974).

Ao longo dos anos, vários modelos matemáticos de isotermas de adsorção foram propostos, como as isotermas de Langmuir, Freindlich, Dubinin-Radushkevich, Redlich-Peterson e Temkin. Todavia, os modelos matemáticos mais utilizados são os de Langmuir e Frundlich (Do, 1998; Melo *et al.*, 2014).

3.1.2.1 Isoterma de Langmuir

Durante o processo de adsorção, há a formação de camada homogênea na superfície do sólido e não acontece reação entre as moléculas adsorvidas. Com efeito, há um certo número de sítios de adsorção, esses locais têm energia igual as moléculas adsorvidas e não interagem umas com as outras. Logo, a adsorção ocorre em monocamada e cada sítio pode acomodar apenas uma molécula adsorvida (Langmuir, 1918).

A isoterma de Langumuir é representada pelas Equações matemáticas (3.1 e 3.2), respectivamente para modelo não linear e a forma linearizada.

$$q_e = \frac{K_L.qmL.C_e}{1+K_LC_e} \tag{3.1}$$

$$\frac{C_e}{q_e} = \frac{1}{qmL.K_L} + \frac{C_e}{K_L} \tag{3.2}$$

Onde, q_e é a quantidade do adsorbato no equilíbrio (mg.g⁻¹); C_e a concentração de equilíbrio (mg.L⁻¹); q_{mL} a capacidade máxima de adsorção da monocamada (mg.g⁻¹) e K_L a constante de adsorção da isoterma de Langmuir (L.mg⁻¹).

Além disso, as características essenciais da curva da isoterma de Langmuir podem ser expressas por uma constante adimensional, chamada fator de separação (R_L). Equação 3.3 (Hall *et al.*, 1966).

$$R_L = \frac{1}{1 + K_L C_0} \tag{3.3}$$

Assim, se a condição $R_L > 1$, a formação desse tipo de isoterma é desfavorável; se $R_L = 1$, a isoterma é do tipo linear; se $0 < R_L < 1$, a formação desse tipo de isoterma é favorável; e se $R_L = 0$ o processo de adsorção é irreversível.

3.1.2.2 Isoterma de Freundlich

Quanto à isoterma de Freundlich, esta é a primeira relação conhecida que descreve a adsorção não ideal e reversível, não limitada à formação de monocamadas. Esse modelo assume que a proporção do adsorbato em uma certa quantidade de adsorvente não permanece constante em diferentes concentrações da solução, indicando que cada sítio ativo tem uma afinidade variável para as moléculas do componente a ser adsorvido. Sob essa ótica, a quantidade adsorvida é a soma da adsorção em todos os sítios. O preenchimento desses sítios começa nos pontos onde a energia de ligação é mais forte, sugerindo que a força de ligação diminui exponencialmente conforme o grau de ocupação do local aumenta (Freundlich, 1906).

Na isoterma de Freundlich, não se assume que o volume de moléculas adsorvidas apresente um valor limite com o aumento de C_e , o que significa que a equação de Freundlich falha em altas concentrações em equilíbrio (Faust; Aly,1987). Essa isoterma é representada pela Equação 3.4 na forma não linear e pela Equação 3.5 na forma linear.

$$q_e = K_F \cdot C_e^{1/nf} \tag{3.4}$$

$$log(q_e) = log(K_F) + \frac{1}{nf}log(C_e)$$
(3.5)

Onde q_e é a quantidade do adsorbato no equilíbrio (mg.g⁻¹); C_e a concentração no equilíbrio (mg.L⁻¹); n_f é a constante empírica relacionada a intensidade da adsorção (adimensional) e K_F é a constante da isoterma de Freundlich relacionada a capacidade de adsorção [(mg.g⁻¹).(L.mg⁻¹)^{1/n}]. Valores de *n* na faixa de 1< *n* <10 significam adsorção favorável (Toor; Jin, 2012; Do, 1998).

3.1.2.3 Modelo de Sips

O modelo de isoterma de Sips é uma combinação dos modelos de Langmuir e Freundlich, desenvolvida para descrever a adsorção em sistemas heterogêneos (Sips, 1948). Após identificar que com o aumento da concentração de adsorbato nas equações de Freundlich (Eq. 3.4 e 3.5) ocorria um problema com o aumento contínuo na quantidade adsorvida (q_e), Sips (1948) apresentou uma expressão para quando a concentração de adsorbato é alta (Do, 1998). As Equações 3.6 e 3.7 expressam o modelo de Sips na forma linear e não-linear, respectivamente.

$$\frac{1}{n_s} ln\left(C_{\rm e}\right) = -\ln\left(\frac{k_s.q_{mS}}{q_e}\right) + \ln\left(k_s\right) \tag{3.6}$$

$$q_e = \frac{K_s.qms.c_e^{1/nS}}{1 + K_s.c_e^{1/nS}}$$
(3.7)

Em que, q_e é a capacidade de adsorção no equilíbrio (mg. g⁻¹); q_{mS} é a capacidade de adsorção máxima (mg. g⁻¹); C_e é a concentração de adsorbato no equilíbrio (mg. L⁻¹); K_S é a constante de Sips (L.g⁻¹); nS é o fator de heterogeneidade. Em relação ao fator de heterogeneidade de Sips (n_s), quando $n_s = 1$, o modelo de Sips é igual ao modelo de Langmuir; se $n_s > 1$, haverá uma relação diretamente proporcional entre o valor de n_s e o valor de heterogeneidade do sistema (Do, 1998).

3.1.2.4 Isoterma de Dubinin-Radushkevich (D-R)

Esssa isoterma é um modelo para adsorção de gases e vapores em superfícies de sólidos microporosos, como CA e zeólitas. O modelo de Dubinin-Radushkevich é uma equação semiempírica em que a adsorção segue o mecanismo de preenchimento dos poros. Esse modelo supõe um processo de adsorção multicamada, que envolve as forças de van der Waal, sendo aplicado aos processos físicos de adsorção. A Equação da isoterma D-R é favorável para a remoção de compostos orgânicos em fase gasosa em sólidos microporosos (Dubinin, 1960).

As formas linear e não-linear são representadas pelas Equações 3.8 e 3.9, respectivamente.

$$ln(q_e) = -ln(q_{mDR}) - \beta \varepsilon^2$$
(3.8)

$$q_e = q_{mDR} \cdot exp(-\beta \varepsilon^2) \tag{3.9}$$

Em que, q_e é a capacidade de adsorção no equilíbrio (mg.g⁻¹); q_{mDR} é a capacidade de adsorção máxima da Equação D-R (mg.g⁻¹); β é a constante relacionada à energia de ativação (mol.kJ⁻²); ε é o potencial de Polianyi. O potencial de Polianyi pode ser calculado usando a Equação 3.10.

$$\varepsilon = R.T.\ln\left(1 + \frac{1}{c_e}\right) \tag{3.10}$$

Em que, *R* é a constante dos gases ideais (8,314 J.mol⁻¹.K⁻¹); *T* é a temperatura absoluta (K); *C_e* é a concentração de equilíbrio (mol.L⁻¹). A constante associada à energia de ativação (β), da Equação 3.8, tem uma relação inversamente proporcional à energia média de adsorção (*E*), observada na Equação 3.11.

$$E = \frac{1}{\sqrt{2\beta}} \tag{3.11}$$

O valor de E, que o modelo D-R informa é importante para conhecer a natureza da adsorção, para distinguir entre adsorção física ou química. O modelo de isoterma D-R, tem fornecido resultados satisfatórios para processos de adsorção que utilizaram, concentração média a alta de adsorbato, porém é inadequado para a adsorção em baixas concentrações de adsorbato na solução, em condições previstas pela Lei de Henry (Nascimento *et al.*, 2020).

3.1.2.5 Isoterma de Redlich-Peterson (R-P)

As isotermas de Freundlich (1906) e de Langmuir (1918), são conhecidas por representarem bem diversos processos de adsorção. No entanto, em 1958, observou-se que o modelo de Freundlich não era adequado para concentrações mais baixas, enquanto o modelo de Langmuir apresentava problemas em concentrações mais altas. Por essa razão, Redlich e Peterson (1959) desenvolveram um modelo que combina esses dois modelos, utilizando a isoterma de Freundlich para altas concentrações e a isoterma de Langmuir para baixas concentrações. Isso resultou no modelo de três parâmetros representado na forma não-linear pela Equação 3.12.

$$q_e = \frac{\kappa_{RP.} C_e}{1 + \alpha_{RP.} C_e^{n_{RP}}} \tag{3.12}$$

Em que, q_e é a capacidade de adsorção no equilíbrio (mg.g⁻¹); C_e é a concentração de equilíbrio (mg.L⁻¹); α_{RP} (L.mg⁻¹) e K_{RP} (L.g⁻¹) são constantes do modelo de R-P, n_{RP} é o expoente($0 \le n_{RP} \le 1$) do modelo R-P.

3.1.3 Cinética de adsorção

A cinética de adsorção estuda a velocidade em que ocorre o processo de adsorção, ou seja, quanto tempo leva para que as partículas sejam adsorvidas em determinada superfície, também está relacionada com a compreensão dos mecanismos de transporte pressão de massa. A cinética de adsorção pode variar devido a mudanças no tamanho da partícula, tamanho do poro, concentração do fluido, temperatura, e afinidade de adsorção (Do, 1998).

A cinética de adsorção é determinada pela difusão de moléculas da fase contínua para a região interfacial (difusão externa); difusão de moléculas nos poros (difusão interna); difusão de moléculas em superfícies (difusão de superfície); adsorção e dessorção no processo fundamental. Portanto, para analisar o mecanismo que controla a adsorção de uma determinada molécula, os dados cinéticos são examinados em modelos que vão definir o tipo de reação química, difusão e transferência de massa envolvida no processo (Faust; Aly, 1987).

Assim, com o objetivo de investigar as etapas controladoras do processo de adsorção, são utilizados modelos matemáticos (cinéticos), para leitura e expressão de dados experimentais. Dentre estes, os modelos matemáticos de cinética mais utilizados, podem ser citados os modelos matemáticos de reação, como pseudoprimeira ordem (PPO); de pseudossegunda ordem (PSO) e o modelo de difusão intrapartícula (DIP)

3.1.3.1 Pseudoprimeira Ordem(PPO)

Uma das primeiras equações de taxa de adsorção de superfície sólida, foi proposta por Lagergren (1898) em um sistema de adsorção sólido/líquido, também conhecida como equação cinética de pseudo-primeira ordem, esse modelo busca descrever a fisiossorção. O PPO é amplamente utilizado no processo de adsorção de solutos de soluções líquidas e baseia-se na capacidade de adsorção de sólidos, e pode ser expresso pela Equação 3.13 (Ho; Mackay, 1999; Ho, 2006).

$$\frac{dq(t)}{dt} = k_1(q_e - q_t) \tag{3.13}$$

Integrando a equação acima para as condições de contorno t = 0 a $t = t q_e = 0$ a $q = q_t$ e têm-se a Equação 3.14.

$$q_t = q_e [1 - exp(-k_1 t)]$$
(3.14)

Em que, $q_e e q_t$ são definidas como as capacidades de adsorção em equilíbrio e em qualquer tempo t (mg.g⁻¹), respectivamente e k_1 é a constante cinética do modelo de reação pseudoprimeira ordem (L.min⁻¹).

3.1.3.2 Pseudossegunda Ordem(PSO)

Quanto o modelo cinético de pseudo-segunda ordem (PSO), esse busca descrever quimissorção, que visa forças de valência em troca e compartilhamento de elétrons no sistema entre adsorvente e adsorbato além de ser pautada na concentração de equilíbrio (Ho; Mackay, 1999). A forma não linear do modelo PSO é representado pela Equação 3.15:

$$\frac{dq_t}{dt} = k_2 (q_e - q_t)^2 \tag{3.15}$$

Em que, k_2 é a constante da cinética de segunda ordem, em $[g.(\text{mg.min})^{-1}]$. Integrando a Equação (3.15) nas condições de contorno t = 0 a t = t e q = 0 a $q = q_t$, obtém-se sua forma linearizada (Equação 3.16):

$$q_t = \frac{k_2 q_e^2 t}{1 + (q_e k_2 t)} \tag{3.16}$$

Em que, *t* é o tempo de adsorção (min.); $q_e e qt$ são as quantidades adsorvidas do adsorvato em equilíbrio e em *t* (mg.g⁻¹)); k_2 é constante cinética de pseudossegunda ordem [g.(mg min)⁻¹].

3.1.3.3 Modelo de difusão intrapartícula (DIP)

A cinética de adsorção é governada por diferentes mecanismos, geralmente, a difusão. As equações de pseudo-primeira ordem e pseudossegunda ordem não podem ser usadas para identificar o mecanismo de difusão se considerarmos que os adsorbatos podem ser transportados da solução para a fase sólida por difusão intrapartícula. Essa teoria é derivada da lei de Fick, assumindo que a difusão do filme líquido ao redor do adsorvente é desprezível e que a difusão intrapartícula é a única taxa que controla a fase do processo de adsorção, representada pela Equação 3.17 (Weber; Morris, 1963).
Em que, q_t é a quantidade de adsorbato adsorvido por massa de adsorvente no tempo t (mg.g⁻¹); k_d é a constante da velocidade de adsorção da DIP (mg.g⁻¹.min^{-0,5}) e C é o coeficiente linear do modelo e está associado à espessura da camada limite (mg.g⁻¹).

Portanto, o gráfico de q_t versus $t^{0.5}$ resultará em uma relação linear, o que permite o cálculo do valor de k_d a partir da inclinação da reta. Além disso, os gráficos de difusão intraparticula geralmente exibem multilinearidade, o que significa que duas ou mais etapas podem ocorrer. Geralmente, a primeira etapa representa a adsorção na superfície externa ou o estágio de adsorção instantânea; a segunda etapa corresponde à a adsorção gradual, na qual ocorre a difusão intrapartícula e a terceira etapa corresponde ao equilíbrio final, onde a difusão intrapartícula começa a desacelerar devido à baixa concentração da espécie de adsorção na solução e um número menor de sítios de adsorção disponíveis (Das; Dash, 2017; Mckay; Otterburn; Sweeney, 1980).

3.1.3.4 Modelo de Boyd

Boyd, Adamson e Myers (1947) propuseram um modelo de difusão intrapartícula. Este modelo é particularmente útil para determinar se a etapa limitante da velocidade de adsorção é devida ao transporte externo (difusão do adsorvato através da solução até a superfície do adsorvente) ou à difusão interna (movimento do adsorvato dentro dos poros do adsorvente). A aplicação do modelo de Boyd ajuda a identificar quais etapas controlam a taxa de adsorção em um determinado sistema descrito pela Equação 3.18

$$F = \frac{q_t}{q_e} \tag{3.18}$$

Onde, *F* representa a fração de íons ou moléculas do adsorbato que foram adsorvidos pelo adsorvente em um determinado tempo *t* (adimensional); *qt* é a quantidade de adsorbato adsorvido na superfície do adsorvente (mg.g⁻¹) em um tempo *t* (min); *q_e* é a quantidade de adsorvida em equilíbrio (mg.g⁻¹). A constante do modelo de Boyd (*B*) é observada na Equação 3.19.

$$B = \frac{D_i \cdot \pi^2}{r^2} \tag{3.19}$$

(3.17)

Onde, *B* a constante do modelo de Boyd (min⁻¹); *Di* é o coeficiente de difusão (cm².min⁻¹); e *r* é o diâmetro médio das partículas (cm). Segundo Reichenberg (1953), a partir de resultados experimentais da variação de *F* de 0,00 a 1,00 e da manipulação matemática de integrações numéricas e de transformadas de Fourier, os resultados do produto (*B.t*) são descritos pelas Equações 3.20 e 3.21. Ressalta-se que, nas aplicações do modelo de difusão de Boyd, o termo *Bt* é o produto entre a constante *B* e os valores de tempo *t* (Equações 3.20 e 3.21).

$$F > 0,85, Bt = -\ln\left(1 - \frac{qt}{qe}\right) - 0,4977$$
(3.20)

$$F < 0.85, Bt = \left(\sqrt{\pi} - \sqrt{\pi} - \left(\frac{\pi^2 \cdot F}{3}\right)\right)^2$$
(3.21)

Os valores *B* são calculados a partir da inclinação da reta do gráfico (*Bt versus t*). Se o gráfico (*Bt versus t*) for uma linha reta que passa pela origem dos eixos, a difusão intrapartícula é a etapa limitante da taxa de adsorção. Todavia, se a reta não passa pela origem dos eixos do gráfico, ou ainda, forme uma curva não-linear, a etapa limitante é a difusão externa (Boyd; Adamson e Myers, 1947).

3.1.4 Termodinâmica de adsorção

Normalmente, a termodinâmica de adsorção é definida em termos do das interações do adsorvente/adsorbato e energia do sistema a uma determinada temperatura (Awad *et al.*, 2020). As propriedades termodinâmicas envolvidas nos estudos de adsorção estão relacionadas com mudanças na energia padrão de Gibbs (ΔG°), na entalpia padrão de adsorção (ΔH°) e na entropia padrão de adsorção (ΔS°) (Lima *et al*, 2019). É possível calcular essas grandezas utilizando a equação da variação da energia padrão de Gibbs (Equação 3.22) e a equação de van't Hoff (Equação 3.23).

$$\Delta G^0 = -RT. \ln \left(K_D \right) \tag{3.22}$$

$$LnK_D = -\frac{\Delta H^0}{R}\frac{1}{T} + \frac{\Delta S^0}{R}$$
(3.23)

A constante de equilíbrio termodinâmico (K_D) pode ser calculada pela Equação 3.24:

$$K_D = \frac{qe}{Ce} \tag{3.24}$$

Em que, *R* é a constante universal dos gases (8,314 J.mol⁻¹.K⁻¹); *T* a temperatura absoluta (K) e K_D constante de equilíbrio termodinâmico (adimensional). A variação de entalpia (ΔH°) e entropia (ΔS°) são determinados a partir da inclinação e interceptação da reta, do gráfico de Ln(K_D) versus (1/*T*). As unidades comuns de $\Delta G^\circ \Delta H^\circ$ e ΔS° são (J.mol⁻¹), (J.mol⁻¹) e (J.mol⁻¹.K⁻¹), respectivamente (Tran *et al.*, 2017).

A variação da energia de Gibbs padrão permite avaliar como o sistema se comporta, pode ser de maneira espontânea ($\Delta G^{\circ} < 0$), ou não espontânea ($\Delta G^{\circ} > 0$). Os processos de adsorção podem ser classificados como exotérmicos, para valores da variação de entalpia padrão ($\Delta H^{\circ} < 0$), quando ocorre liberação de energia no processo, e endotérmicos para valores ($\Delta H^{\circ} > 0$), se a energia for absorvida. A variação de entropia padrão (ΔS°) está relacionada ao grau de desordem do sistema. Quando o sistema se torna mais desordenado, a entropia aumenta ($\Delta S^{\circ} > 0$). Portanto, quando o sistema se torna mais organizado, a entropia diminui ($\Delta S^{\circ} < 0$) (Tan; Hameed, 2010).

3.1.5 Adsorção multicomposto

A remoção de poluentes em processos industriais geralmente envolve a presença de múltiplos compostos simultaneamente, o que dificulta o estudo de remoção de poluentes monocomposto em um cenário realista. Todavia, a presença de múltiplos compostos pode levar a interferências durante o processo de adsorção, pode haver competição pelos mesmos sítios de adsorção, resultando em uma menor capacidade de remoção para certos poluentes da mistura. Vale salientar, que a presença de substâncias poluentes em um efluente líquido industrial pode inibir o processo de adsorção devido às características relacionadas com a repulsão entre os adsorbatos (carga de superfície), estrutura e tamanho da molécula, grupos funcionais característicos e competição pelos sítios ativos do adsorvente (Girish, 2017; Noufel *et al.*, 2020).

Com isso, a capacidade de adsorção é diretamente influenciada pela quantidade existente de sítios livres disponíveis do adsorvente. À medida que a concentração inicial do adsorbato se eleva, os sítios do adsorvente são saturados rapidamente. Caso haja outro adsorvato em solução, ocorre uma competição pelos sítios disponíveis entre os componentes (Sharma; Dalai; Vyas, 2017).

Nesse sentido, a adsorção multicomposto é um subcampo de pesquisa ideal quando se deseja remover sistemas mais complexos pois, efluentes industriais normalmente são constituídos por uma mistura de diversos poluentes que necessitam ser removidos simultaneamente (Benhabiles; Rida, 2020).

A interação entre os adsorbatos em um sistema multicomposto pode ser de três tipos: sinérgica, antagônica e sem interação. Esta interação pode ser caracterizada pela razão entre a capacidade de adsorção do adsorbato em um sistema multicomposto (q_m) e a capacidade de adsorção do adsorbato em um sistema monocomposto (q_e) .

Assim, se $q_{e,binária}/q_{e,monocomp.} > 1$, a interação é sinérgica e a capacidade de adsorção aumenta na presença de outros contaminantes; se $q_{e,binária}/q_{e,monocomp.} < 1$, a interação é antagônica e a capacidade de adsorção diminui quando há outros contaminantes, o que pode ocorrer devido à competição pelos sítios ativos ou pelo deslocamento de um contaminante adsorvido por outro de maior afinidade; se $q_{e,binária}/q_{e,monocomp.} = 1$, a presença de outros contaminantes não influencia a capacidade de adsorção e não há interação entre os adsorbatos (Girish, 2017).

3.1.5.1 Fator separação

O fator de separação é o parâmetro utilizado para identificar a adsorção preferencial em sítios ativos de um adsorvente em uma mistura de dois componentes. Para misturas binárias em equilíbrio de adsorção, a teoria de Langmuir pode ser aplicada de modo que a taxa de adsorção/dessorção dos componentes *A* e *B* no equilíbrio pode ser descrita pela Equação 3.25 (Rowe; Schiessler, 1966).

$$A + BS \stackrel{\leftarrow}{\underset{K_2}{\overset{}{\to}}} AS + B \tag{3.25}$$

Em que, $A \in B$ são os componentes, sendo A preferencialmente adsorvido; $A_S \in B_S$ são as moléculas adsorvidas. Deste modo, a constante de equilíbrio (K) pode ser descrita pela Equação 3.26:

$$K = \frac{K_1}{K_2} = \frac{[A_S]}{[A]} \frac{[B]}{[B_S]}$$
(3.26)

A Equação 3.26 pode ser reescrita utilizando a capacidade de adsorção (q_e) para os adsorbatos ($A_s \, e \, B_s$). Assim, o fator de separação (α_B^A) pode ser calculado pela Equação 3.27. O fator de separação pode ser calculado a partir dos dados das curvas de equilíbrio de adsorção (Debnath *et al.*, 2017).

$$\alpha_B^A = \frac{q_A \cdot c_b}{q_B \cdot c_A} \tag{3.27}$$

Em que: $q_A e q_B$ são os valores de capacidade de adsorção dos componentes A e Bno equilíbrio (mg.g⁻¹); $C_A e C_B$ são os valores de concentrações dos componentes A e Bna solução no equilíbrio. Assim, se $\alpha_B^A > 1$ o adsorbato A tem preferência aos sítios ativos do adsorvente no processo de adsorção e se $\alpha_B^A < 1$ o adsorbato B tem preferência aos sítios ativos do adsorvente durante a adsorção.

3.1.5.2 Equilíbrio de adsorção para multicomposto

Soluções com múltiplos adsorbatos competem pelos sítios ativos disponíveis do adsorvente. Dessa forma, a capacidade de adsorção em equilíbrio do componente i $(q_{e,i})$ é influenciada pela concentração de equilíbrio (C_e) de todos os adsorbatos presentes. (Worch, 2012).

a) Langmuir Estendido

A partir das mesmas premissas do modelo de Langmuir, onde os sítios ativos são uniformes, idênticos, possuem a mesma energia e estão igualmente acessíveis aos adsorvatos, desenvolve-se a isoterma de Langmuir estendida para sistemas multicomponentes. Porém, assume-se que os adsorbatos não interagem entre si. (Markham; Benton, 1931). O modelo de Langmuir estendido é representado pela Equação 3.28.

$$q_{e,i} = \frac{q_{m,i} \cdot K_{L,i} C_{e,i}}{1 + \sum_{i=1}^{n} (K_{L,i} \cdot C_{e,i})}$$
(3.28)

Em que, $q_{e,i}$ é a capacidade de adsorção no equilíbrio do componente *i* (mg.g⁻¹); $C_{e,i}$ é a concentração no equilíbrio do componente *i* (mg.L⁻¹); $q_{m,i}$ é a capacidade de adsorção em monocamada do componente *i* (mg.g⁻¹); $K_{L,i}$ é a constante de equilíbrio de

42

Langmuir (L.mg⁻¹) e *n* é o número de componentes na solução. Os parâmetros $K_{L,i}$ e $q_{m,i}$ são estimados a partir dos dados experimentais de equilíbrio de adsorção.

b) Modelo de Sheindorf-Rebuhn-Sheintuch (SRS)

Este modelo é uma extensão do modelo de Freunlich para multicompostos. A principal diferença é que cada adsorbato é tratado individualmente, seguindo o modelo de Freunlich, e a energia de adsorção é distribuída de forma exponencial para cada adsorbarto. O coeficiente de competição (a_{ij}) deste modelo é utilizado para avaliar o impacto da presença do componente *j* na adsorção do componente *i*. Quando $a_{ij} = 0$, não há competição entre os componentes. Quando $a_{ij} > 0$, ocorre competição entre os componentes. Caso $a_{ij} = a_{ii}$ ou $a_{ij} = a_{jj}$, então a_{ij} é considerado igual a 1 (Sheindorf; Rebuhn e Sheintuch, 1981; Remenárová *et al.*, 2009; Girish, 2017).

O modelo SRS é representado pela equação 3.29:

$$q_{e,i} = K_{F,i}. C_{e,i}. \left(\sum_{j=1}^{n} (a_{ij}. C_{e,j}) \right)^{\left(\frac{1}{n_i}\right) - 1}$$
(3.29)

Onde, $q_{e,i}$ é a capacidade de adsorção no equilíbrio do componente i (mg.g⁻¹); $C_{e,i}$ é a concentração no equilíbrio do componente i (mg.L⁻¹); aij é coeficiente de competição; $K_{F,i}$ é a constante de Freundlich e n_i é a intensidade da adsorção, sendo as duas últimas ($K_{F,i}$ e n_i) calculadas a partir da isoterma de Freundlich para o componente i.

3.2 Principais adsorventes

Existem diversos tipos de adsorventes disponíveis no mercado, cada um com suas características e aplicações específicas. Um dos adsorventes mais conhecidos e utilizados é o carvão ativado (CA) (Li *et al.*, 2023). O CA é obtido a partir da ativação de carvão. O processo de ativação aumenta a porosidade e a área superficial específica do CA, proporcionando aumento da capacidade de adsorção (Ferreira *et al.*, 2020). O carvão ativado é amplamente utilizado na remoção de impurezas orgânicas do meio aquoso (Silva *et al.*, 2021), compostos químicos (Souza *et al.*, 2021), metais tóxicos (Santana; Santos e Oliveira Resende, 2020), odores e sabores indesejados da água (Silva; Lima e Quinaia, 2019) e tratamento de efluentes industriais (Heylmann *et al.*, 2021).

Outro tipo de adsorvente comum são as zeólitas, minerais microporosos composto por alumínio, silício e oxigênio. A zeólita possui uma estrutura cristalina única, com canais e cavidades que permitem a adsorção seletiva de moléculas específicas. A zeólita é frequentemente utilizada na remoção de amônia em tratamento de água, desidratação de gases e eliminação de odores em refrigeradores e ambientes fechados (Miranda, 2019; Moreira, 2022; Pérez-Botella; Valencia e Rey, 2022).

A sílica gel é um adsorvente amplamente utilizado, principalmente em processos de secagem e purificação. É uma forma amorfa de dióxido de silício, o que apresenta uma alta capacidade de adsorção de umidade e compostos orgânicos voláteis (COV) (Hou *et al.*, 2023). A alumina ativada é um adsorvente composto por óxido de alumínio. Apresenta uma estrutura porosa e uma grande área superficial, o que permite a adsorção de líquidos e gases. A alumina ativada é frequentemente utilizada na desidratação de gases, remoção de impurezas em processos químicos e na purificação de óleos e solventes (Samrat *et al.*, 2020; Ardena *et al.*, 2022).

Além desses, existem adsorventes específicos para determinados tipos de poluentes ou substâncias, como resinas de troca iônica para remoção seletiva de íons específicos, adsorventes à base de polímeros para remoção de contaminantes em soluções aquosas e adsorventes magnéticos, que podem ser facilmente removidos com o auxílio de campos magnéticos após a adsorção de compostos indesejados (Morai, 2020).

A Tabela 3.1 mostra alguns trabalhos reportados na literatura, que utilizaram adsorventes comerciais.

ADSORVENTE	ADSORBATO	REFERÊNCIAS
CA	Anti-inflamatórios não esteróides (AINEs)	Bednárek et al. (2024)
Sílica gel	Zinco (II)	Nimah <i>et al</i> . (2022)
Zeolita	Dióxido de carbono	Pires (2021)
Alumina ativada	Flúor	Samrat <i>et al</i> . (2020)
Resina de troca	Neodímio	Morais (2020)
iônica		

Tabela 3.1 – Aplicações de diferentes adsorventes em processos de adsorção.

Algumas características dos adsorventes influenciam diretamente nos processos de adsorção, como a distribuição dos tamanhos dos poros, área superficial específica, tipo de adsorbato e outras. Além disso, seus efeitos irão nortear o processo de adsorção, que poderá ser favorável ou desfavorável (Nascimento, 2020).

Portanto, os adsorventes comerciais são materiais essenciais para remoção de substâncias indesejadas de correntes de fluido, em uma variedade de processos e

aplicações industriais. O carvão ativado, zeólita, sílica gel, alumina ativada, entre outros, são apenas algumas das opções disponíveis no mercado. A escolha do adsorvente mais adequado dependerá das substâncias a serem adsorvidas, das condições operacionais do processo e dos objetivos de purificação ou tratamento (Motta Sobrinho; Paulino e Oliveira, 2019).

Independentemente da escolha do material adsorvente selecionado, é necessário a realização de ensaios em escala piloto no laboratório com a finalidade de avaliar a eficiência do processo. Dentre os adsorventes, os sintéticos apresentam alto custo comercial como um fator limitante na sua utilização em processos adsortivos. No entanto, pesquisas sobre adsorventes alternativos, com baixo valor comercial tem indicado que, o CA tem apresentado alto potencial na remoção de substâncias do meio aquosos como: metais pesados, hidrocarbonetos, pesticidas e fenóis (Zhang *et al.*, 2022; Liu *et al.*, 2023).

3.3 Carvão ativado

O carvão consiste em cadeias curtas de carbono distorcidas que são empilhadas irregularmente e ligadas entre si para formar uma rede tridimensional (Gao *et al.*, 2023; Xing *et al.*, 2023). O CA é conceituado como uma forma de carbono que possui propriedades anfóteras, ou seja, capaz de reagir com um ácido ou uma base. Desse modo, sua capacidade de adsorção vai depender diretamente de propriedades como, área superficial específica, estrutura de poros, porcentagem de material inorgânico, bem como dos grupos químicos de superfície (Cavalcante, 2021).

Existem diversos tipos de CA disponíveis no mercado, cada um com características e aplicações específicas. Os principais fatores que influenciam as propriedades do CA são o precursor e o processo de síntese. Dependendo da morfologia e do tamanho de suas partículas, o CA pode ser encontrado na forma de carvão ativado granular (CAG), carvão ativado em pó (CAP), fibras de carvão ativado (ACFCs), nanotubos de carbono (CNTs), monólitos, panos de fibras de carvão ativado (CPF's), dentre outros (Salvador *et al.*, 2015; Ju *et al.*, 2015).

Nos últimos anos, o CA tem sido usado para remover substâncias contaminantes de águas residuais, águas subterrâneas, lixiviados de aterros sanitários, e tratamento da água para consumo humano (Narumi; Lopez, 2022). É usado também como, agente de purificação no tratamento de substâncias como vitaminas, enzimas, analgésicos,

penicilina, bem como no tratamento de desintoxicação alimentar (Tenório *et al.*, 2022). O CA também é utilizado em diversos produtos de consumo, como máscaras faciais (Silva, 2021), pastas de dentes (Paixão; Lucas e Souza, 2023), filtros de ar para veículos (Silva *et al.*, 2019) e outros. Esses produtos utilizam o CA devido as suas propriedades de adsorção e capacidade de remover impurezas e toxinas.

3.3.1 Materiais precursores da síntese de CA

A produção do CA envolve a utilização de materiais precursores que são submetidos a um processo de carbonização e posterior ativação. Casca de coco, madeira, carvão mineral e ossos são alguns dos materiais mais comumente utilizados (Saputro *et al.*, 2020; Borges *et al.*, 2015; Gomes *et al.*,2023). A escolha do precursor irá depender das propriedades desejadas do CA e sua aplicação específica. De acordo com a literatura consultada, uma grande variedade de materiais precursores têm sido utilizada na produção de CA, dentre eles caroço de pêssego (Heylmann *et al.*, 2021), casca de banana (Provenzi *et al.*, 2020), casca do pequi (Brandão, Queiroz e Silva, 2020), castanha de caju (Silva *et al.*, 2021), bambu (Neolaka *et al.*, 2022), casca de maracujá (Cabral, 2022), Pólen de lótus (Ye *et al.*, 2022), caroço de açaí e cascas da castanha-do-Brasil (Sousa *et al.*, 2021), casca de laranja (Domingues *et al.*, 2021), dentre outros materiais alternativos(bosch *et al.*, 2022).

A castanha-do-Brasil (*Bertholletia excelsa*), também conhecida como castanhado-pará, é um tipo de oleaginosa nativa da região amazônica, especialmente encontrada no Brasil. Essa semente é popularmente consumida como um alimento saudável e fonte de nutrientes essenciais. A planta é de grande porte, pode medir até 60 m de altura, com diâmetro de 100 a 180 cm (Kluczkovski; Oliveira e Maciel, 2021). Geralmente, apenas as amêndoas da Castanha-do-Brasil são utilizadas, pois são comestíveis e compõem o restante da fruta, cerca de 90%, os resíduos. A parte externa do fruto, chamada de ouriço, constitui o pericarpo; e a interna, a casca externa as sementes (ou tegumentos), de onde são extraídas as amêndoas (Souza; Silva, 2021).

A produção de CA a partir das cascas da castanha do Brasil é uma alternativa sustentável e economicamente viável (Souza; Silva, 2021). O uso potencial dos resíduos do beneficiamento de amêndoas da castanhado Brasil na produção de CA poderá contribuir para o desenvolvimento sustentável do setor (Morais, 2021).

3.3.2 Produção do Carvão Ativado

O processo de síntese de CA é constituído basicamente de duas etapas principais: a carbonização do precursor seguida de ativação do material carbonáceo (Arena; Lee e Clift, 2016). Quanto ao processo de pirólise, conhecido como carbonização, consiste em submeter o precursor a temperaturas de até 800 °C, em que substâncias voláteis (CO, H₂, CO₂ e CH₄) são removidas, nesta etapa ocorre a formação de poros (ainda obstruídos). Idealmente, esta etapa deve ocorrer em atmosfera inerte (Rovani, 2015).

A ativação corresponde à desobstrução dos poros já formados. Esta pode ser física ou química. O objetivo da ativação do CA, seja química ou física, é promover o aumento da área superficial específica e da porosidade, resultado da oxidação dos átomos de carbono. A produção de CA por ativação física envolve a carbonização do material precursor entre 400 e 800 °C, na ausência de oxigênio ou na presença de um gás inerte. Em seguida, o material carbonáceo resultante é ativado em temperaturas entre 600 e 1100 °C, com CO₂ ou N₂ como catalisador, entre 1 a 10 horas (Bedin *et al.*, 2016). Desse modo, a ativação física tem por objetivo oxidar os materiais orgânicos que estavam causando a obstrução dos poros (Figura 3.5). Assim, a ativação física do CA é influenciada pela substância utilizada (CO₂ ou N₂, outros), pelo tempo e pela temperatura de ativação (Bansal; Donnet e Stoeckli, 1988; Marsh; Rodríguez, 2006; Boligon, 2015).

Fonte: Adaptado de Rovani (2015).

Na ativação química, utiliza-se impregnação com substâncias químicas para desobstruir os poros formados e alterar as propriedades do CA. Normalmente, são utilizadas temperaturas mais baixas do que aquelas utilizadas na ativação física (entre 400 °C e 800 °C) e, geralmente ocorre o aumento da área superficial específica do CA, comparado com a ativação física (Rovani, 2015; Costa, 2021). Os principais agentes de ativação química utilizados na síntese de CA são: acido fosfórico (H₃PO₄), cloreto de

zinco (ZnCl₂), hidróxido de potássio (KOH), amoníaco (NH₃) e hidróxido de sódio (NaOH), antes ou após a pirólise do precursor (Souza *et al.*, 2021).

A Tabela 3.2 mostra alguns trabalhos científicos que utilizaram H₃PO₄ como agente de ativação de CA e suas respectivas aplicações em processos de adsorção de fármacos.

PRECURSOR DO CA	ADSORVATO/ADSORBATO	REFERÊNCIA
Casca de amendoim	Ciprofloxacina	Ouyang <i>et al.</i> (2023)
Escama de peixe	Diclofenaco sódico	Xie <i>et al.</i> (2023)
Espiga de milho	Ciprofloxacina	Chen <i>et al</i> . (2023)
Caule do milho	Tetraciclina	Song <i>et al</i> . (2020)
Caroço de azeitona	Ibuprofeno/amoxicilina	Mansouri et al. (2015)
Folhas de chá usadas	Paracetamol	Wong <i>et al.</i> (2018)
Folhas de Rosa Gerânio	Ibuprofeno	Thabede <i>et al.</i> (2023)
Endocarpo de coco	Dipirona	Silva (2020)
Casca da acácia negra	Nimesulida	Souza <i>et al</i> . (2021)
Resíduo de Baru	Paracetamol/ Cafeína	Ferreira (2022)
Casca da castanha de caju	Paracetamol	Geczo et al. (2021)
Cascas de laranja	Diclofenaco/ Paracetamol/	Malesic et al. (2022)
	Ibuprofeno/ cetoprofeno/	
	Ácido salicílico	
Sementes de pêssego	Paracetamol/ Amoxicilina	Iqbal et al. (2023)
Sementes de manga	Paracetamol	Preglo <i>et al</i> . (2023)
Amêndoas de Argan	Diclofenaco/ Cafeina	Bouhcain et al. (2022)
Serragem de acácia	Ibuprofeno	Capistrano et al. (2023)

Tabela 3.2 - CA com H₃PO₄ de diferentes biomassas utilizados em processos de adsorção.

3.3.3 Grupos Funcionais de Superfície de CA

A estrutura do CA consiste em uma base de grafite em que as extremidades e os vértices podem dispor de um conjunto de elementos, tais como oxigênio, nitrogênio e hidrogênio, que são os grupos funcionais (Oda *et al.*, 2021).

Heteroátomos como o oxigênio, hidrogênio, enxofre e nitrogênio se originam do material precursor do CA, podendo ser introduzidos na estrutura química por meio de processos como carbonização e ativação, sendo, estes processos dependentes de fatores, como temperatura, tempo de ativação, agente ativador e outros. Essas condições determinam os tipos e a quantidade de grupos funcionais na superfície de CA. A presença de heteroátomos, por sua vez, altera as características da superfície química do CA, tais como acidez e reatividade, e, ainda as propriedades do CA ligadas ao comportamento adsortivo, molhabilidade e polaridade (Guimarães, 2006; Cavalcante, 2021).

Quanto maior o conteúdo de oxigênio na superfície CA, a acidez da dispersão aquosa do CA será também maior. Isto porque a presença de grupos funcionais concede atributo de trocadores catiônicos. CAs que apresentam quantidade do conteúdo de oxigênio menor, apresentam caráter básico e são trocadores aniônicos (Teixeira, 2020).

Nesse sentido, o oxigênio constitui o principal átomo presente na rede de carbono e faz parte de grupos funcionais como carbonila, carboxila, hidroxila e enóis, os quais, além de interferirem nas propriedades de acidez e adsorção, interferem ainda na reatividade (Silva *et al.*, 2022). Grupos funcionais contendo oxigênio, como ácido carboxílico, carboxila anidridos, fenóis, lactonas, lactóis, hidroxilas, carbonilas, quinonas e pironas são os mais relevantes para as propriedades da superfície do CA. Para quantificar e identificar esses grupos, análises como titulação de Boehm e FTIR são comumente usadas (Shafeeyan *et al.*, 2010; Brandão; Queiroz; Silva, 2020).

Os grupos ácidos, como os carboxílicos, lactonas e fenólicos, surgem a partir do processo de carbonização do precursor em temperaturas reduzidas, ou a partir da síntese do CA com agentes oxidantes na ativação química. Os grupos ácidos são compostos que têm baixa estabilidade térmica que tornam a superfície do CA hidrofílica e polar (Han; Yang; Zhang, 2015). A basicidade do CA está associada à sua capacidade de ressonância dos anéis aromáticos e à presença de elétrons desemparelhados específicos em sua estrutura molecular. Essa configuração permite que o CA atraia prótons, agindo como uma base de Lewis. Após o tratamento térmico em temperaturas elevadas, que é comum na ativação física do CA, alguns grupos funcionais básicos, como a pirona, a quinona e o cromeno, podem se tornar predominantes na superfície do material. Isso ocorre devido à menor susceptibilidade térmica desses grupos, que resistem melhor às altas temperaturas durante o processo de ativação (Li; Quinlivan e Knappe, 2002; Zhou *et al.*, 2007; Gupta *et al.*, 2016).

3.3.4 pH do ponto de carga zero (pH_{PCZ})

No âmbito da superfície do CA, o pH do ponto de carga zero (pH_{PCZ}) é o valor de pH da solução, no qual a carga da superfície do CA é neutra, ou seja, a carga positiva é igual à carga negativa. (Vieira, 2021; Lopes *et al.*, 2022). A origem do precursor e o processo de ativação do CA determinam o valor de pH_{PCZ} do CA, que está diretamente relacionado com os grupos funcionais presentes na superfície do CA. (Spagnoli *et al.*, 2017; Silva, 2019).

Para obter a propriedade pH_{PCZ}, o método DRIFT pode ser utilizado. Este consiste na imersão do CA em soluções de sais como cloreto de potássio (KCl), cloreto de sódio (NaCl), nitrato de sódio (NaNO₃) e outros eletrólitos indiferentes, com os valores de pH da solução variando entre 2,0 a 12,0 (onze pontos). Por meio desse método é possível determinar a variação de pH final em relação ao pH inicial das soluções. O ponto onde essa variação se cruza com o eixo das abscissas corresponde ao valor do pH_{PCZ} (Perilli *et al.*, 2014; Zomer *et al.*, 2022).

3.4 Contaminantes emergentes

Nas últimas décadas, a presença de micropoluentes nas águas tem se tornado uma grande preocupação ambiental em escala global. Esses micropoluentes, também chamados de Contaminantes emergentes (CEs), são compostos químicos naturais ou sintéticos que são introduzidos no meio ambiente em quantidades consideráveis. Eles causam impactos negativos na saúde ambiental por um longo período de tempo. Além disso, essas substâncias possuem propriedades físicas e químicas, volatilidade e lipofilicidade, que podem afetar tanto o ecossistema quanto a saúde e qualidade de vida das pessoas (Boraah; Chakma e Kaushal, 2022). Os micropoluentes são geralmente encontrados em concentrações baixas, variando de ng.L⁻¹ a μ g.L⁻¹. Essa baixa concentração e diversidade tornam não só a detecção e a análise desses compostos difícil, mas também a sua remoção é dificultada pelo modo contínuo e progressivo com que são liberados no ambiente (Cartaxo, 2020).

Os CEs podem ser produtos farmacêuticos (PFs), produtos de cuidado pessoal (PCPs), compostos desreguladores endócrinos (CDEs), surfactantes, corantes têxteis, pesticidas, e outros cujas presenças foram identificadas em águas superficiais e subterrâneas ao redor do mundo (Luo *et al.*, 2014; Sui *et al.*, 2015; Urbina; Solano, 2020).

A exposição a esses contaminantes emergentes pode ocorrer por meio de várias rotas, como consumo de água contaminada, ingestão de alimentos, inalação de partículas suspensas na atmosfera e contato direto com a pele. Em sua maioria, os CEs, apresentam tendência a bioacumulação, devido a sua baixa degradação por fatores naturais (luz e calor), tornando-se potenciais poluidores (Kwak *et al.*, 2018). Além disso, essas substâncias podem persistir em diferentes compartimentos ambientais, como solo, água e organismos vivos, ampliando os riscos de exposição e de contaminação cruzada entre diferentes ecossistemas. As tecnologias de tratamento de água e efluentes não são eficazes na remoção completa dessas substâncias, o que ressalta a importância de investimentos em pesquisa e desenvolvimento de novas técnicas de remediação (Escher *et al.*, 2019).

As substâncias farmacêuticas encontradas nas águas residuais são compostas por uma diversidade de classes utilizados tanto em humanos quanto em animais, além de incluírem também hormônios sexuais e esteroides. Os AINEs (Anti-Inflamatórios Não Esteroidais) são substâncias que podem afetar o sistema endócrino, causar danos ao fígado e aos rins, além de aumentar o risco de desenvolvimento de doenças cardiovasculares. Além disso, a presença desses compostos no ambiente pode contribuir para o desenvolvimento de bactérias resistentes aos antibióticos, uma vez que alguns AINEs possuem ação antimicrobiana (Lima; Duarte, 2022).

Ainda que uma quantidade considerável desses compostos emergentes seja liberada no meio ambiente, a falta de controle para avaliação dos riscos ecológicos é em grande parte evidente. Por conseguinte, é necessário realizar mais estudos sobre a presença desses contaminantes em águas residuais e as tecnologias disponíveis para sua remoção (Campos, 2021).

3.4.1 Fármacos

A utilização de medicamentos anti-inflamatórios não esteroides (AINEs) é amplamente difundida na prática clínica para tratar uma variedade de condições inflamatórias, como artrite, dor crônica e febre. Os AINEs são uma classe de fármacos conhecidos por sua ação analgésica, antipirética e anti-inflamatória (Sandoval *et al.*, 2017). A classificação química dos AINEs é baseada na sua estrutura química e inclui diversos grupos, como mostrado na Tabela 3.3.

CLASSE	EXEMPLO
Ácidos Propiônicos	Ibuprofeno, naproxeno
Ácidos Acéticos	Diclofenaco, indometacina
Ácidos Fenilacéticos	Diclofenaco
Ácidos Enólicos	Piroxicam
Ácidos Pirrolacéticos	Cetoprofeno
Coxibes	Celecoxib
Alcanones (não acídicos)	Nabumetona
Sulfonanilida	Nimesulida
Furanona diaril-substituído	Refecoxib
Pirazol diaril-substituído	Celecoxib

Tabela 3.3 - Classificação química dos AINEs.

Fonte: Costa et al. (2022)

É importante ressaltar, que alguns AINEs podem pertencer a mais de um grupo químico, dependendo da sua estrutura específica. O mecanismo de ação dos AINEs, ocorre por meio da inibição da enzima ciclo-oxigenase (COX) presente no organismo, ao bloquear a COX, os AINEs diminuem a inflamação local e aliviam os sintomas associados. Existem duas formas principais de ciclo-oxigenase: a COX-1 e a COX-2 (Bindu *et al.*, 2020).

O diclofenaco e o ibuprofeno são AINEs muito utilizados devido às suas propriedades anti-inflamatórias, analgésicas e antipiréticas, que os tornam eficazes no tratamento de uma ampla gama de condições, como dores musculares, dores de cabeça, artrite, entre outros. Além disso, são medicamentos disponíveis em várias formas, como comprimidos, cápsulas e cremes, o que facilita sua administração e aplicação (Blasco; Trombini, 2023).

3.4.1.1 Diclofenaco (DIC)

O diclofenaco é um fármaco pertencente à classe dos AINEs, utilizado principalmente para aliviar a dor e reduzir a inflamação (Lach; Szymonik, 2020). Este medicamento foi descoberto e desenvolvido nos laboratórios da empresa farmacêutica Ciba-Geigy no início dos anos 60.

O diclofenaco é derivado do ácido fenilacético e possui uma estrutura química única, composta por um anel benzênico com dois grupos carboxílicos e um anel heterocíclico contendo nitrogênio. Essa estrutura confere ao diclofenaco propriedades farmacológicas específicas, como analgesia, anti-inflamatória e antipirética (Tran *et al.*, 2020). Quando administrado por via oral, o diclofenaco é rapidamente absorvido pelo trato gastrointestinal e distribuído pelos tecidos do organismo. A meia-vida plasmática do medicamento é de aproximadamente 2 horas, o que significa que é eliminado do corpo em um curto período de tempo. No entanto, o diclofenaco possui uma meia-vida tecidual mais prolongada, o que permite uma ação terapêutica duradoura (Zhong *et al.*, 2018).

O diclofenaco apresenta fórmula molecular $C_{14}H_{11}Cl_2NO_2$ e massa molar 296,15 g.mol⁻¹, disponível como pó cristalino branco a amarelo claro, com ponto de fusão entre 150 - 155 °C. O diclofenaco é solúvel em solventes orgânicos como acetona e etanol, mas é pouco solúvel em água. O pKa do Diclofenaco é de aproximadamente 4, é comumente encontrado na forma de sal de sódio ou de potássio, possui grupos funcionais de éster (acetato) e fenilacético. É estável em condições normais de armazenamento. Alguns compostos relacionados ao Diclofenaco incluem o Diclofenaco potássico, o Diclofenaco sódico e o Diclofenaco dietilamônio (ANVISA, 2019; Medeiros, 2020).

3.4.1.2 Ibuprofeno (IBU)

O ibuprofeno é um fármaco classificado como um anti-inflamatório não esteroide (AINE). Foi desenvolvido por um grupo de cientistas liderado pelo Dr. Stewart Adams, um farmacologista britânico. A pesquisa que levou à descoberta do ibuprofeno ocorreu na década de 1950, na empresa farmacêutica Boots Pure Drug Company, sediada no Reino Unido. O medicamento foi lançado pela primeira vez no mercado em 1969, inicialmente como um produto para alívio da dor e febre. Com o passar dos anos, o ibuprofeno ganhou popularidade devido à sua eficácia e perfil de segurança comparativamente favorável, tornando-se um dos fármacos mais utilizados mundialmente para o tratamento de dores e inflamações (Busson, 1986; Zoubek *et al.*, 2020).

Quimicamente, o ibuprofeno é conhecido como ácido 2-(4-isobutilfenil) propanoico. Possui uma estrutura molecular complexa que inclui um anel benzênico isobutil substituído, bem como um grupo carboxílico em sua estrutura, o qual é responsável pelas características ácidas do composto. Essa configuração química é fundamental para sua ação farmacológica. Os dois possíveis enantiómeros do ibuprofeno apresentam diferentes efeitos biológicos e metabolismo. O enantiómero (S)-ibuprofeno apresenta atividade anti-inflamatória, analgésica e antipirética, sendo o outro

enantiómero (R)-ibuprofeno inativo (Geisslingeret *et al.*,1989; Seabra, 2015; Silva *et al.*, 2022).

Esse fármaco está disponível na forma de um pó cristalino, com coloração branca ou quase branca, e possui um odor característico. Sua temperatura de fusão varia entre 75 °C-78 °C. O composto é praticamente insolúvel em água, mas apresenta solubilidade ligeira em acetato de etila e alta solubilidade em etanol, acetona, metanol, clorofórmio e hidróxidos alcalinos. Essas características físicas e químicas são essenciais para o armazenamento e administração correta do medicamento (ANVISA, 2019).

3.4.1.3 Impactos ambientais

A principal fonte de contaminação de CEs, como AINEs, em corpos de água superficiais é o lançamento de esgoto doméstico. Após o consumo desses medicamentos, o corpo humano metaboliza parcialmente os fármacos, que podem ser excretados nas fezes e urina na forma de compostos não alterados, metabólitos ou compostos conjugados. Muitas dessas substâncias têm uma lenta taxa de degradação biológica e podem se acumular no ecossistema, causando danos diversos ao ambiente aquático. Esses danos podem se estender aos seres humanos por meio da cadeia alimentar ou pelo consumo de água (Wang *et al.*, 2017; Costa *et al*, 2022).

Os impactos do ibuprofeno e do diclofenaco no meio ambiente são preocupantes devido às suas propriedades químicas e à sua capacidade de persistir no ambiente. Ambos os medicamentos têm o potencial de afetar organismos aquáticos, como peixes, invertebrados e algas (Obradović *et al*, 2022). Eles podem interferir nos sistemas endócrinos desses animais, causando desequilíbrios hormonais que afetam sua reprodução, crescimento e comportamento. Estudos têm mostrado efeitos negativos em peixes, incluindo a diminuição da fertilidade, danos ao fígado e alterações no comportamento alimentar (Barczak *et al.*, 2018).

Além disso, podem se acumular nos tecidos de organismos aquáticos à medida que são consumidos através da cadeia alimentar. Quando peixes ou outros animais consumidores ingerem organismos contaminados, a concentração desses medicamentos pode aumentar em seus tecidos, resultando em níveis mais altos do composto no organismo. Isso pode levar a efeitos nocivos, como danos ao sistema nervoso, distúrbios hormonais e diminuição da resistência a doenças (Assunção; Junior, 2022).

A exposição prolongada e crônica a baixas concentrações de diclofenaco pode contribuir para o desenvolvimento de resistência antimicrobiana em bactérias presentes

nos sistemas aquáticos. Isso é preocupante, pois pode levar a uma redução na eficácia de certos antibióticos e dificultar o tratamento de infecções bacterianas (Ferreira *et al.*, 2022).

O desenvolvimento de técnicas adequadas de tratamento de águas contaminadas por compostos farmacêuticos tem despertado grande interesse de diversos pesquisadores, já que estes compostos podem causar toxicidade e efeitos adversos para o meio ambiente e para saúde humana. Vários métodos de tratamento são empregados tais como: processos oxidativos avançados (POAs), fotocatálise, fotodegradação, filtração por membrana, ozonização e adsorção com CA. Dentre as diversas técnicas de tratamento, a adsorção com CA tem se destacado como método promissor na remoção de fármacos do meio hídrico, devido à sua alta eficiência, seletividade, confiabilidade, baixo custo e possibilidade de reutilizar e reciclar o adsorvente (Irani; Amoli-diva, 2020; Cuerda-Correa *et al.*,2020; Chen *et al.*, 2019; Ayoub *et al.*, 2019).

3.5 Planejamento experimental

O planejamento experimental é uma metodologia científica crucial para determinar as condições experimentais de modo a obter dados precisos e eficientes (Seltman, 2012). Ele é amplamente utilizado em várias áreas, como engenharia, ciências naturais e sociais, e tecnologia, permitindo a maximização de informações com um número mínimo de experimentos (Montgomery, 2017). Os principais objetivos do planejamento experimental são identificar e quantificar as influências dos fatores principais e suas interações sobre a resposta de interesse, determinar a configuração ótima dos fatores para obter uma resposta desejada e avaliar a robustez do processo frente às variações dos fatores (Aspenström *et al.*, 2011).

A execução do planejamento experimental estabelece as variáveis de interesse no estudo de uma propriedade específica, identificando os fatores que influenciam o sistema e a resposta esperada. Supondo que os fatores de influência, como *pH* e temperatura, sejam controláveis, a variável de resposta será o parâmetro afetado por esses fatores (Stanford University, 2021). Entre os métodos de planejamento experimental, destaca-se o planejamento fatorial, sendo o mais adequado para estudar a relação entre duas ou mais variáveis de influência (fatores), considerando combinações dos diferentes níveis de cada variável desejada. O planejamento é representado por X^K , onde "X" são os níveis selecionados para o estudo (um valor real dos fatores estudados) e "K" é o número de fatores. No planejamento fatorial, utiliza-se apenas dois níveis, sendo representado por

 2^{K} , indicando a quantidade mínima de experimentos diferentes necessários (Karathanos; Kaner, 2014).

O Planejamento Fatorial é amplamente utilizado quando há dois ou mais fatores (k). Nesse tipo de planejamento, todas as combinações possíveis dos níveis existentes em cada fator são consideradas, avaliando-se quantitativamente a influência dos fatores sobre as variáveis de resposta de interesse (Montgomery, 2017). Além disso, ele permite analisar as possíveis interações entre os fatores que são relevantes.

Entre os tipos comuns de delineamento experimental, destacam-se o delineamento fatorial completo, que explora todas as combinações possíveis dos níveis dos fatores, o delineamento fatorial fracionado, que utiliza apenas uma fração dos experimentos possíveis, adequado para quando há muitos fatores, o delineamento de Box-Behnken, que é um delineamento fatorial com pontos centrais adicionais, mas sem pontos axiais, e o Delineamento Composto Central Rotacional (DCCR), um dos delineamentos mais robustos e flexíveis (Seltman, 2012).

O DCCR é uma técnica que combina um delineamento fatorial com pontos centrais e pontos axiais, sendo particularmente útil para construir modelos de segunda ordem (quadráticos) sem a necessidade de realizar todos os experimentos de um delineamento fatorial completo. Os componentes do DCCR incluem pontos fatoriais, que representam um delineamento fatorial completo ou fracionado, pontos axiais (estrelas), adicionados ao redor dos pontos centrais para permitir a estimação da curvatura, e pontos centrais, experimentos realizados no ponto médio de todos os fatores para fornecer uma medida de repetibilidade e ajudar na detecção de curvatura (Aspenström et al., 2011).

Desse modo, O DCCR realiza uma varredura cruzada abrangente dos principais pontos de interesse no espaço amostral. Essa abordagem captura pontos dos vértices, identificados pelos níveis -1 e 1, pontos centrais, referenciados pelo nível 0, e pontos axiais, além do espaço amostral inicial, identificados por - α e + α . Dessa forma, é possível obter relações quadráticas para todas as variáveis analisadas.

Com os dados coletados, ajusta-se um modelo quadrático aos resultados, conforme descrito por Box e Wilson (1951), pode ser expresso pela Equação 3.30.

$$Y = \beta_0 + \sum_{i=1}^k \beta_i X_i + \sum_{i=1}^k \beta_{ii} X_i^2 + \sum_{i=1}^{k-1} \sum_{j=i+1}^k \beta_{ij} X_i X_j + \epsilon$$
(3.30)

Onde, *Y* é variável de resposta, *X* as variáveis independentes, β_0 é o intercepto, β_i são os coeficientes dos termos lineares, β_{ii} coeficientes dos termos quadráticos, β_{ij} são os coeficientes dos termos de interação, e ϵ o termo de erro (Box; Draper, 1987).

Os coeficientes β são estimados utilizando métodos estatísticos como a regressão múltipla. Esses coeficientes indicam a magnitude e a direção das relações entre as variáveis independentes e a variável de resposta, após a estimativa dos coeficientes, o modelo ajustado é analisado para verificar sua adequação, essa análise é feita por meio da avaliação do coeficiente de determinação (R^2), a análise de variância (ANOVA) e a verificação da significância dos coeficientes através de testes estatísticos (Myers, Montgomery e Anderson-Cook, 2016). Uma vez que o modelo é validado, ele pode ser interpretado para identificar as relações entre as variáveis independentes e a variável de resposta. Devido a isso, o modelo quadrático permite detectar efeitos lineares, quadráticos e de interação entre as variáveis. Essa interpretação fornece uma compreensão mais completa do comportamento do sistema estudado, o que facilita a identificação de condições ótimas e a compreensão das interações complexas entre as variáveis (Cornell, 2011).

3.6 Estado da Arte

Dada a relevância do tema, a literatura apresenta uma ampla gama de artigos sobre a adsorção de ibuprofeno e diclofenaco utilizando diferentes tipos de adsorventes. O Tabela 3.4 mostra um resumo de estudos que investigam o uso de diferentes materiais adsorventes, entre eles os derivados de biomassas, e que consideram variáveis como concentração inicial(C_0), tempo de contato(t), temperatura (C°), capacidade máxima de adsorção(qm), dosagem de adsorvente (DA), pH, entre outras características da adsorção de Ibuprofeno e diclofenaco.

57

Adsorvente	Fármaco (adsorbato)	S_{BET} (m ² .g ⁻¹)	C ₀ (mg.L ⁻¹)	DA (g.L ⁻¹)	pН	Tempo de contato(h)	Temperatura (C°)	Modelo cinético	Modelo equilíbrio	qm (mg. g ⁻¹)	Remoção (<i>R%</i>)	Referencia
CA	IBU	642,0	50,0	0,4	4,0	3	26	PSO	Sips	106,0	75	Streit et al. (2021)
Nanoesferas de carbono	IBU	359,0	303,2	0,8	6,0	1h30min	25	PSO	Langmuir	356,89	98	Alluhaybi et al.(2023)
Oreanahantanita	IBU	7.0	100.0	4.0	7.0	2	25		Enour dlink	136,13	95,6	Obradovic et al.
Organobentonita	DIC	7,0	100,0	4,0	7,0	3	25	PPO	Freundlich	218,76	97,9	(2022)
71.4	IBU	1055.0	20	0,06	5,0	10	25	DCO	T	320	97,2	$D_{1} = 1_{12} + 1_{1}(2017)$
Zeoliita	DIC	1855,0	100	0,08	5,5	12	25	PS0	Langmuir	400	96,1	- Bhadra <i>et al.</i> (2017)
СА	DIC	847,0	318	4,0	6,0	9	40	PSO	langmuir	147,88	97,0	Lach <i>et al</i> . (2020)
Nanoesferas de sílica	DIC	234	50	5,0	5,0	6	25	PSO	Sips	80,70	94,8	Ortiz et al. (2024)
CA	IDU	297.20	40	4.0	<u> </u>	24	25			68,27	75,96	Tejada- Tovar et al.
CAS	IBU	287,54	- 40	4,0	6,0	24	25	-	-	65,75	65,75	(2022)
Zeolita	DIC	41	20	2,0	6,0	2	20	PSO	Freundlich	14,40	11,20	Pennafiel <i>et al.</i> (2024)
CA	IBU	-	50	2,0	4,7	40 min	50	PSO	-	50,0	95,28	Bello et al. (2019)
	IBU		100	1.0	6.0	1	26	DSO	Lonomuin	194,9	94,0	
	DIC		100	1,0	0,0	1	20	P30	Langmuir	600,6	99,4	-
Organobentonita	IBU	-								83.4	56.3	Ghemit <i>et al.</i> (2019)
	+		100	1,0	6,0	1	26	PSO	-	188.6	62.9	_
					<u> </u>					100,0	02,7	
	IBU		50	0.5	6,1			PSO	Sips	150	75	_
	DIC			,	5,0	2		PPO	Freundlich	160	/0-/5	
CA	IBU	1.383,62	50	0.5	61	3	26, 45 e 55	DDO		48,10	45-50	Este estudo
	DIC		50	0,5	0,1			110	-	36,50	39-45	

Tabela 3.4 - Resumo de artigos da literatura sobre adsorção de IBU e DIC apresentados no Estado da Arte desse trabalho

A Tabela 3.4 evidencia a eficácia de diferentes adsorventes na remoção de ibuprofeno e diclofenaco, monocomponentes e multicomposto de soluções aquosas. A alta área superficial dos materiais, como o CA e zeolitas, contribui significativamente para a capacidade de adsorção de IBU e DIC, enquanto os nano materiais, como nanoesferas de carbono e sílica, demonstram desempenho superior em termos de eficiência de remoção, atingindo até 98% de remoção para IBU. Esses estudos são cruciais para o desenvolvimento de sistemas de tratamento de água mais eficientes e sustentáveis, especialmente em contextos onde a remoção de CEs é de suma importância.

Com base na revisão bibliográfica apresentada, a dificuldade identificada na literatura reside na escassez de estudos que abordem de forma abrangente a adsorção multicomponente de fármacos, particularmente IBU e DIC, com adsorventes alternativos, como CA produzido a partir de biomassa residual. A adsorção monocomponente de AINEs tem sido amplamente estudada, porém, as interações e competições que ocorrem em sistemas multicomponentes, especialmente em matrizes aquosas, permanecem pouco exploradas. Este trabalho contribuirá para preencher essa lacuna ao investigar a adsorção simultânea de IBU+DIC utilizando CA sintetizado a partir de resíduos da Castanha-do-Brasil e avaliar o potencial desse adsorvente como uma solução viável para remoção de contaminantes emergentes de águas superficiais e residuais.

4 MATERIAIS E MÉTODOS

Os ensaios experimentais foram realizados nos Laboratório de Processos Ambientais (LPA/Faculdade de Engenharia Química), Laboratório de Caracterização Mineral (LMC/Instituto de Geociências), localizados na Universidade Federal do Pará (UFPA), no Laboratório de Engenharia e Processos Ambientais (LEPA) e no Laboratório de Recursos Analíticos e de Calibração (LRAC) da Faculdade de Engenharia Química da Universidade Estadual de Campinas (UNICAMP).

4.1 Matéria prima (precursor) usado na síntese do CA

A matéria prima ou precursor usada na síntese do carvão ativado (CA) foi a casca da castanha-do-Brasil (*Bertholletia excelsa*) (Figura 4.1). A matéria prima foi doada por uma indústria, localizada na Região Metropolitana de Belém.

Figura 4.1- Materia prima utilizada

Fonte: Autor (2024)

4.2 Adsorbatos

Os adsorbatos utilizados, ibuprofeno (IBU) sódico (pureza: 98%) e diclofenaco sódico (DIC) (pureza: 98%) foram da marca Sigma Aldrich. Algumas características dessas substâncias são mostradas na Tabela 4.1. Soluções de 50 mg.L⁻¹ de IBU e DIC foram preparadas usando água destilada e, posteriormente utilizadas para fazer as diluições requeridas nos ensaios experimentais, neste trabalho.

PROPRIEDADES	IBUPROFENO SÓDICO	DICLOFENACO SÓDICO
		2-[2-(2,6dicloroanilino) fenil]
Nomenclatura IUPAC	Ácido2-[4-(2metilpropil)	2-[(2,6-Dichlorophenyl)amino]benzeneacetic
		Acid, Na
Fórmula molecular	$C_{13}H_{17}NaO_2$	$C_{14}H_{10}Cl_2NO_2\cdot Na$
Solubilidade em água (25°C)	100 mg.mL ⁻¹	25 mg.mL ⁻¹
Massa molar	228,26 g.mol ⁻¹	318,13 g.mol ⁻¹
рКа	4,91	4,15

Tabela 4.1 - Propriedades físico-químicas dos fármacos estudados

Fonte: BROGDEN et al., (1980); USP (2017).

4.3 Síntese de CA

O fluxograma da síntese do (CA) é mostrado na Figura 4.2

Figura 4.2 - Fluxograma da síntese de CA.

Aproximadamente 5 kg de matéria prima foram tratadas. A matéria prima foi lavada e colocada em uma estufa de secagem (FANEM) a 100 °C por 48 h e, esta foi armazenada, após o resfriamento. A matéria prima limpa e seca foi triturada, quarteada e dividida em porções de aproximadamente 40 g, as quais foram armazenadas. O processo de carbonização foi realizado em um equipamento de refluxo aberto, refrigerado a ar; temperatura de 80 °C; por 4 h e proporção de 1:2 (massa do precursor, g, e solução de H₃PO₄ (55% m/v), mL). O sólido resultante desta etapa foi colocado em uma estufa de secagem (FANEM A-HT) a 100 °C por 12 h. Posteriormente, o sólido foi colocado em um forno mufla (QUIMIS Q-318M24), a 450 °C por 2 h. O material sólido foi lavado com água destilada para eliminação de cinzas e do excesso de ácido. O sólido foi colocado

em um Becker de 500 mL e misturado com água destilada na proporção de 1:3 (massa/volume); o Becker com a mistura foi colocado em uma manta térmica (QUIMIS-0321A15) e, então foi mantido à temperatura de ebulição durante 1 h e 30 min; em seguida o excesso de água foi removido e o sólido foi colocado em uma estufa de secagem (FANEM A-HT) por 24 horas. Este material foi posteriormente triturado e peneirado usando peneiras de 10 e 12 Mesh (partículas com diâmetro médio de 1,62 mm). O sólido granulado foi lavado usando um em Becker de 500 mL e porporção (1:3 massa de sólido/volume de água destilada), o Becker com a mistura foi colocado em uma manta térmica (QUIMIS-0321A15), à temperatura de ebulição por 1 h e 30 min, então foi lavado com várias porções de água destilada (a 28 °C) até o pH da água de lavagem atingir pH=7,0. Posteriormente, este foi colocado em estufa de secagam a 100°C por 24 h, foi resfriado e armazenado em frascos de vidro. O material sintetizado foi denominado de carvão ativado (CA).

4.4 Ensaios de caracterização do CA

A Figura 4.3 mostra um esquema seguido na caracterização de amostras, antes e após a adsorção.

Figura 4.2 – Ensaios de caracterização de amostras de CA.

4.4.1 Determinação do teor de cinzas

A metodologia empregada para determinar o teor de cinzas no CA foi realizada, de acordo com a Norma ASTM D2866-11. O procedimento iniciou com a calcinação da cápsula de porcelana no forno mufla (QUIMIS Q-318M24) a temperatura de 650 °C, por um período de 1 hora. Posteriormente, a cápsula foi resfriada em dessecador até a temperatura ambiente. Após o resfriamento a cápsula vazia foi pesada usando uma balança analítica (MELTLER TOLEDO AB204). Em seguida, a massa aproximadamente de 0,40 g de CA (desprovida de umidade) foi pesada dentro da cápsula (calcinada) usando uma balança analítica (MELTLER TOLEDO AB204). Posteriormente, a cápsula com a amostra foi colocada no forno mufla (QUIMIS Q-318M24) a temperatura de 280 °C por aproximadamente 1 hora. Em seguida, a temperatura foi elevada para 650 °C e o material foi calcinado por um período de 4 horas. A (cápsula+amostra) foi resfriada em dessecador até a temperatura ambiente e pesada em balança analítica (MELTLER TOLEDO AB204). O teor de cinzas (Tc,%) foi calculado usando a Equação 4.1:

$$Tc\% = \frac{(md-mb)}{(mc-mb)} 100$$
 (4.1)

Em que, *mb* representa a massa da cápsula antes da calcinação (g); *mc* a massa da cápsula adicionada de CA antes da calcinação (g) e *md* a massa da cápsula adicionada de CA após a calcinação (g)

4.4.2 Determinação do teor de umidade

A determinação do teor de umidade foi realizada em duplicata, de acordo com a Norma ASTM D2867 – 17. Primeiramente, pesou-se a cápsula de porcelana na balança analítica, previamente tarada (MELTLER TOLEDO AB204). Em seguida, adicionou-se à cápsula de porcelana, aproximadamente 1,0 g de CA. Inseriu-se (cápsula+amostra) no forno mufla (QUIMIS Q-318M24) a temperatura de 150 °C \pm 5 °C durante 3 horas. Posteriormente, o conjunto (cápsula+tampa+amostra) foi colocado no dessecador até atingir a temperatura ambiente, em seguida, pesou-se a cápsula com a tampa. O teor de umidade (U%) foi calculado usando a Equação 4.2:

$$U\% = \frac{(mc - md)}{(mc - mb)} 100 \tag{4.2}$$

Em que, mb é massa da cápsula com tampa (g); mc é a massa da cápsula com tampa e amostra (g) e md é a massa da cápsula com tampa e amostra seca (g).

4.4.3 Análises térmicas (ATG/ATD)

A finalidade desta análise foi avaliar a estabilidade térmica do CA. A análise foi realizada utilizando um analisador termogravimétrico de marca METTLER TOLEDO e modelo TGA/DSC1, com balança analítica (METTLER TOLEDO MX5) acoplada. Aproximadamente 10 mg de amostra foram utilizadas; o aquecimento foi a partir da temperatura ambiente (25 °C) até 1000 °C, com razão de aquecimento de 10 °C/min, em atmosfera de Nitrogênio, e vazão de 50 mL/min.

4.4.4 Difração de raios X (DRX)

Esta análise foi realizada para avaliar a estrutura cristalina do CA. A análise de difração de raios X foi realizada em um Difratômetro (*Philips Analytical* X Ray, modelo X'Pert-MPD) com tubo de raios X com ânodo de cobre ($K_{\alpha}^{Cu} = 1,54056$ Å). A análise ocorreu sob as condições de intervalo de leitura de 5° a 85° 20, tensão de 40 kV, corrente de 40 mA, passo angular de 0,02° 20 com tempo/passo de 2,0 s.

4.4.5 Microscopia Eletrônica de Varredura (MEV) e Espectroscopia por Energia Dispersiva (EDS)

As análises de MEV e EDS foram realizadas para avaliar a morfologia do CA e determinar a composição elementar do CA. A análise foi realizada em microscópio eletrônico de varredura com detector de energia dispersiva de raios X (LEO Electron Microscopy, modelo do MEV: Leo 440i, modelo do EDS: 6070).

4.4.6 Área superficial específica (S_{BET})

Na determinação da área superficial específica foi usado o equipamento BET Nova 1200 e *Surface Area* e *Pore Size Analyser* da marca *Quantachrome NovaWin*. As amostras foram tratadas previamente a temperatura de 300 °C por 3 h. Os valores de S_{BET} das amostras foram calculados a partir das isotermas completas do nitrogênio a 77 K usando a equação de BET (*Brunauer-Emmett-Teller*).

4.4.7 Picnometria a Gás Hélio

Na determinação de densidade real da amostra de CA, foi utilizado um picnômetro a gás Hélio da marca *Micromeritics*, modelo *Accupyc* II 1340. A análise foi realizada a temperatura de 28,7 °C, com 10 ciclos de purga, 10 ciclos de análise e taxa de equilíbrio 0,05 psig/min.

4.4.8 Espectroscopia no Infravermelho por Transformada de Fourier (FTIR)

A finalidade da análise foi a determinação de grupos funcionais presentes na superfície do CA. Um espectrômetro de infravermelho com transformada de Fourier da marca THERMO SCIENTIFIC, modelo NICOLET iS50 FTIR foi utilizado, no qual analisaram-se as regiões espectrais de 4000-400 cm⁻¹ (infravermelho médio - MIR), com resolução de 4 cm⁻¹. A análise foi realizada pelo método KBr, empregando o acessório SNAP-IN BASEPLATE, e os resultados medidos em Transmitância.

4.4.9 Determinação de grupos funcionais de superfície

A técnica de volumetria de neutralização por retorno, baseada no método de Boehm (BOEHM, 1994; BOEHM, 2002) foi utilizada. Os grupos funcionais ácidos e básicos totais presentes na superfície do CA foram quantificados. Segundo a metodologia utilizada, o hidróxido de sódio (NaOH) neutraliza os grupos carboxílicos, lactonas e fenólicos; o carbonato de sódio (Na₂CO₃) neutraliza grupos carboxílicos e lactonas e o bicarbonato de sódio (NaHCO₃) neutraliza somente grupos carboxílicos. As alíquotas (em duplicata) das amostras de cada uma das soluções (NaOH, Na₂CO₃ e NaHCO₃) foram tituladas usando soluções padronizadas de ácido clorídrico (HCl) 0,1 N e hidróxido de sódio (NaOH) 0,1 N (titulação direta e por retorno, respectivamente).

4.4.9.1 Grupos ácidos

Na identificação dos grupos de superfície ácidos, em frascos Erlenmeyers de 125 mL 2,5 g de CA foram misturadas com 25 mL de solução padrão de NaOH 0,1 N, Na₂CO₃ 0,1 N e NaHCO₃ 0,1 N. Os frascos Erlenmeyer foram fechados usando filme de PVC e, estes foram colocados em uma mesa agitadora (CERTOMATOMO), com velocidade de agitação de 130 rpm temperatura ambiente (28 °C) por 24 horas. Posteriormente, a amostra de CA foi adicionada a uma centrifuga (KASVI-K140815C) por aproximadamente 10 min. Em seguida, retirou-se uma alíquota de 10,0 mL de cada solução, sendo titulada usando a solução padrão de ácido clorídrico (HCl 0,1 N), e utilizando vermelho de metila como indicador.

Os grupos funcionais ácidos foram calculados pela Equação 4.3.

$$m_{Eq-g} (GA) = \frac{V_{S}CH(V_{b}-V_{am})}{V_{al}} 100$$
(4.3)

Em que, V_b = volume da solução padrão de HCl gasto nas titulações do branco (mL); V_{am} = volume gasto na titulação da amostra (mL); V_s = volume da solução de NaHCO₃, Na₂CO₃ ou NaOH usado no ensaio de adsorção (mL); V_{al} = volume da alíquota do filtrado tomado para titulação, (mL); *CH* = concentração da solução de HCl, em (N).

4.4.9.2 Grupos básicos

Nesta determinação em frascos Erlenmeyers de 125 mL foram misturados: 2,5 g de CA e 25 mL de solução padrão de HCl 0,1 N. Os frascos foram fechados usando filme de PVC e, estes foram colocados em uma mesa agitadora (CERTOMATOMO), a 130 rpm, a 28 °C por 24 horas. A análise foi realizada em duplicata.

Posteriormente, as amostras foram adicionadas a uma centrifuga (KASVI-K140815C) por aproximadamente 10 min., e em seguida, retirou-se uma alíquota de 10,0 mL de cada solução, com uma solução padrão de NaOH 0,1 N, utilizando fenolftaleína como indicador. Uma etapa adicional foi realizada, em que 5 mL de solução de NaOH 0,1 N foram adicionados em excesso às alíquotas já tituladas (titulação por retorno) e, esta foram tituladas utilizando a solução padrão de HCl 0,1 N. Para efeito de controle, a amostra em branco (somente os reagentes químicos sem adição do CA) foi preparada e analisada nas mesmas condições experimentais das análises da amostra de CA. A concentração dos grupos básicos totais do CA foi calculada usando a Equação 4.4:

$$m_{Eq-g} (\text{GA}) = \frac{V_S CB(V_b - V_{am})}{V_{al}}$$
(4.4)

Em que, V_b = volume de solução padrão de NaOH gasto nas titulações do branco (mL); V_{am} = volume gasto na titulação da amostra (mL); V_s = volume da solução de HCl usado na experiência de adsorção (mL); V_{al} = volume da alíquota do filtrado tomado para a titulação, (mL); CB = concentração da solução de NaOH, em (N).

4.4.10 Determinação do pH de superfície

Conforme a Norma ASTM 3838-05, a análise foi realizada em duplicata. Uma amostra de aproximadamente 12 g de CA foi colocada em um forno mufla (QUIMIS Q-318M24), a temperatura de 150 \pm 5 °C por 3 h e resfriado em um dessecador até a temperatura ambiente. Então, 10,0 g de CA foram pesadas em uma balança com precisão de 0,01 g (10 mg) (GEHAKA BK4000). A amostra de CA foi colocada dentro de um tubo de vidro cilíndrico contendo 100 mL de água destilada. Ao tubo de vidro foi acoplado um

condensador de refluxo refrigerado a ar, o conjunto (tubo + condensador) foi colocado em um bloco aquecedor de alumínio (QUIMIS Q325M), a temperatura de 100 °C por aproximadamente 15minutos, após isso, a amostra foi filtrada e resfriada até atingir 50 \pm 5 °C. O pH da solução filtrada foi medido utilizando um pHmetro (AKSO AK90)

4.4.11 Determinação ponto de carga zero (pHPCZ)

A determinação do pH no ponto de carga zero (pH_{PCZ}) foi baseado no método DRIFT (KOSMULSKI, 2009). Onze (11) amostras foram preparadas misturando 50 mg de CA e 50 mL de solução de cloreto de potássio (KCl) 0,1 M. O valor do pH de cada amostra foi ajustado no intervalo de (2,0 a 12,0) usando solução padronizada de HCl 0,1 M ou NaOH 0,1 M. Então, as 11 amostras foram colocadas em uma mesa agitadora (CEROTOMATO), a 130 rpm, 28 °C por 24 h. Utilizando um pHmetro (AKSO AK90), mediu-se os valores de pH final das 11 amostras. O valor de pH_{PCZ} do CA foi determinado a partir do gráfico (pH final – pH inicial) *versus* pH inicial das amostras.

4.4.12 Índice de hidrofobicidade/hidroficilidade (IH)

Foi utilizado o índice de hidrofobicidade/hidrofilicidade (IH) para determinar a capacidade das moléculas de água de se ligarem às superfícies do CA, influenciando o processo de adsorção. Inicialmente, 5,0 g de CA pesados em balança analítica (MELTLER TOLEDO AB204) foram colocados em uma estufa de secagem (100 5 °C) até massa constante. A análise foi realizada com base na metodologia de Reis *et al.* (2021). Em seguida 0,5 g de CA foram pesadas em béqueres de 5 mL, os quais foram colocados dentro de frascos de vidro de 1,5 L contendo 50 mL de água destilada ou nheptano, a determinação foi realizada em duplicata. Então, os frascos (1,5 L) foram fechados com tampas metálicas e, estes foram colocados em uma estufa incubadora (QUIMIS Q315M15), a 25 °C por 24 h. Posteriormente, os béqueres foram pesados e os valores de IH foram calculados pela Equação 4.5

$$IH = \frac{\text{massa final do béquer com n_heptano-massa inicial do béquer}}{\text{massa final do béquer com água-massa inicial do béquer}}$$
(4.5)

4.5 Ensaios de adsorção

Os ensaios de adsorção foram executados da seguinte maneira:

1. Ensaios de adsorção monocomponente, sistemas de adsorção (CA_IBU e

CA_DIC), análise de variáveis de processo, usando planejamento experimental;

- Ensaios de cinética de adsorção, equilíbrio de adsorção e determinação de parâmetros termodinâmicos, mocomponente dos sistemas adsortivos CA_IBU e CA_DIC;
- 3. Análise da adsorção binária (IBU + DIC) usando planejamento experimental;
- Ensaios de adsorção do sistema binário (IBU+DIC): cinética e equilíbrio de adsorção.

As condições experimentais comuns aos ensaios foram: as amostras (adsorbato + adsorvente) foram preparadas em frascos Erlenmeyes de 125 mL e volume de solução (IBU ou DIC) de 50 mL. Os frascos foram fechados usando filme de PVC e, estes foram colocados em um banho Dubnoff com agitação (SOLAB SL-157/30E), com velocidade de agitação de 130 rpm e tempo de contato de 180 min. Os ensaios de adsorção foram realizados em duplicata. Após atingirem o equilíbrio, alíquotas de 12 mL de amostras foram centrifugadas usando centrífuga (KASVI K14-0815C). Posteriormente, na determinação das concentrações iniciais e finais do adsorbato, as amostras foram lidas em um espectrofotômetro UV/Visível (BIOESPECTRO SP).

Os comprimentos de ondas máximos dos adsorbatos foram: 221 nm (IBU) e 276 nm (DIC).

Os valores de capacidade de adsorção (q_e) (mg.g⁻¹) do adsorvente e o percentual de remoção (R%) de adsorbato foram calculadas usando as Equações 4.6 e 4.7, respectivamente:

$$q_e = \frac{(C_0 - C_e)}{m}.V$$
(4.6)

$$R(\%) = \frac{(C_0 - C_e)}{C_0}.100$$
(4.7)

Em que, C_0 é a concentração inicial do fármaco (mg.L⁻¹); C_e é a concentração fármaco no equilíbrio (mg.L⁻¹); V é o volume da solução (L) e *m* é a massa do adsorvente (g). 4.5.1 Ensaios de adsorção monocomponente, sistemas adsortivos (CA_IBU e CA_DIC), análise de variáveis de processos, usando a técnica de planejamento experimental

Um Delineamento Composto Central Rotacional (DCCR) foi adotado como estratégia de investigação dos efeitos de três (3) variáveis independentes e 2 (duas) variáveis respostas. As variáveis independentes estudas foram: pH inicial das soluções de adsorbato de IBU ou DIC (*pH*; adm.), concentração inicial de adsorbato (*C*₀; mg.L⁻¹) a dosagem de adsorvente (*DA*; g.L⁻¹), totalizando três fatores (*k* = 3). As variáveis respostas foram: capacidade de adsorção (*q*_e; mg.g⁻¹) do adsorvente e a percentagem de remoção do adsorbato (*R*%), ou seja, $\alpha = 2$. Os intervalos de valores das variáveis independentes utilizados, nesta etapa do trabalho foram testados em outros estudos de adsorção do grupo de pesquisa (Duarte *et al.*, 2022; Costa *et al.*, 2021). As Tabelas (4.2 e 4.3) mostram os intervalos de valores das variáveis independentes e a matriz de experimentos do DCCR dos sistemas adsortivos (CA_IBU e CA_DIC), respectivamente. O DCCR foi analisado utilizando um software estatístico

Os valores de pH foram ajustados usando soluções de HCL (0,1 M) ou NaOH (0,1 M) e um pHmetro (AK90) foi utilizado para fazer as medidas dos valores de pH.

	Variáveis reais									
Variáveis			IBU					DIC		
	-α	-1	0	+1	$+ \alpha$	-α	-1	0	+1	$+ \alpha$
X ₁ : pH inicial da solução de	1,3	3,0	5,5	8,0	9,7	4,0	5,0	6,5	8,0	9,0
adsorbato (<i>pH</i>)										
X ₂ :Concentração inicial de	13	20	30	40	47	13	20	30	40	47
adsorbato (C_0 ; mg.L ⁻¹)										
X ₃ : Dosagem de adsorvente	0,1	0,2	0,4	0,6	0,7	0,1	0,2	0,4	0,6	0,7
$(DA, g.L^{-1}),$										

Tabela 4.2 - Variáveis reais e codificadas do DCCR (monocomponentes).

A codificação das variáveis reais foi realizada conforme a Equação 4.8 (Khuri; Cornell, 1996):

$$x_n = \frac{2.X_n - (X_{nL} - X_{nH})}{X_{nL} - X_{nH}} \qquad n = 1, 2, 3...$$
(4.8)

Em que, x_n é a variável codificada; X_n é o nível da variável de entrada; X_{nL} é o menor nível da variável de entrada e X_{nH} é o maior nível da variável de entrada.

4.5.2 Ensaios de cinética de adsorção, equilíbrio de adsorção e determinação de parâmetros termodinâmicos, mocomponente dos sistemas adsortivos CA_IBU e CA_DIC

Os valores das variáveis (pH; $C_0 e DA$) utilizados na investigação de cinética e equilíbrio de adsorção dos sistemas adsortivos (CA_IBU e CA_DIC) foram aqueles obtidos a partir dos resultados do DCCR.

Para os dois sistemas adsortivos estudados, as condições experimentais do estudo de cinética de adsorção (monocomponente) foram: temperatura de 26 °C e valores de tempo de contato de 2,5; 10; 15; 20; 30; 40; 60; 90; 120 e 180 min. Para o sistema (CA_IBU): *pH* 6,1 (natural); C_0 de 50 mg L⁻¹ e DA de 0,5 g L⁻¹. Para o sistema (CA_DIC): *pH* 5,0; C_0 de 50 mg L⁻¹ e DA de 0,5 g L⁻¹.

No estudo de equilíbrio de adsorção os valores das variáveis foram: temperaturas de (26, 45 e 55 °C), C₀ (3; 5; 10; 12; 15; 25; 30; 35; 40; 45 e 50 mg.L⁻¹) e tempo de contato de 180 min. Para o sistema (CA_IBU): *pH* 6,1 (natural) e *DA* de 0,5 g L⁻¹. Para o sistema (CA_DIC): *pH* 5,0 e *DA* de 0,5 g L⁻¹.

Tabela 4.3 –	Matriz do	DCCR	monocom	ponente
1 a 0 0 a + .5 -	Maultz uo	DUUK	monocom	ponente

Ensaio	Vari	áveis codific	adas	Variáveis reais					
	-				IBU			DIC	
	X_1	X_2	X_3	pH	$C_0 (mg.L^{-1})$	$DA(g.L^{-1})$	pН	$C_0 (mg.L^{-1})$	$DA\left(g.L^{-1}\right)$
1	-1,0	-1,0	-1,0	3,0	20,0	0,2	5,0	20,0	0,2
2	-1,0	-1,0	1,0	3,0	20,0	0,6	5,0	20,0	0,6
3	-1,0	1,0	-1,0	3,0	40,0	0,2	5,0	40,0	0,2
4	-1,0	1,0	1,0	3,0	40,0	0,6	5,0	40,0	0,6
5	1,0	-1,0	-1,0	8,0	20,0	0,2	8,0	20,0	0,2
6	1,0	-1,0	1,0	8,0	20,0	0,6	8,0	20,0	0,6
7	1,0	1,0	-1,0	8,0	40,0	0,2	8,0	40,0	0,2
8	1,0	1,0	1,0	8,0	40,0	0,6	8,0	40,0	0,6
9	-1,7	0,0	0,0	1,3	30,0	0,4	4,0	30,0	0,4
10	1,7	0,0	0,0	9,7	30,0	0,4	9,0	30,0	0,4
11	0,0	-1,7	0,0	5,5	13,2	0,4	6,5	13,0	0,4
12	0,0	1,7	0,0	5,5	46,8	0,4	6,5	47,0	0,4
13	0,0	0,0	-1,7	5,5	30,0	0,1	6,5	30,0	0,1
14	0,0	0,0	1,7	5,5	30,0	0,7	6,5	30,0	0,7
15 (C)	0,0	0,0	0,0	5,5	30,0	0,4	6,5	30,0	0,4
16 (C)	0,0	0,0	0,0	5,5	30,0	0,4	6,5	30,0	0,4
17 (C)	0,0	0,0	0,0	5,5	30,0	0,4	6,5	30,0	0,4
18 (C)	0,0	0,0	0,0	5,5	30,0	0,4	6,5	30,0	0,4

Fonte:Autor (2024).

Modelos matemáticos foram utilizados para investigar a cinética de adsorção dos processos adsortivos (CA_IBU e CA_DIC), como pseudoprimeira ordem (PPO) e pseudossegunda ordem (PSO). Os modelos matemáticos de difusão intraparticula (DIP) e a Equação de Boyd foram utilizados para inferir sobre o mecanismo de difusão. As Equações dos modelos cinéticos são mostrados na Tabela 4.4. Os parâmetros dos modelos cinéticos foram determinados usando análise de regressão não linear.

MODELO	EQUAÇÃO	REFERÊNCIA
Pseudoprimeira	$dq(t) = h(\tau - \tau)$	Lagergren
Ordem (PPO)	$\frac{dt}{dt} = \kappa_1 (q_e - q_t)$	(1898)
Deaudossagunda	da	Ho e
Ordom (DSO)	$\frac{aq_t}{h} = k_2(q_e - q_t)^2$	McKay
Ordem (PSO)	dt 2000 to	(1999)
Difusão		Weber e
	$q_t = k_d t^{1/2} + C$	Morris
	rt u	(1963)
	$E > 0.95 \ \text{Rt} = lm \left(1 \frac{qt}{1}\right) 0.4077$	Boyd,
Boyd	$F > 0.03, Bt = -tn \left(1 - \frac{1}{ge}\right) = 0.4977$	Adamson e
	$\left(\left(\left(\pi^2 E \right) \right)^2 \right)$	Myers Jr.
	$F > 0.85, Bt = \left(\sqrt{\pi} - \sqrt{\pi} - \left(\frac{\pi \cdot F}{2}\right)\right)$	(1947)

Tabela 4.4 - Modelos cinéticos de reação e difusão.

Os modelos das isotermas de Langmuir, Freundlich, Sips, DR e R-P mostrados na Tabela 4.5 foram usados para ajustar os dados experimentais de equilíbrio de adsorção dos sistemas adsortivos (monocomponentes) estudados. Os parâmetros dos modelos matemáticos das isotermas de adsorção foram determinados usando análise de regressão não linear.

Tabela 4.5 –	Modelos	equilíbrio	de	adsorçã	ío

MODELO	EQUAÇÃO	REFERÊNCIA
Langmuir	$q_e = \frac{K_L \cdot q_{mL} \cdot C_e}{1 + K_L C_e}$	Langmuir (1918)
Freundlich	$q_e = K_F. C_e^{1/n}$	Freundlich (1906)
Sips	$q_e = \frac{K_s. q_{ms}. C_e^{\frac{1}{ns}}}{1 + K_s C_e^{\frac{1}{ns}}}$	Sips (1948)
D-R	$q_e = qm_{DR}. exp\left(-\beta\varepsilon^2\right)$	Dubinin (1960)
R-P	$q_e = \frac{K_{RP}.C_e}{1 + \alpha_{RP}C_e}$	Redlich e Peterson (1959)

Os valores dos parâmetros termodinâmicos foram calculados a partir dos dados experimentais de equilíbrio de adsorção dos sistemas adsortivos estudados, nas temperaturas 26, 45 e 55 °C. O valor da mudança de energia de Gibbs padrão (ΔG° , kJ.mol⁻¹) foi calculado usando a Equação 4.9, enquanto os valores de mudança de entalpia padrão (ΔH° , kJ.mol⁻¹) e mudança de entropia padrão (ΔS° , kJ.mol⁻¹.K⁻¹) foram calculados pela equação de de van't Hoff na forma linear (Equação 4.10), de acordo com a metodologia proposta por Tran (2022). O valor de K_{modelo} (L.mol⁻¹) que representa a constante do modelo de isoterma, que ajusta os dados experimentais de equilíbrio de adsorção em pelo menos três temperaturas de trabalho (Langmuir, Sips, D-R ou R-P) foi utilizada para calcular a constante de equilíbrio termodinâmico padrão (adimensional) de acordo com a Equação 4.11. O estado padrão dos processos adsortivos estudados foi definido como 1 mol.kg⁻¹ para os sólidos e 1 mol.L⁻¹ para os solutos, respectivamente. Em que q_e é definida em (mol.kg⁻¹) e C_e em (mol.L⁻¹).

A Equação 4. 12 K_{modelo} é aplicado, particularmente ao modelo de isoterma de Sips para correção de unidade de K_S (constante da isoterma de Sips).

Os valores de calor isostérico (ΔH_{st} , kJ.mol⁻¹) foram calculados a partir da inclinação da equação de Clausius-Clayparon (Equação 4.13).

$$\Delta G^0 = -RT \ln(K_{Eq}^0) \tag{4.9}$$

$$\ln\left(K_{Eq}^{0}\right) = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$
(4.10)

$$K_{Eq}^{0} = \frac{K_{modelo} \times C^{0} (adsorbato)}{\gamma_{Adsorbate}}$$
(4.11)

$$K_{modelo} = \sqrt[\bar{n}_{S}]{K_{S}} \quad (Equação \ de \ Sips) \tag{4.12}$$

$$ln(C_e) = -\left(\frac{\Delta H_{st}}{R}\right)\frac{1}{T} + C_1 \tag{4.13}$$

Em que, K_{Eq}^0 é a constante de equilíbrio termodinâmico padrão (adimensional); γ é o coeficiente de atividade do adsorbate unitário (adimensional); C^0 é a concentração padrão do adsorbato (1 mol.L⁻¹ por definição); R é a constante dos gases ideais (8,314 J.mol⁻¹.K⁻¹); T é a temperatura absoluta (K); C_1 é uma coantante de integração.
4.5.3 Ensaios de adsorção binária (DIC+IBU) usando a técnica de planejamento experimental

O Delineamento Composto Central Rotacional (DCCR) foi empregado no estudo da adsorção binária dos adsorbatos (DIC+IBU). As Tabelas (4.6 e 4.7) mostram a matriz de experimentos e os intervalos de valores das variáveis independentes do DCCR dos processos de adsorção binária (IBU+CA_DIC), respectivamente.

No DCCR da adsorção binária foram estudadas as variáveis independentes: dosagem de adsorvente (DA; g.L⁻¹) e concentração inicial (C_0 ; mg.L⁻¹) da solução de adsorbato (IBU ou DIC), as demais variáveis foram mantidas constantes: velocidade de agitação de 130 rpm; tempo de contato de 3 h e pH (natural) da solução (mistura IBU+DIC) de 6,1. O DCCR foi analisado utilizando um *software* estatístico.

Ensaio Nº	Variáveis codificadas			Variáveis reais			
				(IBU+DIC)			
	Y.	V.	V.	C_{0DIC} (mg.L ⁻¹)	C_{0IBU} (mg.L ⁻¹)	DA	
	Λ_l	A 2	Λ3	DIC	IBU	$(g.L^{-1})$	
1	-1,0	-1,0	-1,0	30,0	30,0	0,3	
2	-1,0	-1,0	1,0	30,0	30,0	0,5	
3	-1,0	1,0	-1,0	30,0	50,0	0,3	
4	-1,0	1,0	1,0	30,0	50,0	0,5	
5	1,0	-1,0	-1,0	50,0	30,0	0,3	
6	1,0	-1,0	1,0	50,0	30,0	0,5	
7	1,0	1,0	-1,0	50,0	50,0	0,3	
8	1,0	1,0	1,0	50,0	50,0	0,5	
9	-1,7	0,0	0,0	23,2	40,0	0,4	
10	1,7	0,0	0,0	56,8	40,0	0,4	
11	0,0	-1,7	0,0	40,0	23,2	0,4	
12	0,0	1,7	0,0	40,0	56,8	0,4	
13	0,0	0,0	-1,7	40,0	40,0	0,2	
14	0,0	0,0	1,7	40,0	40,0	0,6	
15 (C)	0,0	0,0	0,0	40,0	40,0	0,4	
16 (C)	0,0	0,0	0,0	40,0	40,0	0,4	
17 (C)	0,0	0,0	0,0	40,0	40,0	0,4	
18 (C)	0,0	0,0	0,0	40,0	40,0	0,4	

Tabela 4.6 - Matriz do DCCR da adsorção de mistura binária (IBU+DIC) por CA

		Variáveis reais				
Fatores		(IBU+DIC)				
		-1	0	+1	$+ \alpha$	
X_1 : Concentração inicial de adsorbato - DIC (C_0 ; mg L ⁻¹)	23	30	40	50	57	
X_2 :Concentração inicial de adsorbato – IBU (C_0 ; mg L ⁻¹)	23	30	40	50	57	
X_3 : Dosagem de adsorvente (DA ; g L ⁻¹),	0,2	0,3	0,4	0,5	0,6	

Tabela 4.7 - Variáveis rais e codificadas da adsorção de mistura binária (IBU+DIC) por CA

4.5.4 Função índice de desejabilidade

Foi realizada uma avaliação do índice de desejabilidade com o objetivo de aprimorar eficientemente a remoção dos dois adsorbatos (IBU e DIC) em uma mistura binária.

Esta ferramenta estatística é utilizada na otimização de uma função multirresposta, em que cada função resposta é convertida em uma função desejabilidade (di, $0 \le di \le 1$). Nesse contexto, o valor de di aumenta à medida que a desejabilidade da variável correspondente aumenta, conforme definido por Khuri e Cornell (1996). O processo de otimização por meio da função desejabilidade ocorre em duas fases: inicialmente, identificam-se os níveis das variáveis independentes que produzem simultaneamente um valor predito mais desejável das variáveis dependentes; em seguida, busca-se maximizar a desejabilidade global com base nos fatores controláveis.

A equação de transformação de variáveis resposta que apresentam um valor mínimo e máximo para a função desejabilidade ocorre conforme a Equação 4.14:

$$di \begin{cases} \left(\frac{Y_n - Y_{nL}}{C_n - Y_{nL}}\right)^s & Y_{nL} \le Y_n \le C_n \\ \left(\frac{Y_n - Y_{nH}}{C_n - Y_{nH}}\right)^t & n \le Y_n \le Y_{nH} \\ 0 & Y_n < Y_{nL} \text{ ou } Y_n > Y \end{cases}$$

$$(4.14)$$

Onde, Y_n é a variável resposta; Y_{nL} é o mínimo valor aceitável de Y_n ; Y_{nH} é o máximo valor aceitável de Y_n ; C_n é valor mais desejável de Y_n no intervalo $Y_{nL} < Y_n < Y_{nH}$; *s* e *t* são parâmetros de transformação e definem se a desejabilidade cresce rapidamente, linearmente ou devagar em direção ao valor alvo (mais desejável). 4.5.5 Ensaios de adsorção binária (IBU+DIC): cinética e equilíbrio de adsorção

Nos ensaios de cinética e equilíbrio da adsorção binária, as seguintes variáveis foram mantidas constantes: velocidade de agitação de 130 rpm; tempo de contato de 3horas e pH (natural) da solução (mistura IBU+DIC) de 6,1. O valor de *DA* (g.L⁻¹) foi o valor das condições otimizadas na análise estatística do DCCR da mistura binária (*DA* de 0,5 g.L⁻¹).

A cinética de adsorção foi estudada nas seguintes condições experimentais: tempo de contato (2,5; 10; 15; 20; 30; 40; 60; 90; 120 e 180 min), C_{0M} da mistura de 50 mg.L⁻¹ de cada adsorbato, concentração total de 100 mg.L⁻¹ em 50 mL de solução e temperatura de 26 °C. O estudo de equilíbrio de adsorção da mistura (IBU+DIC) por CA foi realizado nas concentrações da mistura C_{0M} (3; 5; 10; 12; 15; 25; 30; 35; 40; 45 e 50 mg.L⁻¹) e temperaturas (26, 45 e 55 °C).

As concentrações de equilíbrio de IBU e DIC, no sistema binário, foram calculadas usando as Equações 4.15 e 4.16, respectivamente (Paulrtto *et al.*, 2021; Noufel *et al.*, 2020).

$$C_{DIC} = \frac{K_{IBU2}.Abs_1 - K_{IBU1}.Abs_2}{K_{DIC1}.K_{IBU2} - K_{DIC2}.K_{IBU1}}$$
(4.15)

$$C_{IBU} = \frac{K_{DIC1}.Abs_2 - K_{DIC2}.Abs_1}{K_{DIC1}.K_{IBU2} - K_{DIC2}.K_{IBU1}}$$
(4.16)

Em que, k_{DIC1} , k_{DIC2} , k_{IBU1} e k_{IBU2} são as constantes das curvas de calibração do IBU e DIC nos dois comprimentos de onda k_1 (276 nm) e k_2 (221nm). Abs1 e Abs2 são os valores de absorbâncias.

Os modelos matemáticos clássicos mostrados na Tabela 4.8 foram correlacionados aos dados de equilíbrio de adsorção da mistura binária, enquanto que os modelos cinéticos foram os mesmos utilizados na adsorção monocomposto deste estudo.

MODELO	EQUAÇÃO	REFERÊNCIA
Langmuir	$q_{m,i} \cdot k_i C_{e,i}$	Markham;
Estendido	$q_{e,i} = \frac{1}{1 + \sum_{i=1}^{n} (k_i . C_{e,i})}$	Benton (1931)
		Sheindorf;
SDS	$\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \left($	Rebuhn;
SKS	$q_{e,i} = K_{F,i} \cdot C_{e,i} \cdot \left(\sum_{j=1}^{n} (a_{ij} \cdot C_{e,j}) \right)$	Sheintuch
		(1981)

Tabela 4.8 – Modelos matemáticos de equilíbrio de adsorção (multicomposto).

4.6 Tratamento estatístico (modelos matemáticos cinéticos e de equilíbrio de adsorção)

Para avaliar a precisão dos ajustes dos modelos matemáticos, as estatísticas coeficiente de determinação (R^2), coeficiente de determinação ajustado (R^2_{ajus}) e teste quiquadrado (X^2) foram calculadas. As Equações 4.17, 4.18, 4.19, respectivamente são mostradas na Tabela 4.9. (Montgomery, 2017; Tsai e Juang, 2000; Ho, 2004; Maia *et al*,2019). A adequação dos modelos cinéticos e de equilíbrio aos dados experimentais foi conduzida por meio da análise de regressão não linear.

Expressão matemática	Equação
$R^{2} = \left[\frac{\sum_{i}^{n} \left(q_{i,exp} - \bar{q}_{i,exp}\right)^{2} - \sum_{i}^{n} \left(q_{i,exp} - \bar{q}_{i,exp}\right)^{2}}{\sum_{i}^{n} \left(q_{i,exp} - \bar{q}_{i,exp}\right)^{2}}\right]$	(4.17)
$R_{ajust}^{2} = 1 - (1 - R^{2}) \left(\frac{n - 1}{n - p}\right)$	(4.18)
$X^{2} = \sum_{i}^{n} \left[\frac{\left(q_{i,exp} - \bar{q}_{i,exp} \right)^{2}}{q_{i,pred}} \right]$	(4.19)

Tabela 4.9 - Equações para tratamento estatístico

Fonte: Montgomery. (2017); Tsai e Juang, (2000); Ho (2004); Maia et al. (2019)

Em que, *n* é o número de experimentos realizados, *p* é o número de parâmetros do modelo matemático ajustado, $q_{i,pred}$. é o valor de q_e (capacidade de adsorção, em mg.g⁻¹) predito pelo modelo matemático ajustado e $\bar{q}_{i,exp}$ é a média desses valores; $q_{i,exp}$ é o valor observado experimentalmente e $q_{i,exp}$ é a média dos valores de q_e obtidos experimentalmente.

4.7 Ensaios de adsorção/dessorção

Os ensaios foram realizado em duplicata, em ciclos compostos de duas etapas, adsorção/dessorção, no tempo de 24 h cada. Para a realização da primeira etapa de cada ciclo, foram utilizados 0,5 g de carvão ativado e 50 mL de solução dos adsorbatos (IBU, DIC ou IBU+DIC), 50 mg. L⁻¹ em erlenmeyer de 125 mL. Os frascos foram fechados e mantidos sob agitação controlada de 120 rpm e temperatura de 28 °C em mesa agitadora (CEROTOMATO). Depois de atingido o equilíbrio, uma alíquota foi filtrada. Em

seguida, foi efetuada a leitura da concentração remanescente de IBU, DIC ou IBU+DIC, na solução em um Espectrofotômetro UV/Vis (Bioespectro), nos comprimento de onda máximo do IBU, DIC (221, 276 nm, respectivamente).

Na segunda etapa (processo de dessorção), o CA separado na primeira etapa foi lavado com água destilada e colocado em contato com 50 mL da solução regenerante (eluente), Etanol PA. Os frascos contendo as amostras foram fechados e mantidos sob agitação controlada de 120 rpm e temperatura de 28 °C em mesa agitadora. Depois de atingido o tempo de equilíbrio, o material adsorvente foi separado da fase fluida e foi efetuada a leitura da concentração remanescente da solução no espectrofotômetro. O percentual de remoção (R%), foi calculado de acordo com a Equação 4.6, já o percentual de dessorção (D%), é expresso na Equação 4.20.

$$D\% = \left(\frac{q_d}{q_a}\right) \times 100 \tag{4.20}$$

Onde, *D*% é o percentual de dessorção, q_d é quantidade de Adsorbato dessorvido (mg. g⁻¹); q_a é a quantidade de adsorbato adsorvido (mg. g⁻¹).

5 RESULTADOS E DISCUSSÃO

5.1 Sintese do CA

Na Figura 5.1 é mostrada algumas etapas da preparação do CA usando como precursor o resíduo (cascas) da Castanha-do-Brasil.

Figura 5.1 – Síntese de carvão ativado com H_3PO_4 : (a) amostra antes da síntese; (b) CA químico; (c) e (d) amostras secas granuladas.

Fonte: autor (2024)

5.2 Caracterização do CA

5.2.1 Determinação do teor de cinzas e teor umidade

Os resultados da derminação do teor de cinzas e teor umidade do CA são mostradas na Tabela 5.1.

Tabela 5.1 – Teor de umidade e cinzas da amostra de Ca	A
--	---

Amostra	Umidade (%)	Cinzas (%)	Rendimento (%)
CA	$8{,}62\pm0{,}02$	$4,\!20\pm0,\!01$	64,81%

Fonte: Autor (2024)

Em geral, os teores de cinzas de carvões ativados (CAs) comerciais variam entre 1% e 12%, dependendo do precursor utilizado (Cândido, 2019), o que corrobora o valor do teor de cinzas deste estudo. O valor do teor de umidade igual a 8,62%, deste trabalho provavelmente está relacionado às condições de armazenamento da amostra. No estudo realizado por Brandão, Queiroz e Silva (2020), que analisaram o teor de umidade de CA sintetizado por ativação química com H₃PO₄, estes pesquisadores encontraram um valor de teor de umidade de 9,84% no CA sintetizado. De acordo com Vunain *et al.* (2018), o percentual de cinzas de CA está relacionado também às condições de síntese. Em geral, quanto maior a temperatura (acima dos 800 °C), utilizada na síntese do CA, menor será o teor de cinzas. Quanto ao rendimento, o CA (64,81 %), mostra-se dentro da faixa percentual (36-78%) de CAs quimicamente com H₃PO₄ encontrados na literatura com diferentes biomassas (NEME *et al.*,2022; Bijang *et al.*,2022; Amin *et al.*,2022; Jiang *et al.*,2024).

5.2.2 Difração de raios X (DRX)

Para confirmar a síntese do CA, a amostra foi analisada por meio da Difração de raios X (DRX). A Figura 5.2 mostra o difratograma da amostra.

Figura 5.2 – Difratometria de raios x do CA

O difratograma mostra duas reflexões alargadas de diferentes intensidades, em $2\theta=25^{\circ}$ e $2\theta=50^{\circ}$. Conforme Liu et al. (2010), o pico de difração C (002) ($2\theta = 15-30^{\circ}$) pode ser atribuído às estruturas amorfas de carbono e o pico de difração C (101) ($2\theta = 40-50^{\circ}$) refere-se ao eixo *a* da estrutura de grafite, resultado que corrobora a amostra analisada, pois estes picos ocorrem devido à formação de estruturas desordenadas de carbono do CA (Kwaśniewska *et al.*, 2021).

5.2.3 Analise termogravimétrica (ATG/ATD)

A análise termogravimétrica (TGA) e a análise diferencial térmica (ATD) foram usadas para avaliar o comportamento da decomposição pirolítica do CA. Os resultados da decomposição termogravimétrica das amostras de CA são mostrados na Figura 5.3.

A partir da observação da Figura 5.3, a primeira mudança que pode ser observada na curva TGA é uma leve perda de massa que ocorre em torno de 50-100 °C, bem como

o aparecimento do pico endotérmico na curva de DTA, em 89,2 °C. Para Xu *et al.* (2021), isso é típico de materiais porosos como os carvões ativados, onde a água adsorvida é removida. A desidratação é o processo físico, onde a água é liberada sem que haja uma ocorrência química (Nyamful *et al.*, 2020).

A maior perda de massa observada na curva TGA ocorreu em torno de 450 - 740 °C. Segundo Ben-Ali (2021), esta perda substancial de massa é provavelmente devido à resistência térmica dos componentes orgânicos do CA, como a queima de resíduos de carbono ou a destruição de grupos funcionais pela ativação com H₃PO₄. A presença de ácido fosfórico pode ter promovido a formação de ligações cruzadas entre as cadeias de carbono, aumentando a estabilidade térmica até este ponto (Gao *et al*, 2016; Douinat *et al*, 2021; Mabrouki *et al*, 2022).

Após a temperatura de 740 °C, a curva TGA mostra uma perda de massa gradual, que eventualmente se estabiliza acima de 740 °C, com perda de massa total de 9 mg. Este fato indica que a maior parte do material volátil foi removida e o restante é principalmente carbono fixo e cinzas, que são mais resistentes a temperaturas elevadas. O pico exotérmico em 539,62 °C na curva DTA pode ser o resultado da oxidação de materiais orgânicos ou da combustão de componentes do carvão ativado (Vunain *et al.*, 2018; Niticharoenwong *et al.*, 2013). O pico endotérmico observado em 730,47 °C na curva DTA pode ser indicativo de uma transição de fase. No contexto de CAs tratados com H₃PO₄, este pico pode estar associado aos depósitos de fosfatos ou polifosfatos que foram formados durante o tratamento com ácido H₃PO₄. Esses compostos se decompõem ou mudam de fase em altas temperaturas, absorvendo calor no processo (Xu *et al.*, 2020).

5.2.4 Espectroscopia no infravermelho com transformada de Fourier(FTIR)

A análise de FT-IR auxilia na identificação dos grupos funcionais de superfície presentes no CA antes e depois da adsorção (CA_IBU; CA_DIC e CA_IBU+DIC). Na Figura 5.4, são apresentados os espectros, no intervalo de bandas de absorção entre 4000 a 800 cm⁻¹. Observa-se que as bandas 3390 cm⁻¹ (CA), 3357 cm⁻¹ (CA_IBU), 3367 cm⁻¹ (CA_DIC), 3376 cm⁻¹ (CA_IBU+DIC), correspondem a vibração de grupos hidroxilas (O-H) nas ligações intramoleculares e interações intermoleculares, sugerindo a presença de água, grupos carboxílicos e/ou fenólicos (Sharif *et al.*, 2018; Sajjadi *et al.*, 2019).

Figura 5.4 – Espectros de FT-IR do CA Antes e depois da Adsorção: CA(a) (antes da adsorção); b) CA_IBU (após adsorção); c) CA_DIC (após adsorção) e d) CA_IBU+CA (após adsorção).

Na Figura 5.4(a) são mostrados os gráficos do CA (antes da adsorção), os principais picos observados foram 3390 cm⁻¹, 2360 cm⁻¹, 2335 cm⁻¹, 1571 cm⁻¹ e 1160

cm⁻¹; 2360 cm⁻¹ e 2335 cm⁻¹, que representam C=N (nitrilas) ou CO₂ (dióxido de carbono) (Almeida,2015; Sajjadi *et al.*, 2019; Kumari; Annamareddy, 2020). O pico em torno de 1571,7 cm⁻¹ pode ser atribuído a vibrações de estiramento C=C de estruturas aromáticas ou a vibrações de deformação de grupos carboxilatos (COO-) (Kelm *et al.*, 2019). O pico localizado em 1160,9 cm⁻¹ é atribuído às vibrações do alongamento C-O em fenóis, éter, ácidos e álcoois, visivelmente pronunciado em CA, indicando que durante a etapa de ativação, ligações do tipo C-O foram formadas, bem como grupos fosfato, devido ao tratamento com ácido H₃PO₄ (Andas; Wazil, 2019; Sriatun; Herawati; Aisyah, 2020).

No caso do CA (após a adsorção) de ibuprofeno (CA_IBU), os picos principais observados foram: 3357 cm⁻¹, 1760 cm⁻¹, 1699 cm⁻¹, 1575 cm⁻¹, 1216 cm⁻¹ e 1068 cm⁻¹ (Figura 5.4b). A banda em 1760 cm⁻¹ corresponde ao estiramento de C=O (carbonila) do IBU, que não está presente no FTIR do CA. A presença de uma banda em 1699 cm⁻¹ também indica estiramento de C=O, sugerindo a presença do IBU. Os grupos de superfície do CA que interagem com o ibuprofeno, conforme indicado pelos novos picos apresentados no FTIR, incluem grupos C=O (carbonila), CO (ésteres, ácidos carboxílicos), e possivelmente deformações de CH, que indicam a presença de interações do tipo hidrogênio (Bouzidi *et al.*, 2023).

No CA (após adsorção) do diclofenaco (CA_DIC), os picos principais foram 2366 cm⁻¹, 2339 cm⁻¹, 1695 cm⁻¹ e 1554 cm⁻¹ (Figura 5.4c). As bandas em 2366 cm⁻¹ e 2339 cm⁻¹ são similares ao FTIR do CA, sugerindo pouca ou nenhuma mudança significativa nessas regiões, possivelmente devido à presença de nitrilas ou CO₂. A banda em 1695 cm⁻¹ é característica de estiramento de C=O do DIC, e a banda em 1554 cm⁻¹ pode indicar a presença de estiramentos de C=C aromático, indicando a presença de grupos carboxílicos(–COOH) (Bhadra *et al.*, 2017).

Com relação ao CA (após a adsorção) da mistura binaria (CA_IBU+DIC), os picos principais foram: 2356 cm⁻¹, 1699 cm⁻¹, 1585 cm⁻¹, 1211 cm⁻¹ e 1068 cm⁻¹. A banda em 1699 cm⁻¹ indica a presença de C=O do ibuprofeno ou diclofenaco. A presença de bandas referente aos adsobatos em 1585 cm⁻¹ (C=C aromático), 1211 cm⁻¹ (C-O) e 1068 cm⁻¹ (C-O e deformações de C-H). Com efeito, as bandas espectrais 1700 – 1400 cm⁻¹, indicam o aparecimento de grupos quinona, e grupo carboxílicos (–COOH), que estão presentes tanto no IBU quanto no DIC (Marcías – Garcías *et al.*, 2017; Guedidi *et al.*, 2017).

As mudanças observadas nas bandas de FTIR do CA (antes da adsorção) quando comparado com os CAs após a adsorção (CA_IBU, CA_DIC e CA_IBU+DIC), foram observadas conforme a Figura 5.4. As bandas de C=O (carbonila) são particularmente úteis para identificar a presença de ibuprofeno e diclofenaco no carvão ativado adsorvido. Além disso, as bandas de C-O e deformações de C-H fornecem informações adicionais sobre as interações entre os compostos e a superfície do carvão ativado. As bandas de C-O estão associadas a ligações entre carbono e oxigênio, indicando a presença de grupos funcionais como álcoois, éteres ou ácidos carboxílicos, que interagem com os compostos adsorvidos. As deformações de C-H referem-se às vibrações de ligações carbono-hidrogênio, sugerindo possíveis interações com grupos metil e metileno nos compostos orgânicos adsorvidos (Egashira *et al.*, 2018).

5.2.5 Área superficial específica (SBET) e volume de poros

A avaliação da área superficial específica (S_{BET}) foi realizada pelos métodos de adsorção/dessorção a temperatura do N₂ líquido (77 K). O valor de S_{BET} do CA foi de 1.383,624 m².g⁻¹. Em Oginni *et al.* (2019), um estudo similar de síntese da CA usando H₃PO₄ como agente ativante, o valor de S_{BET} determinado foi de 1.373 m².g⁻¹. Estes autores atribuíram o alto valor de S_{BET} do CA às reações químicas entre a biomassa e o ácido H₃PO₄, que dão origem à formação de pontes de fosfato e polifosfato, criando uma estrutura cruzada (*cross-linked*) que aumenta a estabilidade térmica e mecânica do CA e forma uma rede de poros interconectados, aumentando a área superficial específica.

As curvas de adsorção/dessorção de N₂ da amostra de CA, mostradas na Figura 5.5, exibem uma adsorção acentuada em baixos valores de pressões relativas. De acordo com a classificação da IUPAC, esse fato caracteriza uma isoterma de adsorção do tipo I-b, característica de materiais sólidos microporosos, com distribuições de tamanho de poros em uma faixa mais ampla, incluindo microporos mais largos (largura > 1 nm) e a presença de mesoporos estreitos (< \sim 2,5 nm) (Thommes *et al.*, 2015).

A partir da análise de picnometria por gás hélio realizada na amostra de CA, os valores de volume de mesoporo (V_{ME}) e macroporo (V_{MA}) foram calculados. O volume de microporo (V_{MI}) foi determinado utilizando a Equação de Dubinin-Raduschevich. Os valores de volume de poros, densidade real e densidade aparente são mostrados na Tabela 5.2.

Tabela 5.2 – R	esultados da	pcnometria
----------------	--------------	------------

Amostra	Densidade Real (g.cm ⁻³)	DensidadeAparente (g.cm ⁻³)	Vm1(%)	$V_{ME/V_{MA}}(\%)$
СА	2,04	2,03	77, 88	22,12

Fonte: autor (2024)

Os dados obtidos e analisados para penometria gás hélio indicaram densidade real de 2,04 g/cm³ e a densidade aparente de 2,03 g/cm³, esses resultados, estão de acordo com àqueles determinados para CAs obtidos por ativação com H₃PO₄ a partir de diferentes biomassas, conforme os trabalhos de Akou *et al.* (2016), Zhang *et al.* (2020); Moulefera *et al.* (2020); Mumpuni *et al.* (2021); Granada *et al.* (2020), que apresentaram densidade no intervalo de 1,95 – 2,12 g.cm⁻³, o que corrobora os resultados desta pesquisa. O V_{MI} de 77,88% em relação ao V_{ME} e V_{MA} destaca a predominância de microporos na amostra de CA. Este tipo de porosidade é importante para aplicações de adsorção que requerem alta área superficial específica, como o resultado de S_{BET} do CA sintetizado, neste estudo.

5.2.6 Análise de varredura de superfície

Os resultados de EDS da amostra de CA são mostrados na Tabela 5.3. O teor de carbono foi de 78,83% (C), oxigênio 19,79 % (O) e quantidades menores de fósforo 1,39 % (P). A presença de fósforo na amostra pode ser devido ao processo de síntese do CA com H₃PO₄. O estudo de Bulbul e Ergun (2024), com CA produzido de celulose e ativado com H₃PO₄, apresentou resultados similares com relação à composição elementar do CA: 76,4% de carbono (C), 18,8% de oxigênio (O) e 4,8% de fósforo (P). Observa-se uma proporção semelhante de carbono e oxigênio, mas uma variação na quantidade de fósforo. Isso pode ser atribuído a diferenças no processo de ativação, tipo de precursor utilizado ou nas condições experimentais (Yakout; El-deen, 2016).

Tabela 5.3 – EDS da amostra CA.

Amostra]	Elemento (% atômic	0)
Amostra	С	0	Р
СА	78,83	19,79	1,39

Fonte: Autor (2024)

As micrografias da amostra de CA são mostradas na Figura 5.6, em diferentes ampliações (100x, 1000x, 5000x e 10000x), permitindo observar a estrutura porosa em diferentes escalas. As imagens de maior ampliação (5000x e 10000x) mostram detalhes da superfície porosa.

A Figura 5.6 mostra as imagens Ia e Ib com ampliações de 100x, a superfície parece bastante heterogênea com áreas de diferentes contrastes. Nas imagens Ic e Id com ampliações de 1000x, a superfície do CA é vista com mais detalhes, a textura da superfície é mais aparente, com áreas que parecem mais ásperas e outras mais lisas. Os poros começam a se tornar visíveis, embora ainda não seja possível ver a estrutura interna dos poros com clareza. A imagem Ie com uma ampliação de 5000x mostra uma visão mais detalhada da estrutura porosa do CA. Na do CA superfície é mostrado uma variedade de poros de diferentes tamanhos e formas, com alguns poros parecendo estar interconectados.

A textura é complexa, com muitos detalhes que indicam uma superfície irregular e porosa. As imagens Ig, Ih e Ii com ampliações de 10000x fornecem uma visão detalhada da superfície do CA. Nesta escala, é possível ver a morfologia exata dos poros, incluindo bordas e paredes internas dos poros. A superfície CA mostra uma complexidade ainda maior, com poros de tamanhos variados.

As micrografias de MEV do CA mostram uma superfície porosa e heterogênea, com uma textura rugosa e uma variedade de tamanhos de poros. Essas características são indicativas de um material com alta área superficial e potencial para aplicações em adsorção. Características como essas foram encontradas por Aguiar Linhares *et al.* (2016), Bouchelkia *et al.* (2023) e OZDEMIR *et al.* (2023), em pesquisas semelhantes que utilizaram H_3PO_4 como agente de ativação.

Figura 5.6 – Micrografias CA (I.a e I.b com ampliações de 100x; I.c e I.d com ampliações de 1000x; I.e e I.f com ampliações de 5000x; I.g e I.h com ampliações de 10000x).

5.2.7 Índice de Hidrofobicidade/Hidrofilicidade(IH)

O IH foi calculado como a razão entre a quantidade de vapor de n-heptano adsorvido (indicando hidrofobicidade) e a quantidade de vapor de água adsorvido (indicando hidrofilicidade) na superfície do CA. O valor de IH maior do que 1 indica que a superfície é hidrofóbica, pois adsorve mais n-heptano do que água. Enquanto que, um valor de IH menor do que 1 indica o oposto, ou seja, indica que a superfície é hidrofílica (Leite *et al.*, 2018; Eitkamp *et al.*, 1993).

Os dados obtidos e analisados quanto ao IH indicaram um valor de IH = 0.8. Assim, o valor de IH do CA determinado, sugere uma ligeira preferência da superfície do CA pela adsorção de água em comparação com o n-heptano, característico de material hidrofílico. Thue *et al.* (2021) mostraram que o comportamento hidroficilico ou hidrofóbico dos CAs não é influenciado apenas pela condição de pirólise e método de ativação, também depende dos grupos funcionais presentes na superfície do CA, bem como da natureza da biomassa precursora.

5.2.8 pH de ponto de carga zero (pH_{PCZ}), pH de superfície, grupos funcionais de superfície

A Figura 5.7 mostra os dados experimentais obtidos na determinação do valor de pH_{PCZ} do CA. Os valores de pH_{PCZ} e pH de superfice do CA foram de 3,1 e 2,9 respectivamente. Estes valores indicam o caráter ácido da superfície do CA, que foi sintetizado usando H₃PO₄. De acordo com Oginni et al. (2019), durante a síntese de CA com H₃PO₄ ocorrem reações de desidratação que oxidam a superfície carbonácea. No processo de ativação química, o ácido H_3PO_4 promove a formação de grupos funcionais oxigenados na superfície do CA, como ácidos carboxílicos, lactonas, fenóis e outros. Esses grupos são introduzidos na matriz carbonácea através da inserção de oxigênio como heteroátomo, o que resulta na produção de grupos de superfície oxigenados (MBARKI et al., 2022). Valores de pH da solução inferiores ao valor do pH_{PCZ} podem deixar a superfície do material carregada com cargas positivas, favorecendo a adsorção de adsorbatos aniônicos. Por outro lado, se o pH da solução for maior do que o valor de pH_{PCZ}, a superfície será carregada com cargas negativas, o que favorecerá a interação com espécies catiônicas (Costa et al., 2021). Neste estudo, observa-se na Figura 5.7, que nos valores de pH da solução estudados não há a formação de cargas positivas na superfície do CA. Portanto, os mecanismos prováveis de interação CA/IBU devem ocorrer, principalmente por interações dispersivas e hidrofóbicas, uma vez que as espécies predominantes de IBU e DIC no meio aquoso são a forma molecular e a forma ionizada aniônica.

Fonte: Autor (2024).

O método de Boehm, tal como o FT-IR, tem como finalidade identificar os grupos funcionais na superfície do CA, diferenciando-se pela possibilidade de quantificar esses grupos (Hernández-Ortiz *et al.*,2019). Conforme demonstrado na Tabela 5.4.

Tabela 5.4 – Grupos funcionais da amostra de CA.

	Carboxilicos	Fenólicos	Lactonas	Total GA	Total GB
	(mEq.g ⁻¹)				
CA	1,32	1,80	0,52	3,60	0,10

O CA apresentou uma maior quantidade de grupos ácidos (3,60 mEq.g⁻¹) em comparação aos grupos básicos (0,10 mEq.g⁻¹). Nos grupos ácidos, houve uma predominância dos grupos fenólicos (1,80 mEq.g⁻¹). A acidez do CA é atribuída à presença de grupos derivados de oxigênio, como os grupos carboxila (-COOH), lactona (-COOR) e fenólicos (-OH), conforme identificado na análise de FT-IR (Shah *et al.*, 2020). Esse caráter ácido é confirmado pelos valores de pH de superfície (2,9) e pH_{PCZ} (3,1), este último mostrado na Figura 5.7.

A acidificação da superfície de um CA, produzido por ativação química, especialmente por H₃PO₄, como agente ativador, ocorre devido à oxidação da superfície carbonácea através de reações de desidratação. Durante esse processo, o oxigênio é incorporado como heteroátomo, levando à formação de grupos oxigenados na superfície (Luo *et al.*, 2019; Heidarinejad *et al.*, 2020).

5.3 Ensaios de adsorção

5.3.1 Definição do pH inicial da solução

O pH da solução tem como principal objetivo no processo adsortivo modificar a carga superficial do adsorvente, além de indicar o grau de dissociação ou protonação do soluto (Albatrni; Qiblawey e Al-Marri, 2022; Freitas, 2022). Nessa perspectiva, foi realizado um estudo para avaliar a influência do pH inicial da solução sobre o processo adsortivo dos sistemas monocompostos CA_IBU e CA_DIC como forma de validação dos modelos matemáticos compilados no DCCR monocomposto, os resultados são apresentados na Tabela 5.4 e Figura 5.8, respectivamente.

Os dados obtidos e analisados a partir da Tabela 5.4 e Figura 5.8(b) mostram que no sistema CA_IBU, a quantidade adsorvida e a porcentagem de remoção são maiores em pH 3,0 ($q_e = 78,19$ mg. g⁻¹, R% = 77,73%) com diminuição pouco acentuada a medida em que o pH da solução aumenta pH 10 ($q_e = 77,59$ mg. g⁻¹, R% = 77,13%). No sistema CA_DIC, a quantidade adsorvida e a porcentagem de remoção obtem valor máximo em pH5,0 ($q_e = 72,58$ mg.g⁻¹, R% = 72,15) diminuem significativamente medida em que o pH 9,0 ($q_e = 37,72$ mg.g⁻¹, R% = 37,49).

	IBU			DIC	
pН	$q_e (\mathrm{mg.g}^{-1})$	R(%)	рН	$q_e (\mathrm{mg.g}^{-1})$	<i>R</i> (%)
3,0	78,19	77,73	5,0	72,58	72,15
4,0	76,77	76,31	6,0	67,97	67,57
6,0	74,79	74,34	7,0	45,00	44,73
7,0	74,11	73,67	8,0	39,96	39,72
8,0	73,40	72,97	8,5	36,76	36,54
10	77,59	77,13	9,0	37,72	37,49

Tabela 5.5 – Avaliação do efeito do pH inicial da solução no processo adsortivo do CA_IBU e CA_DIC. Condições exp.: $C_0 = 50$ mg.L⁻¹; DA = 0.5 g·L⁻¹ e t = 3 h.

Figura 5.8 – Efeito do pH da solução nos valores de q_e e R% para CA_DIC(a) e CA_IBU (b) ($C_0 = 50$ mg.L⁻¹; DA = 0.5 g·L⁻¹ e t = 3 h).

Fonte:Autor (2024)

O pKa de uma substância é uma medida da sua tendência de doar prótons (H⁺) em solução, a se dissociar em um íon hidrogênio e sua base conjugada. O valor do pKa indica em que faixa de pH uma substância estará predominantemente na sua forma molecular ou dissociada (ionizada). Quando o pH da solução é menor do que o valor pKa do adsorbato, a forma molecular predomina. Quando o valor de pH da solução é maior do que o valor do pKa do adsorbato, a forma dissociada predomina (Duarte *et al.*, 2023; Thakur; Sharma; Mann, 2020). Os valores de pKa do IBU e DIC são 4,9 e 4,15,

respectivamente. Isso significa que em valores de pH da solução < valores de pKa do adsorbato, IBU e DIC tendem a estar na sua forma molecular. Por outro lado, em valores de pH de solução > valores de pKa do adsorbato, IBU e DIC estarão predominantemente na sua forma dissociada aniônica.

Como mostrado na Tabela 5.5 e a Figura 5.8(a), os ensaios monocomponente de DIC por CA foram realizados usando pH da solução 5,0, pois obervou-se durante os testes que, em valores de pH da solução menores do que 5,0; ocorreu a formação de um precipitado esbranquiçado. Assim, testes subsequentes foram realizados usando amostras em branco (solução de DIC) sem CA e com adição de CA, em valor de pH de solução (4,5), nas referidas soluções houve a formação de precipitado. Este fato encontra-se relatado na literatura consultada e ocorre quando o pH da solução é reduzido a valores abaixo do valor de pKa do DIC (4,15), a acidez favorece a conversão do sal solúvel (diclofenaco sódico) para sua forma ácida (diclofenaco), que é menos solúvel no meio aquoso (Franco, 2018; Shamsudin et al., 2022; Younes et al., 2022). Com efeito, resulta na formação de um precipitado esbranquiçado, como observado nos testes preliminares do sistema CA_DIC. As diferenças nas propriedades ácido-base e nos valores de pKa entre o DIC e IBU resultam em comportamentos distintos em soluções com baixo valor de pH (< 5,0). O DIC precipita mais facilmente devido à conversão para sua forma ácida menos solúvel, enquanto o IBU mantém-se mais solúvel devido às suas interações com substâncias inativas e a sua maior estabilidade em soluções ligeiramente ácidas (Singh; Dash e Talukdar, 2020).

Outra questão a ser tratada é a hidrofobicidade do adsorbato. Segundo Nam *et al.* (2014), essa característica influencia a interação do adsorvente e do adsorbato com as moléculas de água no meio aquoso, onde ocorre a adsorção. Esse fator também contribui para a redução da remoção do adsorbato do meio aquoso. Os fármacos podem ser substâncias hidrofóbicas ou hidrofílicas, IBU (*Log Kow* de 3,97) e DIC (*Log Kow* de 4,51) são adsorbatos moderamente hidrofóbicos, e estes apresentam baixa afinidade por moléculas de água. Neste estudo, o CA sintetizado é hidrofílico (tem afinidade por meléculas de água), assim, duas condições de interações adsorbato/adsorvente ocorreram: (i) adsorvente (com a carga de superfície negativa) e adsorbato (forma molecular) e (ii) adsorvente e adsorbato com a mesma carga (neste caso, carga negativa), os mecanismos de adsorção envolvidos, nesses tipos de interações, concorreram para remoção de IBU e DIC do meio aquoso por CA.

Além disso, os dados mostrados na Tabela 5.5, foram submetidos à análise de variância (ANOVA) e quando significativos, foram comparados usando o Teste de Tukey (p<0,05). A Tabela 5.6 apresenta os resultados obtidos nos testes de comparação de médias (Teste de Tukey) para q_e (mg.g⁻¹) e R(%) da adsorção CA_IBU e CA_DIC, em equilíbrio, nas diferentes faixas de pH. A diferença mínima significativa (DMS), foi calculada em 18,41, confirmando que os valores de q_e e R(%), em diferentes faixas de pH, tanto para CA_IBU quanto CA_DIC, são estatisticamente iguais, corroborando com os resultados encontrados nessa pesquisa.

Diferença das medias	
$\overline{\mathbf{x}}\mathbf{R}(\%)_{IBU} - \overline{\mathbf{x}} \mathbf{q} \mathbf{e} \left(\mathbf{m} \mathbf{g} \cdot \mathbf{g}^{-1} \right)_{IBU} \qquad 0,45$	
$\overline{\mathbf{x}}\mathbf{R}(\%)_{DIC} - \overline{\mathbf{x}} q e \big(\mathbf{m} g. g^{-1} \big)_{DIC} \qquad 0.30$	

Tabela 5.6 – Diferença das médias entre $q_e \in R(\%)$, para sistema CA_IBU e CA_DIC.

Fonte: Autor (2024)

5.3.2 Delineamento Composto Central Rotacional (DCCR) da adsorção monocomposto CA_IBU e CA_DIC

As variáveis temperatura e velocidade de agitação foram definidas como constantes e iguais à 26 °C e 130 rpm. Deste modo, as variáveis estudadas foram pH inicial da solução de adsorbato (pH, X_1), concentração inicial do adsorbato (C_0 , X_2 , mg.L⁻¹) e dosagem de adsorvente (DA, X_3 , g.L⁻¹). A Tabela 5.7 mostra os resultados experimentais e os valores das variáveis de resposta, percentual de remoção (R%) e quantidade adsorvida (q_e , mg.g⁻¹).

Ensaio nº	VARIÁVEIS - CODIFICADAS			VARIÁVEIS I	REAIS	VAF DEPEI	RIÁVEIS NDENTES		VARIÁVEIS RI	EAIS	VAI DEPE	RIÁVEIS NDENTES	
	X_1	X_2	X_3	pН	$C_0 (\mathrm{mg.L}^{-1})$	$M_{CA}(g.L^{-1})$	IB	U (3h)	pН	$C_0 (\mathrm{mg.L}^{-1})$	$M_{CA}(g.L^{-1})$	D	IC (3h)
							<i>R</i> (%)	$q_e(\mathrm{mg.g}^{-1})$			-	<i>R</i> (%)	q_e (mg.g ⁻¹)
1	-1,0	-1,0	-1,0	3,0	20,0	0,2	63,95	65,20	5,0	20	0,2	40,54	40,54
2	-1,0	-1,0	1,0	3,0	20,0	0,6	91,82	31,20	5,0	20	0,6	46,21	15,40
3	-1,0	1,0	-1,0	3,0	40,0	0,2	47,87	96,74	5,0	40	0,2	42,5	84,99
4	-1,0	1,0	1,0	3,0	40,0	0,6	81,84	55,13	5,0	40	0,6	85,71	57,14
5	1,0	-1,0	-1,0	8,0	20,0	0,2	67,17	68,48	8,0	20	0,2	22,10	22,10
6	1,0	-1,0	1,0	8,0	20,0	0,6	87,66	29,79	8,0	20	0,6	70,61	23,54
7	1,0	1,0	-1,0	8,0	40,0	0,2	49,29	99,62	8,0	40	0,2	23,08	46,16
8	1,0	1,0	1,0	8,0	40,0	0,6	78,12	52,63	8,0	40	0,6	60,33	40,22
9	-1,7	0,0	0,0	1,3	30,0	0,4	68,01	51,91	4,0	30	0,4	72,61	54,46
10	1,7	0,0	0,0	9,7	30,0	0,4	67,00	51,14	9,0	30	0,4	46,89	35,17
11	0,0	-1,7	0,0	5,5	13,2	0,4	77,63	26,40	6,5	13	0,4	58,79	19,11
12	0,0	1,7	0,0	5,5	46,8	0,4	67,89	78,32	6,5	47	0,4	42,42	49,84
13	0,0	0,0	-1,7	5,5	30,0	0,1	27,73	83,84	6,5	30	0,1	13,61	40,82
14	0,0	0,0	1,7	5,5	30,0	0,7	80,26	34,66	6,5	30	0,7	82,19	35,23
15 (C)	0,0	0,0	0,0	5,5	30,0	0,4	78,59	59,39	6,5	30	0,4	57,04	42,78
16 (C)	0,0	0,0	0,0	5,5	30,0	0,4	78,59	59,39	6,5	30	0,4	57,63	43,22
17 (C)	0,0	0,0	0,0	5,5	30,0	0,4	78,59	59,39	6,5	30	0,4	57,04	42,78
18 (C)	0,0	0,0	0,0	5,5	30,0	0,4	78,59	59,39	6,5	30	0,4	57,63	43,22

Tabela 5.7 – Resultados experimentais do DCCR.

Fonte:Autor (2024).

A maior remoção de IBU foi observada no ensaio 2 com R(%) = 91,82($X_1 = 3,0$; $X_2 = 20 \ mg.L^{-1} \ e \ X_3 = 0,6 \ g.L^{-1}$), e baixa capacidade de adsorção $q_e = 31,20$ mg.g⁻¹, esse comportamento adverso segundo Zaini et al.(2018), ocorre em sistemas com baixa concentração inicial do adsorbato e dosagem elevadas de adsorvente, o que resulta em uma altos valores de R% mas uma baixa nos valores de q_e . O maior valor de q_e foi atingido no ensaio 7 com $q_e = 99,62 \ mg.g^{-1}$ ($X_1 = 8,0$; $X_2 = 40 \ mg.L^{-1}$; $e \ X_3 = 0,2 \ g.L^{-1}$), e remoção $R(\%) = 49,29 \ mg.g^{-1}$. Todavia, o ensaio 5 mostra valores de eficiência de remoção R% = 67,17 e uma capacidade de adsorção $q_e = 68,48 \ mg.g^{-1}$, ($X_1 = 8,0$; $X_2 = 20 \ mg.L^{-1}$; $e \ X_3 = 0,2 \ g.L^{-1}$), indicando valores aproximados entre R% e q_e .

De maneira similar, o sistema CA_DIC foi analisado. No ensaio 4, verifica-se o maior valor de percentagem de remoção (R%) igual a 85,71 e valor de $q_e = 57,14 \text{ mg.g}^{-1}$, ($X_1 = 5,0; X_2 = 40 \text{ mg.L}^{-1}; e X_3 = 0,6 \text{ g.L}^{-1}$). Todavia, o maior valor de $q_e = 84,99 \text{ mg.g}^{-1}$ foi observado no ensaio ensaio 3 e R(%) = 42,5 ($X_1 = 5,0; X_2 = 40 \text{ mg.L}^{-1}; e X_3 = 0,2 \text{ g.L}^{-1}$). Valores próximos de q_e e R(%) foram encontrados no ensaio 12, 49,84 mg.g⁻¹, e 42,42% respectivamente ($X_1 = 6,5; X_2 = 47 \text{ mg.L}^{-1}; e X_3 = 0,4 \text{ g.L}^{-1}$).

Os resultados dos 18 ensaios do DCCR destacaram a importância crítica de uma seleção cuidadosa e a otimização das condições experimentais dos processo de adsorção para elevar os valores de q_e e R(%) de IBU e DIC (sistema monocomponente) do meio aquoso.

A Figura 5.9 mostra os gráficos de Pareto, no qual indicam que, no sistema CA_IBU, a remoção (R%) e a capacidade de adsorção (q_e) do adsorvente, a variável DA termos: linear [DA(L)] e quadrático [DA(Q)] é o fator mais influente, seguida pela concentração inicial C_0 (L), como mostrado nas Figuras 5.9a e 5.9b, respectivamente.

No sistema CA_DIC, a variável DA termos: $[DA(L)] \in [DA(Q)] \in a pH da solução são significativos para a resposta <math>R\%$, enquanto as variáveis: $C_0(L) \in pH(L)$ são mais significativos para a resposta q_e , como mostram as Figuras 5.9c e 5.9d, respectivamente.

Figura 5.9 – Gráfico de Pareto de variáveis independentes: CA_IBU_R%(a) q_e (b); CA_DIC R%(c) q_e (d)

Fonte:Autor (2024).

As Tabela 5.8 e 5.9 mostram a análise de variância (ANOVA) para a remoção (R%) e a capacidade de adsorção (q_e), dos sistemas monocomponentes CA_IBU e CA_DIC, respectivamente. Uma abordagem estatística que distingue as origens da variação nos dados entre a variância associada ao modelo em estudo e a variância decorrente de imprecisões experimentais (erro residual) é empregada para determinar se a discrepância atribuída ao modelo proposto é relevante em comparação com o erro residual. (Montgomery, 2009).

Fator					CA	IBU			
	df^a		R%	ó				qe	
		SS^b	M^{c}	F^d	p^{e}	SS^b	M^{c}	F^d	p^{e}
X_1	1	1,786	1,786	0,04955	0,831225	0,067	0,067	0,00121	0,973358
X_1^2	1	48,018	48,018	1,33237	0,292279	6,744	6,744	0,12239	0,738412
X ₂	1	357,367	357,36	9,91608	0,019840	2835,054	2835,054	51,44748	0,000371
X_2^2	1	1,624	1,624	0,04507	0,838900	2,885	2,885	0,05235	0,826627
X ₃	1	2914,4	2914,4	80,86867	0,000106	4359,443	4359,443	79,11045	0,000113
X ₃ ²	1	460,84	460,86	12,78787	0,011699	32,673	32,673	0,59291	0,470517
X ₁ .X ₂	1	0,231	0,231	0,00642	0,938766	0,278	0,278	0,00504	0,945732
X ₁ .X ₃	1	19,594	19,594	0,54368	0,488731	12,676	12,676	0,23002	0,648488
X ₂ .X ₃	1	26,064	26,064	0,72322	0,427717	31,641	31,641	0,57419	0,477295
Falta de ajuste	5	329,230	65,846			329,230	65,846		
Erro puro	3	0,348	0,116			0,348	0,116		
Total SS	17	6625,709				6625,709			

Tabela 5.8 – Análise da variância (ANOVA): DCCR monocomposto CA_IBU.

df^a: Graus de Liberdade. SS^b: Soma dos Quadrados. M^c: Média dos Quadrados. F^d: Teste de Fisher. p^e: Probabilidade de significância

Fator						CA_DIC			
	dfa			<i>R%</i>				qe	
		SS ^b	Mc	F ^d	p ^e	\mathbf{SS}^{b}	Mc	F^{d}	p ^e
X1	1	492,490	492,490	5,52124	0,046701	711,387	711,387	20,1380	0,002035
X_{1}^{2}	1	0,786	0,786	0,00881	0,927537	20,067	20,067	0,56807	0,472624
X ₂	1	1,361	1,361	0,01526	0,904732	2329,62	2329,62	65,9472	0,000039
X_{2}^{2}	1	112,786	112,786	1,26443	0,293419	75,726	75,726	2,14367	0,181316
X ₃	1	4512,88	4512,88	50,5932	0,000101	347,161	347,161	9,82747	0,013912
X_3^2	1	235,942	235,942	2,64511	0,142521	15,487	15,487	0,43842	0,526497
X ₁ .X ₂	1	322,072	322,072	3,61070	0,093941	258,213	258,213	7,30951	0,026923
X1.X3	1	170,017	170,017	1,90603	0,204748	293,910	293,910	8,32003	0,020372
X ₂ .X ₃	1	86,330	86,330	0,96783	0,354035	12,726	12,726	0,36025	0,564978
Falta de ajuste	5	713,594	89,199			282,411	56,482	875,24	0,000061
Erro puro	3	0,348	0,116			0,194	0,065		
Total SS	17	6625,70				4362,393			

Tabela 5.9 – Análise da variância (ANOVA): DCCR monocomposto CA_DIC.

 $\overline{df^{a}}$: Graus de Liberdade. SS^{b} : Soma dos Quadrados. M^{c} : Média dos Quadrados. F^{d} : Teste de Fisher. p^{e} : Probabilidade de significância

As Tabelas e 5.8 para o sistema CA_IBU indicam que os fatores X_2 , $X_3 e X_3^2$ são estatisticamente significativos para a resposta R% como indicado pelos valores p<0,05. Para a resposta q_e os fatores $X_2 e X_3$ apresentam significância estatística para a resposta (p<0,05). Analisando o sistema, Tabela 5.7 CA_DIC, os fatores $X_1 e X_3$ foram significativos para a resposta R%. Para a resposta q_e , os fatores X_1 , $X_2 e X_3$ e as interações $X_1.X_2$, $X_1.X_3$ são também significativos.

Os gráficos de superfície de resposta foram utilizados para analisar a tendência de otimização da remoção dos adsorbatos IBU e DIC por CA, como mostrados nas Figuras 5.10 e 5.11, com base nas variáveis que influenciaram a remoção dos adsorbatos, mantendo-se no ponto central as variáveis que não apresetaram efeito significativo.

Figura 5.10 – Superfície de resposta, variável dependente (R%), sistema CA_IBU em função das variáveis independentes: (a) *DA e pH*; (b) *DA e C*₀; (c) *C*₀ *e pH*.

Fonte: Autor (2024)

Figura 5.11 – Superfície de resposta, variável dependente (R%), sistema CA_DIC em função das variáveis independentes: (a) *DA e pH*; (b) *dosagem e C*₀; (c) *C*₀ *e pH*.

Fonte: Autor (2024)

Para CA_IBU a Figura 5.10 mostra que em valor de pH ácido (3,0) e maiores valores de DA, há uma tendência a apresentar R% acima dos 70% (Figura 5.10a e 5.10b). Segundo Mansour *et al.* (2018), ajustes nesses parâmetros podem melhorar a remoção de adsorbatos de soluções aquosas, evidenciando a complexidade e a importância da compreensão detalhada dessas variáveis nos processos de adsorção

Quanto ao sistema, CA_DIC os dados obtidos e analisados na Figura 5.11 indicaram que a variável *DA* no intervalo (0,5 a 0,7 g.L⁻¹) mostra um valor de remoção de 70%, no intervalo de C_0 (20 a 50 mg.L⁻¹), Figura (5.11a e 5.11b). No entanto, para um valor de *DA* constante, igual ou inferior a 0,4 g.L⁻¹ (ponto central), a remoção de DIC se

torna menor do que 70 % à medida que a concentração assume valores menores do que 30 mg.L⁻¹ na solução (Figura 5.11c) e faixa de *pH* acima de 8,0.

Os modelos completos, com os coeficientes de regressão calculados para as variáveis não-codificadas, apresentaram valores de R^2 e R^2_{ajust} (CA_IBU): para R% e qe $R^2 = 0,9606$ e $R^2_{ajust} = 0,9239$; $R^2 = 0,9606$ e $R^2_{ajust} = 0,9239$, respectivamente. Para CA_DIC: R% e qe $R^2 = 0,8923$ e $R^2_{ajust} = 0,7711$, $R^2 = 0,9352$ e $R^2_{ajust} = 0,8623$, respectivamente. Os modelos matemáticos completos são:

 $R(\%)_{IBU} = 25,32 + 2,99pH - 0,16pH^2 + 2,29C_0 - 0,01C_0^2 - 80,49DA + 43,55AD^2 - 0,01pH.C_0 - 2,51pH.AD + 0,99C_0.AD.$

 $q_{eIBU} = 33,35 + 3,02pH-0,16pH^2 + 2,30C_0 - 0,01C_0^2 - 103,20AD + 66,07AD^2 - 0,01pH.C_0 - 2,52pH.AD - 0,99C_0.AD.$

 $R\%_{DIC} = -19,87 + 1,07pH + 0.11pH^{2} + 3,86C_{0} - 0,03C_{0}^{2} + 47,95AD - 127,64AD^{2} - 0,42pH.C_{0} + 15,36pH.AD + 1,64C_{0}.AD.$

 $q_{eDIC} = 13,85 - 8,86pH + 0,56pH^2 + 5,44C_0 - 0,024C_0^2 - 112,596AD - 32,70AD^2 - 0,38pH.C_0 + 20,20pH.AD - 0,63C_0.AD.$

5.3.3 Cinética de adsorção monocomponente

Os modelos de PPO e PSO foram ajustados aos dados experimentais da adsorção entre CA_IBU e CA_DIC, que relacionam a capacidade de adsorção (q_e , mg. g⁻¹) em relação ao tempo (t, min.), visando investigar o mecanismo de adsorção desses processos. Na Tabela 5.10 e na Figura 5.12 são mostrados os valores dos parâmetros dos modelos cinéticos e as estatísticas utilizadas para inferir sobre a qualidade dos ajustes.

Modelos	Parâmetros		R^2	R^{2}_{ajust}	χ^2
		CA_IBU			
РРО	$q_e = 70,90; k_1 = 0,03597$		0,904	0,894	44,99
PSO	<i>q</i> e= 83,46; <i>k</i> ₂ =0,0013		0,941	0,935	27,62
		CA_DIC			
РРО	$qe=70,96; k_1=0,035$		0,977	0,974	16,47
PSO	$qe=90,51 k_2=5,25E-4$		0,958	0,953	30,21

Tabela 5.10 - Parâmetros dos modelos cinéticos dos modelos de PPO e PSO (CA_DIC e CA_IBU)

Fonte: Autor (2024)

Os dados obtidos e analisados, quanto a descrição do comportamento cinético do sistema CA_IBU, indicaram que o modelo PSO apresentou um melhor ajuste $(R^2 e R^2_{ajust})$ e um menor valor de χ^2 em comparação com o modelo PPO, indicando que, neste caso, o modelo PSO descreve melhor a cinética de adsorção.

Todavia, para o sistema CA_DIC o modelo que melhor adequou as condições cinéticas foi o PPO, com maiores valores para $R^2 e R^2_{ajust}$, e menor χ^2 , em relação ao PSO. Prigol (2018) em sua pesquisa obteve melhor ajuste para PPO em sua pesquisa relacionada à adsorção de DIC por CA, e evidencia que isso pode ocorrer devido às diferenças na presença dos grupos funcionais de superfície em alguns adsorventes. Além disso, durante o processo de adsorção, a transferência de massa da fase fluida para os sítios ativos disponíveis ocorre tendo como força motriz a diferença de concentração (Lagergren, 1898).

Quanto aos valores de q_e , _{calculados}, CA_IBU e CA_DIC (83,46 e 70,96 mg.g⁻¹, respectivamente) pelos modelos, apresentam uma variação em relação aos valores de $q_{e, experimental}$, (76,90 e 75,63 mg. g⁻¹, respectivamente). Essa variação foi de aproximadamente 8,53% para CA_IBU e 6,17% para CA_DIC.

Segundo Streit *et al.* (2021), em seu estudo da adsorção de fármacos por CA, o PSO foi apontado como descritivo da cinética de adsorção no IBU, sugerindo que a etapa limitante da taxa de adsorção corresponda à quimissorção. Além disso, Patel e Majumder (2020) afirmam que o modelo PSO é adequado para representar a adsorção de IBU, corroborando com os resultados desta pesquisa.

Fonte: Autor (2024).

A partir da Figura 5.12b observa-se que para o CA_DIC a cinética de adsorção ocorre rapidamente até atingir o equilíbrio (aproximadamente 60 min). Este fenômeno, segundo Nascimento (2019), está relacionado com o grande número de sítios disponíveis para adsorção, na superfície do material, no início do processo, que vai diminuindo à medida que o processo vai sendo conduzido. Por outro lado, a Figura 5.9a em CA_IBU a quantidade adsorvida aumenta com o tempo, porém não chega a atingir o equilíbrio.

A cinética de adsorção também foi analisada usando os modelos de difusão intrapartículas e de Boyd, com intuito de envidenciar os mecanismos de transferência de massa no processo de adsorção (Boyd; Adamson e Myers Jr, 1947; Weber; Morris, 1963). Os parâmetros e estatísticas do modelo de difusão intrapartícula (DIP) são mostrados Tabela 5.11 e os perfis das curvas do modelo ajustado são mostrados na Figura 5.13, a cinética de Boyd é mostrada na Figura 5.14.

REGIÃO I							
	k_d (g.mg ⁻¹ .min ^{-0,5})	$C (\mathrm{mg.g}^{-1})$	R^2	χ^2			
CA_IBU	4,94	11,119	0,990	1,47			
CA_DIC	7,26	0,296	0,994	1,07			
REGIÃO II							
	k_d (g.mg ⁻¹ .min ^{-0,5})	$C (\mathrm{mg.g}^{-1})$	R^2	X^2			
CA_IBU	4,92	18,855	0,974	1,64			
CA_DIC	7,45	15,866	0,990	3,07			
	REGI	IÃO III					
	k_d (g.mg ⁻¹ .min ^{-0,5})	$C (\mathrm{mg.g}^{-1})$	R^2	X^2			
CA_IBU	2,67	41,113	0,999	0,03			
CA_DIC	0,37	70,700	0,944	0,06			

Tabela 5.11- Resultados dos parâmetros estatísticos e cinéticos para o modelo DIP de adsorção.

Observa-se na Figura 5.13 uma multilineariedade dos pontos, indicando claramente a presença de três regiões distintas, exemplificando as etapas do processo de adsorção. A região I representa a transferência de massa externa, relacionada a difusão no filme, ou seja, a resistência envolvendo a superfície da partícula. Para o sistema CA_DIC, observa-se o menor valor da constante *C* (0,296) e o maior valor da constante de difusão, k_d (7,26 g.mg⁻¹.min^{-0,5}), estes resultados podem estar relacionados à diminuição da resistência à difusão no filme e maior mobilidade do adsorbato para o interior dos poros do adsorvente.

A região II descreve o transporte das moléculas dos fármacos através da superfície interna dos adsorventes, é a região denominada de difusão intrapartícula. Essa região, é caracterizada por um intervalo de adsorção mais gradual, exemplificando, provavelmente, a difusão de IBU e DIC nos microporos dos adsorventes, onde a resistência à transferência de massa é maior do que na difusão externa. Para o sistema CA_DIC, a resistência à difusão intrapartícula foi maior em relação ao CA_IBU, quando os valores de k_d são comparados (7,45 e 4,92 g.m⁻¹.min^{-0,5}), respectivamente.

A região III indica que, o sistema CA_DIC atingi o equilíbrio, onde a concentração do adsorbato em solução é igual a concentração na superfície do adsorvente e não há força motriz suficiente para promover a transferência de massa. Entretanto, o sistema CA_IBU não atingi o equilíbrio, nas condições experimentais estudadas. Os valores de k_d para CA_IBU e CA_DIC (3,67 e 0,37 g.mg⁻¹.min^{-0,5}), respectivamente,

mostram o adsorbato DIC, com menor valor de k_d , que significa uma difusão mais lenta, resultando em um processo adsortivo com capacidade de adsorção menor. Resultados semelhantes foram encontrados por Melo (2021), na adsorção de DIC por CA.

Figura 5.13 – Ajuste do modelo de DIP.

Fonte:Autor (2024)

Figura 5.14 - Modelo de Boyd da adsorção de CA_IBU (a), CA_DIC (b)

Quanto ao modelo de Boyd, observa-se um comportamento linear, todavia, a reta não passa pela origem (0,0), como é mostrado na Tabela 5.9. Este fato, indica que a difusão no filme (difusão externa) é a etapa controladora do mecanismo de adsorção de CA_IBU e CA_DIC. Esse mesmo comportamento foi observado nos estudos de adsorção de diclofenaco sódico, cetoprofeno, e naxopreno, onde a difusão externa foi a etapa controladora do mecanismo de adsorção (Maia *et al.*, 2019; Sekulic *et al.*, 2019; Costa *et al.*, 2021).

	Coeficiente angular	Coeficiente linear	R^2	R ² ajust	χ^2
CA_IBU	0,021	-0,359	0,975	0,972	0,38
CA_DIC	0,033	- 0,163	0,924	0,916	2,88

Tabela 5.12 - Parâmetros dos ajustes do modelo de difusão de Boyd.

Fonte: Autor (2024)

5.3.4 Equilíbrio de Adsorção monocomponente (CA_DIC e CA_IBU)

Os dados analisados e apresentados na Figura 5.15 mostram as curvas de equilíbrio dos sistemas CA_IBU e CA_DIC nas temperaturas de 26, 45 e 55 °C. Segundo a classificação de Giles *et al.* (1960), as isotermas são do tipo L3, que mostra a diminuição da capacidade de adsorção (q_e) do adsorvente à medida que a concentração inicial da solução é elevada, de modo que a disponibilidade dos sítios ativos do adsorvente se torna o limitante do processo de adsorção.

Figura 5.15 – Equilibrio de adsorção: CA_IBU(a); CA_DIC(b).

Fonte: Autor (2024)

Os dados obtidos e analisados indicam que no sistema CA_IBU (Figura 5.15a) a isoterma a 26 °C mostra um aumento gradual na quantidade adsorvida, sem atingir a saturação dentro do intervalo de concentração testada. Por outro lado, o sistema CA_DIC como mostra a Figura 5.15b indica o aumento na quantidade adsorvida ao elevar a temperatura de 26°C para 45°C.

Os resultados dos ajustes dos modelos matemáticos de Freundlich, Langmuir, Sips, D-R e R-P aos dados experimentais dos dois processos de adsorção estudados e em diferentes temperaturas de trabalho (26, 45, 55 °C) são mostrados nas Tabelas 5.13 e 514 e Figura 5.1.

Todos os modelos tiveram bons ajustes aos dados experimentais, para CA_IBU e CA_DIC. Porém dentre eles o melhor foi Sips para CA_IBU, enquanto a isoterma de Freundlich foi ajustado satisfatoriamente aos dados experimentais do processo CA_DIC, com base nos valores das estatísticas R^2 e R_{ajust}^2 que foram próximos da unidade e os menores valores da estatística χ^2 .

MODELOS	PARÂMETROS	R^2	R^2_{ajus}	χ^2
Freundlich	CA_IBU			
26° C	$K_F = 10,33 \text{ (mg.g}^{-1}).(\text{L.mg}^{-1})^{1/n}$	0,950	0,945	38,77
	<i>n_F</i> =1,14680 <i>1/n</i> =0,87196			
45° C	$K_F = 15,81 \text{ (mg.g}^{-1}).(\text{L.mg}^{-1})^{1/n}$	0,968	0,964	23,11
	<i>n_F</i> =1,5281 <i>1/n</i> =0,65438			
55° C	$K_F = 9,67 \text{ (mg.g-}^1\text{).}(\text{L.mg-}^1)^{1/n}$	0,989	0,988	8,38
	$n_{F}=1,065$ $1/n=0,93891$			
Langmuir	CA_IBU			
26° C	q_{mL} =167,01 mg.g ⁻¹ K_L =0,079 L.mg ⁻¹	0,943	0,937	43,99
45° C	q_{mL} =143,20 mg.g ⁻¹ K_L =0,092 L.mg ⁻¹	0,986	0,985	9,48
55° C	q_{mL} =130,00 mg.g ⁻¹ K_{L} =0,110 L.mg ⁻¹	0,940	0,934	47,60
Sips	CA_IBU			
26° C	$q_{ms}=150,00 \text{ mg.g}^{-1} ns=1,50 Ks=0,165 L.g^{-1}$	0,974	0,967	22,86
45° C	$q_{ms}=116,10$ mg.g ⁻¹ $n_s=1,33$ $K_s=0,221$ L.g ⁻¹	0,991	0,988	7,19
55° C	$q_{ms}=160,00 \text{ mg.g}^{-1} n_{s}=1,94 K_{s}=0,228 \text{ L.g}^{-1}$	0,995	0,993	4,37
D-R	CA_IBU			
26° C	q_{mDR} =75,62 mg.g ⁻¹ ; β =8,5 mol.kJ ⁻²	0,947	0,941	41,58
45° C	$q_{mDR} = 69,56 \text{ mg.g}^{-1}$; $\beta = 6,6 \text{ mol.kJ}^{-2}$	0,918	0,908	59,23
55° C	$q_{mD}R=79,47 \text{ mg.g}^{-1}$; $\beta=11,9 \text{ mol.kJ}^{-2}$	0,948	0,943	41,23
R-P	CA_IBU			
26° C	$K_{RP=}$ 10,29 L.g ⁻¹ $\alpha_{RP}=0,035$ L.mg ⁻¹ $n_{RP}=1$	0,960	0,950	34,82
45° C	$K_{RP=}$ 16,00 L.g ⁻¹ $\alpha_{RP}=0,157$ L.mg ⁻¹ $n_{RP}=0,9$	0,987	0,983	10,45
55° C	$K_{RP=}$ 9,71 L.g ⁻¹ $\alpha_{RP}=0,0175$ L.mg ⁻¹ $n_{RP}=1$	0,991	0,989	7,44

Tabela 5.13 – Equilíbrio de adsorção, do processo de adsorção (CA_IBU), parâmetros e estatísticas dos modelos de Freundlich, Langmuir, Sips, D-R e R-P.

MODELOS	PARÂMETROS	R^2	R ² ajust	χ^2
Freundlich	CA_DIC			
26° C	$K_F = 6,00 \text{ (mg.g}^{-1}\text{).}(\text{L.mg}^{-1})^{1/n}$	0,961	0,957	23,71
	<i>n_F</i> =1,121 <i>1/n</i> =0,892			
45° C	$K_F = 17,11 \text{ (mg.g}^{-1}\text{).}(\text{L.mg}^{-1})^{1/n}$	0,993	0,992	3,92
	<i>nr</i> =1,878 <i>1/n</i> =0,532			
55° C	$K_F = 19, 25 \text{ (mg.g}^{-1}\text{).}(\text{L.mg}^{-1})^{1/n}$	0,985	0,983	7,09
	<i>n_F</i> =2,27 1/ <i>n</i> =0,440			
Langmuir	CA_DIC			
26° C	q_{mL} =160,00 mg.g ⁻¹ K_L =0,041 L.mg ⁻¹	0,939	0,932	37,43
45° C	q_{mL} =94,35 mg.g ⁻¹ K_L =0,172 L.mg ⁻¹	0,970	0,966	17,72
55° C	q_{mL} =79,86 mg.g ⁻¹ K_L =0,200 L.mg ⁻¹	0,944	0,937	26,76
Sips	CA_DIC			
26° C	$q_{ms}=116,23 \text{ mg.g}^{-1}$ $ns=4,47 \text{ Ks}=0,447 \text{ L.g}^{-1}$	0,984	0,980	10,93
45° C	$q_{ms}=87,42 \text{ mg.g}^{-1}$ $n_s=1,2$ $K_s=0,226 \text{ L.g}^{-1}$	0,962	0,953	25,02
55° C	$q_{ms}=64,61 \text{ mg.g}^{-1}$ $n_{s}=1,4$ $K_{s}=0,666 \text{ L.g}^{-1}$	0,952	0,940	25,57
D-R	CA_DIC			
26° C	$q_{mDR} = 68,35 \text{ mg.g}^{-1}$ $\beta = 28,738 \text{ mol.kJ}^{-2}$	0,960	0,955	24,61
45° C	$q_{\rm mDR}$ = 59,41 mg.g ⁻¹ β = 4,137 mol.kJ ⁻²	0,840	0,820	83,84
55° C	$q_{\rm mDR}$ = 53,99 mg.g ⁻¹ β = 2,411 mol.kJ ⁻²	0,847	0,828	62,98
R-P	CA_DIC			
26° C	$K_{RP=}$ 4,767 L.g ⁻¹ $\alpha_{RP}=0,004$ L.mg ⁻¹ $n_{RP}=0,9$	0,969	0,961	21,31
45° C	$K_{RP=}$ 10,76 L.g ⁻¹ $\alpha_{RP}=0,091$ L.mg ⁻¹ $n_{RP}=0,8$	0,938	0,923	40,07
55° C	$K_{RP=}$ 9,621 L.g ⁻¹ $\alpha_{RP}=0,137$ L.mg ⁻¹ $n_{RP}=0,8$	0,836	0,795	88,02

Tabela 5.14 – Equilíbrio de adsorção do processo de adsorção (CA_DIC), parâmetros e estatísticas dos modelos de Freundlich, Langmuir, Sips, D-R e R-P.

A isoterma de Sips é utilizada para descrever a adsorção em sistemas heterogêneos, indica uma superfície de adsorvente com uma distribuição de sítios de diferentes energias de adsorção. Este ajuste sugere que em baixas concentrações de adsorbato o comportamento se assemelha à isoterma de Freundlich, enquanto em altas concentrações aproxima-se da isoterma de Langmuir (Sips, 1948). Pesquisas realizadas por Haro *et al.* (2021), Grassi *et al.* (2023), Streit *et al.* (2021), Ferreira *et al.* (2018), Leal *et al.* (2019), Ghalandari *et al.* (2020), Almeida-naranjo *et al.* (2021), todos sobre a adsorção de fármacos como Ibuprofeno, Cetoprofeno e Paracetamol por CA apresentaram bom ajuste para Isoterma de Sips.

Figura 5.16 – Ajuste dos modelos matemáticos, sistemaCA_IBU: Freundlich (a); Langmuir (b); Sips (c); R-D(d); R-P (e).

Fonte: Autor (2024)

Com relação ao parâmetro q_{ms} de Sips, em CA_IBU, q_{ms} varia significativamente com a temperatura. A 26° C, q_{ms} é de 150,0 mg.g⁻¹; a 45° C, q_{ms} diminui para 116,10 mg. g⁻¹ e a 55° C, q_{ms} aumenta (160,00 mg. g⁻¹). Esse comportamento segundo Aljeboree
et al. (2022), pode ser explicado pela influência da temperatura na energia de ativação dos sítios de adsorção no CA, ou seja, em temperaturas mais altas como a de 55° C, a mobilidade das moléculas de IBU aumenta, permitindo um maior acesso aos sítios de adsorção. Streit *et al.* (2021), apresentou q_{ms} em temperatura ambiente de 145 mg.g⁻¹ valor relativamente próximo ao deste estudo, corroborando com tais resultados.

A Figura 5.17a mostra o gráfico do ajuste da isoterma de Freundlich aos dados experimentais do processo CA_DIC. Segundo Freundlich (1906), esta isoterma é representada por um modelo empírico de adsorção aplicado à sistema não ideal e superfície heterogênea, sugerindo que o mecanismo de adsorção, desse fenômeno ocorra em multicamadas. Em CA_DIC, a constante da isoterma de Freundlich, k_F , está associada a energia de ligação e representa a capacidade de adsorção (Xu *et al.*, 2017). De acordo com a Tabela 5.14, k_F aumentou conforme a temperatura foi elevada, resultados semelhantes foram encontrados por Franco *et al.* (2018), e Fuhr *et al.* (2024), na remoção de DIC, por CA.

Quanto aos valores do parâmetro *ns*, foi calculado conforme a Equação 3.7, (Tabelas 5.13 e 14) os sistemas CA_IBU e CA_DIC apresentaram valores maiores do que a unidade (*ns*>1), resultado que confirma que há heterogeneidade na superfície do CA. Isso significa que a adsorção ocorre em sítios com diferentes energias de adsorção, indicando que a superfície do CA não é uniforme e possui uma distribuição variada de sítios ativos (Sips, 1948). Souza *et al.* (2024), e Pereira *et al.* (2023), realizaram pesquisas similares de adsorção de fármacos, por CA, e estes pesquisadores obtiveram resultados de *ns*>1, que foram atribuídos à heterogeneidade do adsorvente.

Além disso, os resultados a partir dos valores de R_L (fator de separação de Langmuir), indicaram adsorção favorável (0< R_L <1), para CA_IBU (0,170; 0,151; 0,204) e CA_DIC (0,333; 0,106; 0,091), nas temperaturas estudadas (26 °C, 45 °C, 55 °C) respectivamente (Hall *et al.*, 1966). Resultados confirmados pelos valores do parâmetro 1/n (intensidade de adsorção) do modelo de Freundlich, cujos valores no intervalo 0 < 1/n < 1 significa adsorção favorável, como mostrado nas Tabelas 5.13 e 5.14.

Figura 5.17 – Ajuste dos modelos matemáticos, sistemaCA_DIC: Freundlich (a); Langmuir (b); Sips (c); R-D(d); R-P (e).

Quanto aos resultados da equação D-R (Tabelas 5.13 e 5.14), os valores de energia média livre de adsorção (*E*) foram calculado conforme a Equação 3.11 da seção inical desse trabalho, nas temperaturas estudadas (26 °C, 45°C e 55°C), para CA_IBU foram (0,203; 0,275 e 0,204 kJ.mol⁻¹) e CA_DIC foram (0,131; 0,347 e 0,455 kJ.mol⁻¹),

respectivamente. Os valores de energia média livre de adsorção (E) foram inferiores a 8 kJ.mol⁻¹, indicando que nos sistemas (CA_IBU e CA_DIC) a adsorção física foi predominante.

O cálculo do valor energia media livre (*E*, kJ/mol), baseado na equação D-R, é frequentemente aplicado para determinar se o processo de adsorção é um processo físico (E < 8 kJ/mol) ou processo químico (8 kJ/mol < E < 16 kJ/mol) (Chabani; Amrane e Bensmaili, 2006).

Quanto a isoterma R-P, o parâmetro n_{RP} , indica a heterogeneidade do sistema de adsorção, que apresenta comportamentos distintos para IBU e DIC conforme a temperatura varia (Tabela 5.13 e 5.14). Para CA_IBU, n_{RP} mantém-se constante em 1 nas temperaturas de 26°C e 55°C, sugerindo um sistema homogêneo nessas condições, mas apresenta uma ligeira heterogeneidade (n_{RP} =0,9), a 45°C. Em contraste, para CA_DIC, n_{RP} menor que 1, variando de 0,9 a 0,8 com o aumento da temperatura, o que evidencia um sistema heterogêneo (Redlich; Peterson, 1959).

5.3.5 Termodinamica de adsorção monocomponente

Os valores dos parâmetros termodinâmicos foram calculados a partir dos dados experimentais de equilíbrio de adsorção dos sistemas adsortivos estudados, nas temperaturas 26, 45 e 55 °C (299,15 318,15 e 328,15 K, respectivamente), de acordo com a metodologia proposta por Tran (2022), que ajusta os modelos aos dados experimentais de equilíbrio de adsorção em pelo menos em três temperaturas de trabalho. Os valores das constantes de equilíbrio termodinâmico (K^0_{Eq} , adimensional) foram calculados, usando a metodologia citada. A Tabela 5.15 mostra os parâmetros termodinâmicos calculados para os processos de adsorção. Além disso, o ajuste linear aos dados é mostrado na

Figura 5.18 – Ajuste linear para obtenção de K^{0}_{Eq} nas temperaturas de 26, 45 e 55 °C :CA_IBU(a); CA_DIC(b).

	26 ° C	45°C	55°C	R^2
CA_IBU	9,81	9,95	10,13	0,939
CA_DIC	9,14	10,57	10,72	0,944

Tabela 5.15 – Valores de ln (K^{0}_{Eq}) e R^{2} , calculados a partir dos sistemas monocomponentes nas temperaturas estudadas (26, 45 e 55 °C)

Fonte: Autor (2024)

Na Tabela 5.16 são apresentados os valores obtidos de variação da energia livre de Gibbs padrão (ΔG^{0}), variação de entalpia padrão (ΔH^{0}) e variação de entropia padrão (ΔS^{0}) para os sistemas estudados (CA_IBU e CA_DIC). Esses dados fornecem uma visão detalhada das grandezastermodinâmicas envolvidas nos processos estudados, permitindo uma compreensão mais profunda das reações e interações ocorrentes.

Tabela 5.16 – Valores de $\Delta G^{o},$ $\Delta H^{o},$ ΔS^{o} para os sistemas CA_IBU e CA_DIC

	Δ G °(26°C)	Δ G °(45°C)	Δ G °(55°C)	ΔH°	ΔS^{o}
Sistema	(KJ.mol ⁻¹)	(KJ.mol ⁻¹)	(KJ.mol ⁻¹)	(KJ.mol ⁻¹)	(J.mol ⁻¹ .K ⁻¹)
CA_IBU	-24,40	-26,33	-27,63	-8,55	101,82
CA_DIC	-22,74	-27,97	-29,27	-46,89	233,42

Fonte: Autor (2025)

Os dados obtidos e analisados na Tabela 5.16, mostram valores negativos de ΔG° indicando que o processo de adsorção é espontâneo, para ambos os sistemas (CA_IBU e CA_DIC). Comportamento semelhante foi obtido por Pauletto *et al.* (2022) na adsorção de nimesulida e paracetamol por CA, o autor obteve valores de ΔG° entre -23,74 e -33,52 kJ.mol⁻¹, valores negativos que indicam um processo espontâneo.

O valor negativo calculado para ΔH^o revela a natureza exotérmica dos processos de adsorção CA_IBU e CA_DIC, (-8,55 e - 46,08 kJ.mol⁻¹, respectivamente). Resultados semelhantes foram reportados por Hernandez et al. (2021) que mostraram natureza exotérmica para adsorção de fármacos. Em seu estudo sobre adsorção IBU e DIC em CA, Chenarani e Lotfollahi (2024) também relataram que o processo de adsorção apresentou natureza exotérmica. Existem vários estudos na literatura que relatam caráter exotérmico de processos de adsorção de poluentes emergentes farmacológicos em diferentes sólidos adsorventes (Kocabiyik *et al.*, 2024; Alvear-Daza *et al.*, 2024; Zhang *et al.*, 2023; Thabede *et al.*, 2023).

Quanto aos valores de ΔS^o , são positivos para ambos os sistemas, indicando um aumento na desordem ou aleatoriedade do sistema durante a reação. CA_DIC apresenta valor de ΔS^o de 233,42 J.mol⁻¹.K⁻¹, que é maior do que o valor de 101,82 J.mol⁻¹. K⁻¹ para o sistema CA_IBU. Isso sugere que a reação no sistema CA_DIC resulta em um aumento maior na desordem do sistema comparado ao sistema CA_IBU. Comportamento termodinâmico similar foi obtido por Dilekoglu *et al.* (2023) na adsorção de fármacos.

Os gráficos de calor isotóstérico (ΔH_{st}) calculados, para diferentes valores de cobertura superficial do CA constante (q_e) são mostrados na Figura 5.19, e seus valores são mostrados na Tabela 4.17.

	-	-	
	$q_e (\mathrm{mol.g}^{\text{-}1})$	$\Delta \boldsymbol{H}_{\boldsymbol{st}}$ (kJ.mol ⁻¹)	R^2
	1,542x10 ⁻²	-23,76	0,90
	8,527x10 ⁻²	-9,69	0,90
CA_IBU	18,707x10 ⁻²	-5,00	0,99
	28,025x10 ⁻²	-3,27	0,90
	2,458x10 ⁻²	-60,15	0,92
	9,036x10 ⁻²	-30,89	0,90
CA_DIC	16,139x10 ⁻²	-9,62	0,97
	21,311x10 ⁻²	-8,85	0,99

Tabela 5.17 – Valores de ΔH_{st} , para os sistemas CA_IBU e CA_DIC temperaturas (26, 45 e 55 °C).

Fonte: Autor (2024)

Figura 5.19 – Ajuste linear de ln(Ce) versus 1/K (K⁻¹) para ΔH_{ST} nos sistemas:CA_IBU(a); CA_DIC(b).

Fonte: Autor (2024)

Conforme mostrado na Tabela 5.17, e a Figura 5.19 a variação dos valores do ΔH_{st} , para os dois sistemas (CA_IBU e CA_DIC), indica que o a superfície do CA, é energeticamente heterogênea (Silva *et al.*, 2021). Além disso, a magnitude dos seus valores abaixo de 80 kJ mol⁻¹ indicam que o processo de adsorção é governado por fenômenos físicos (Silva *et al.*, 2021). Os resultados corroboram com dados experimentais que foram melhor representados pelos modelos Freundlich (CA_DIC) e Sips (CA_IBU), denotando também a heterogeneidade característica e a não uniformidade energética dos sítios ativos do CA.

5.4 Ensaios de adsorção de sistemas binário

5.4.1 Delineamento Composto Central Rotacional (DCCR) da adsorção binária CA_(IBU+DIC).

A Tabela 5.18, mostra os resultados experimentais, percentual de remoção (R%) e quantidade adsorvida (q_e , mg.g⁻¹).

A partir da Tabela 5.18 o sistema de adsorção binária CA_IBU+DIC, os valores R% e q_e para cada adsorbato foram analisados e comparados. Com relação à variável percentual de remoção (R%), os maiores valores atingidos pelo IBU ocorreram nos ensaios 11: R% (51,82%) e q_e (22,46 mg.L⁻¹); ensaio 8 (R% (42,17%) e q_e (43,79 mg.L⁻¹) e ensaio 14: R% (39,38%) e q_e (32,12 mg.L⁻¹). O ensao 8 foi considerado aquele com os melhores valores das variáveis R% e q_e , nas condições experimentais ($X_I = 50$ mg.L⁻¹, $X_2 = 50$ mg.L⁻¹, $X_3 = 0.5$ g.L⁻¹).

Ensaio nº	- VARIÁVEIS CODIFICADAS		·	VARIÁVEIS REAIS			VARIÁVEIS DEPENDENTES (BINÁRIA)			
							IBU+DIC (3h)			
	Y.	Y.	Y.	C_{0DIC}	C_{0IBU}	DA	IBU			DIC
	\mathbf{A}_{l}	\mathbf{n}_{2}	<i>A</i> 3	$(mg.L^{-1})$	$(mg.L^{-1})$	(g.L ⁻¹)	<i>R</i> (%)	q_e (mg.g ⁻¹)	<i>R</i> (%)	$q_e(\mathrm{mg.g}^{-1})$
1	-1,0	-1,0	-1,0	30,0	30,0	0,3	19,52	12,10	21,77	14,01
2	-1,0	-1,0	1,0	30,0	30,0	0,5	37,93	23,52	41,73	26,86
3	-1,0	1,0	-1,0	30,0	50,0	0,3	24,65	24,87	20,90	14,01
4	-1,0	1,0	1,0	30,0	50,0	0,5	26,07	23,49	29,52	17,13
5	1,0	-1,0	-1,0	50,0	30,0	0,3	22,73	14,80	17,39	17,64
6	1,0	-1,0	1,0	50,0	30,0	0,5	25,95	16,89	55,53	56,31
7	1,0	1,0	-1,0	50,0	50,0	0,3	23,55	24,87	25,37	27,65
8	1,0	1,0	1,0	50,0	50,0	0,5	42,17	43,79	31,71	31,23
9	-1,7	0,0	0,0	23,2	40,0	0,4	27,57	21,80	20,11	9,89
10	1,7	0,0	0,0	56,8	40,0	0,4	26,69	23,01	46,17	52,18
11	0,0	-1,7	0,0	40,0	23,2	0,4	51,82	22,49	35,43	29,38
12	0,0	1,7	0,0	40,0	56,8	0,4	27,64	32,66	26,75	31,92
13	0,0	0,0	-1,7	40,0	40,0	0,2	8,01	6,53	10,11	8,51
14	0,0	0,0	1,7	40,0	40,0	0,6	39,38	32,13	34,18	28,77
15 (C)	0,0	0,0	0,0	40,0	40,0	0,4	25,47	20,78	26,90	22,64
16 (C)	0,0	0,0	0,0	40,0	40,0	0,4	25,75	19,41	29,86	20,97
17 (C)	0,0	0,0	0,0	40,0	40,0	0,4	25,47	20,78	26,90	22,64
18 (C)	0,0	0,0	0,0	40,0	40,0	0,4	25,75	19,41	29,86	20,97

Tabela5.18 – Resultados experimentais do DCC mistura binária

Fonte:Autor (2024).

No caso do DIC, os maiores valores de remoção foram nos seguintes ensaios: ensaio 6: R% (55,53%) e q_e (56,31 mg.L⁻¹); ensaio 10 (R% (46,17%) e q_e (52,18 mg.L⁻¹) e ensaio 2: R% (41,73%) e q_e (26,86 mg.L⁻¹). O ensaio 6 foi considerado aquele com os melhores valores das variáveis R% e q_e , nas condições experimentais ($X_1 = 50$ mg.L⁻¹, $X_2 = 30$ mg.L⁻¹, $X_3 = 0.5$ g.L⁻¹).

A competição entre os dois compostos pode explicar a menor eficiência de remoção comparada com os resultados do DCCR monocomponente (Tabela 5.7). A adsorção monocomponente frequentemente apresenta maior eficiência porque cada adsorbato tem acesso irrestrito aos sítios de adsorção disponíveis (Loganathan *et al.*,2018). Em contrapartida, na adsorção binária, os compostos podem competir pelos mesmos sítios, resultando em uma diminuição nas variáveis R% e q_e (Masson *et al.*,2016).

Os gráficos de Pareto (Figura 5.20), mostram que no sistema CA_IBU(+DIC): as variáveis [DA(L)] e C_0 _IBU(L), foram mais influentes para as variáveis respostas R% e q_e (Figuras 5.20a e 5.20b), respectivamente. No sistema CA_DIC(+IBU): C_0_DIC(L) e DA(Q) foram as variáveis mais significativas para as variáveis respostas R% e q_e , como mostrado nas Figuras 5.20c e 5.20d, respectivamente. As Tabelas 5.19 e 5.20 apresentam a ANOVA para R% e q_e da mistura binária CA_IBU+DIC.

Figura 5.20 - Gráfico de Pareto de variáveis independentes: CA_IBU(+DIC), $q_e(a) R\%(b)$; CA_DIC(+IBU) $q_e(c) R\%(d)$.

Fator	CA_IBU(+DIC)								
	df^a							qe	
		SS^b	M^{c}	F^d	p^{e}	SS^b	M^{c}	F^d	p^{e}
X1	1	1,655	1,6547	0,030	0,865	24,820	24,819	1,100	0,324
X_{1}^{2}	1	0,042	0,0420	0,000	0,978	6,862	6,862	0,304	0,596
X ₂	1	67,340	67,3401	1,253	0,295	326,986	326,985	14,499	0,005
X_2^2	1	237,364	237,364	4,419	0,068	81,455	81,455	3,612	0,093
X ₃	1	681,341	681,340	12,686	0,007	422,816	422,816	18,749	0,002
X_{3}^{2}	1	13,429	13,428	0,250	0,630	1,150	1,150	0,051	0,826
X ₁ .X ₂	1	70,627	70,626	1,315	0,284	73,387	73,386	3,254	0,108
X ₁ .X ₃	1	0,505	0,505	0,009	0,925	15,043	15,042	0,667	0,437
X ₂ .X ₃	1	0,316	0,316	0,005	0,940	2,030	2,030	0,090	0,771
Falta de ajuste	5	429,562	85,912	3287,47	0,000	178,531	35,706	57,072	0,003
Erro puro	3	0,078	0,026			1,877	0,625		
Total SS	17	1559,234				1142,052			

Tabela 5.19 – Análise da variância (ANOVA): DCCR binário CA_IBU(+DIC).

 df^{a} : Graus de Liberdade. SS^{b} : Soma dos Quadrados. M^{c} : Média dos Quadrados. F^{d} : Teste de Fisher. p^{e} : Probabilidade de significância.

Fator		CA_DIC(+IBU)								
	df^a	R%				qe				
		SS^b	M^c	F^d	p^{e}	SS^b	M^c	F^d	p^e	
X ₁	1	262,614	262,614	9,708	0,014	1274,402	1274,402	41,478	0,000	
X_{1}^{2}	1	44,172	44,171	1,633	0,237	102,180	102,180	3,325	0,105	
X ₂	1	138,695	138,694	5,127	0,053	30,898	30,898	1,005	0,345	
X_2^2	1	16,861	16,861	0,623	0,452	92,764	92,764	3,018	0,120	
X ₃	1	918,090	918,090	33,941	0,000	609,349	609,349	19,830	0,002	
X_3^2	1	48,150	48,150	1,780	0,218	21,640	21,640	0,704	0,425	
X ₁ .X ₂	1	0,952	0,952	0,035	0,855	3,564	3,564	0,116	0,742	
X ₁ .X ₃	1	31,601	31,601	1,168	0,311	86,330	86,330	2,809	0,132	
X ₂ .X ₃	1	232,632	232,632	8,600	0,018	251,104	251,104	8,172	0,021	
Falta de ajuste	5	207,632	41,526	14,218		243,029	48,606	52,285	0,004	
Erro puro	3	8,762	2,920			2,789	0,930			
Total SS	17	1949,846				2750,759				

Tabela 5.20- Análise da variância (ANOVA): DCCR binário CA_DIC(+IBU).

 $\overline{df^{a}}$: Graus de Liberdade. SS^{b} : Soma dos Quadrados. M^{c} : Média dos Quadrados. F^{d} : Teste de Fisher. p^{e} : Probabilidade de significância.

A Tabelas 5.19 para CA_IBU(+DIC), o sistema indica que o fator X_3 é estatisticamente significativo para a resposta R% como indicado pelos valores p<0,05. Para a resposta q_e os fatores $X_2 e X_3$ apresentam significância estatística para a resposta (p<0,05). Em CA_DIC(+IBU), a Tabela 5.20 os fatores $X_1 e X_3$ foram significativos para a resposta R%. Para a resposta q_e , os fatores $X_1, e X_3$ são também significativos.

Os modelos matemáticos completos da mistura binária, com os coeficientes de regressão calculados para as variáveis não-codificadas, apresentaram valores de R^2 e R^2_{ajust} IBU: para R% e $q_e R^2 = 0,7393$ e $R^2_{ajust} = 0,4460$; $R^2 = 0,8878$ e $R^2_{ajust} = 0,7868$, respectivamente. Para DIC: R% e $q_e R^2 = 0,8890$ e $R^2_{ajust} = 0,7641$, $R^2 = 0,9106$ e $R^2_{ajust} = 0,8101$, respectivamente. Os modelos matemáticos com as variáveis mais significativas são:

 $R(\%)_{DIC} = -40,76 - 1,73C_{0DIC} + 0,01C_{0DIC}^{2} + 1,03C_{0IBU} + 0,01C_{0IBU}^{2} + 328,34DA - 145,49 DA^{2} - 0,003 C_{0DIC} + C_{0IBU} + 1,98 C_{0DIC} + DA - 5,39C_{0IBU} + DA.$

 $R(\%)_{IBU} = 92,19 + 0,09C_{0DIC} + 0,0004C_{0DIC}^{2} - 5,19 C_{0IBU} + 0,04C_{0IBU}^{2} + 118,15DA - 56,61 DA^{2} + 0,01 C_{0DIC} * C_{0IBU} - 1,70 C_{0DIC} * DA + 1,75C_{0IBU} * DA.$

 $qe_{DIC} = -8,63 - 3,39C_{0DIC} + 0,02C_{0DIC}^{2} + 0,15C_{0IBU} + 0,02C_{0IBU}^{2} + 232,44DA - 97,53$ $DA^{2} - 0,006 C_{0DIC} * C_{0IBU} + 3,28 C_{0DIC} * DA - 5,60C_{0IBU} * DA.$

 $q_{eIBU} = 120,74 - 2,84C_{0DIC} + 0,03C_{0DIC}^{2} - 3,59 C_{0IBU} + 0,02C_{0IBU}^{2} + 30,66DA - 45,55 DA^{2} + 0,02C_{0DIC}*C_{0IBU} - 2,21C_{0DIC}*DA + 4,09C_{0IBU}*DA$

5.4.2 Função índice de desejabilidade

Foi realizada uma avaliação do índice de desejabilidade com o objetivo de aprimorar a adsorção simultânea dos dois adsorbatos (IBU e DIC). A desejabilidade é uma técnica estatística utilizada para a otimização de uma função multiresposta (Khuri; Cornell, 1996). A Tabela 5.21 mostra os valores máximos e mínimos para a R% e q_e de cada adsorbato, conforme os pontos ótimos do modelo matemático proposto pelo DCCR da mistura binária.

Fármaco	$q_e (\mathrm{mg.g}^{-1})$ minimo	<i>R%</i> minimo	$q_e~({ m mg.g}^{ ext{-1}})$ máximo	<i>R%</i> máximo
IBU	6,53	8,01	48,10	47,00
DIC	8,51	10,11	36,57	35,00

Tabela 5.21 – valores de R% e q_e máximos e mínimos obtidos a partir do modelo matemático do DCCR

Com base nos resultados apresentados na Tabela 5.21, foi atribuído o fator de desejabilidade 1,0 aos pontos ótimos obtidos no modelo matemático do DCCR, além das seguintes condições: fator de grade 50, s = 1 e t = 1. Os parâmetros s e t determinam, respectivamente, como a desejabilidade da variável resposta cresce à medida que se aproxima do valor mais desejável c_n e como ela decresce ao se afastar desse valor. A Figura 5.21 ilustra o resultado da análise de desejabilidade.

A Figura 5.21 mostra que o ponto ótimo para R% e q_e de CA_IBU+DIC, dentro do domínio experimental utilizado no DCCR da mistura binária, ocorre em DA = 0,5g.L⁻¹, IBU = 56,8 mg. L⁻¹, DIC = 56,8 mg. L⁻¹, resultando em remoções de 48,85% de IBU, 38,53% de DIC e capacidade de adsorção em 56,58 mg.g⁻¹ para IBU e 50,79 mg.g⁻¹ em DIC. O valor de DA = 0,5 g.L⁻¹ é o mesmo valor dado como ponto ótimo no modelo matemático, conforme as análises preliminares de remoção. Isso demonstra que os valores definidos no estudo são consistentes com os valores otimizados obtidos.

Figura 5.21 – Desejabilidade geral para otimização da adsorção binária de IBU+DIC.

Fonte: Autor (2024)

5.4.3 Fator de separação

A Tabela 5.18 apresenta os valores de q_e obtidos experimentalmente no esudo de equilíbrio para os adsorbatos nos sistemas monocomponente (CA_IBU e CA_DIC), e binário (CA_IBU+DIC). A Figura 5.22 mostra os resultados do fator de separação (α_B^A) para os sistemas binários estudados (IBU+DIC), no intervalo de concentração inicial de 3 a 50 mg.L⁻¹ de cada adsorbato estudado. Assim, o IBU apresentou maior preferência pelos sítios ativos ($\alpha_B^A > 1$) do que adsorbato DIC ($\alpha_B^A < 1$) (Debnath *et al.*, 2017). De acordo com os resultados indicados no estudo da função desabilidade (item 5.42) do trabalho.

Tabela 5.18 – Capacidades de Adsorção de IBU e DIC em sistemas monocompo	nente e	binário.
--	---------	----------

	IBU	DIC		IBU(+DIC)	DIC(+IBU)
	(50 mg.L ⁻¹)	(50 mg.L ⁻¹)		(50 mg.L ⁻¹)	(50 mg.L ⁻¹)
$q_e (\mathrm{mg.g}^{-1})$	77,79	70,23	$q_e (\mathrm{mg.g}^{-1})$	44,48	33,62
(monocompnente)			(binária)		
$q_{e(binária)}/q_{e\ (monocomp.)}$	-	-	-	0,57	0,48

Figura 5.22 – Fator de separação da mistura binária

A Tabela 5.18 mostra que, no sistema multicomponente binário CA_IBU+DIC, o tipo de interação predominante é antagônico ($q_{m,binária}/q_{e,monocomp} < 1$), com valores de $q_{e,binária}/q_{e,monocomp}$. de 0,57 para CA_IBU(+DIC) e 0,48 para CA_DIC(+IBU)(Girish, 2017). Na interação antagônica a presença de outro adsorbato no sistema multicomponente reduz a capacidade de adsorção do componente na mistura, em comparação com o sistema monocomponente (Girish, 2017; Saxena *et al.*, 2023). Isso sugere que os adsorbatos competem pelos mesmos sítios de adsorção, que resulta na redução da eficiência de adsorção do componente na mistura (IBU+DIC), comparativamente com os processos de adsorção monocomponentes. Dessa forma, a capacidade máxima de adsorção de IBU (+DIC) e DIC(+IBU), no sistema binário reduziu em 42,82% e 52,14%, respectivamente, quando comparadas com os processos de adsorção binária.

Estudos recentes destacam a eficácia superior do ibuprofeno (IBU) em sistemas de adsorção binária quando comparado ao diclofenaco (DIC) (Azri *et al.*, 2024; Wasilewska; Grządka, 2024; Bayode *et al.*, 2023; Betsholtz *et al.*, 2021). Pesquisa realizada por Pirvu *et al.* (2022) revelou um fator de separação ($\alpha_B^A > 1$) para o IBU é consistentemente maior, indicando uma maior afinidade pelos sítios ativos do adsorvente. Esta maior afinidade pode ser atribuída às propriedades moleculares específicas do ibuprofeno, que facilitam interações mais eficazes com o adsorvente. 5.4.4 Cinética de adsorção binária (CA_IBU+DIC)

A Tabela 5.22 e a Figura 5.23 mostram a aplicação dos modelos de PPO, PSO, e DIP enquanto a Figura 5.24, mostra as curvas do modelo DIP da mistura binária (IBU+DIC).

Modelos	Parâmetros	IBU	R^2	R^{2}_{ajust}	X^2
		IBU(+DIC)			
РРО	$q_e = 47,87$; <i>k</i> ₁ =0,0324	0,950	0,941	12,65
PSO	$q_{\rm e} = 56,65$; <i>k</i> ₂ =6,13E-4	0,950	0,944	11,91
		DIC(+IBU)			
РРО	$q_{\rm e}=37,19$	$\theta; k_1 = 0,042$	0,955	0,950	7,58
PSO	$q_{\rm e} = 43,90$	0; <i>k</i> ₂ =0,001	0,928	0,920	12,07
DIP		IBU(+DIC)			
Ι	<i>k</i> _d = 3,79 g	g.mg ⁻¹ .min ^{-0,5}	0.061	0.051	6.20
	C=4,1	15 mg.g ⁻¹	0,901	0,951	0,39
II	<i>k</i> _d =2,80 g	.mg ⁻¹ .min ^{-0,5}	0.000	0,998	0.002
	<i>C</i> = 18,	86 mg.g ⁻¹	0,999		0,002
III	<i>k</i> _d = 0,53 g	.mg ⁻¹ .min ^{-0,5}	0.007	0.005	0.004
	<i>C</i> = 40,	86 mg.g ⁻¹	0,997	0,995	0,004
DIP		DIC(+IBU)			
	k _d = 1,81 g	g.mg ⁻¹ .min ^{-0,5}	0.000	0.010	0.50
Ι	C=4,4	0 mg.g ⁻¹	0,909	0,818	0,50
	<i>k</i> _{<i>d</i>} = 5,30 g	g.mg ⁻¹ .min ^{-0,5}	0.007	0.005	0.27
II	C=0,5	58 mg.g ⁻¹	0,997	0,993	0,27
	$k_d = 0,26$ g	g.mg ⁻¹ .min ^{-0,5}	0.009	0.862	0.12
III	<i>C</i> = 33,	15 mg.g ⁻¹	0,908	0,802	0,12

Tabela 5.22 - Modelos cinéticos de adsorção multicomposto binária

O modelo de PSO apresentou um ajuste satisfatório aos dados experimentais de cinética de adsorção binária de CA_IBU(+DIC), com base nos valores das estatísticas R^2 e R^2_{ajust} próximos da unidade e o menor valor de X^2 . O modelo PPO também apresentou um bom ajuste aos dados experiemantais do referido processo. O modelo PPO foi escolhido para descrever esse processo devido à sua maior precisão em relação à reprodução do valor de $q_{e,experimental}$. A variação entre os valores de $q_{e,experimental}$ (48,10

mg.g⁻¹) e $q_{e,\text{calculado}}$ (47,87 mg.g⁻¹) pelo modelo PPO do processo CA_IBU(+DIC) foi de 0,29%. A variação a partir do modelo PSO foi em torno de 15%, entre os valores de $q_{e,\text{experimental}}$ (48,10 mg.g⁻¹) e $q_{e,\text{calculado}}$ (56,65mg.g⁻¹)

Além disso, o modelo de PPO foi o que melhor se ajustou aos dados experimentais de CA_DIC(+IBU), com base nos valores de R^2 e R^2_{ajust} , próximos à unidade e menor valor de X^2 . O valor de $q_{e,experimental}$ para CA_DIC(+IBU) foi 36,57 mg.g⁻¹, equanto que o $q_{e,experimental}$ pelo modelo foi de 37,19 mg.g⁻¹, com variação percentual de 1,70%, corroborando a escolha do modelo PPO para descrever a cinética do referido processo.

Figura 5.24 – Ajuste do modelo DIP à mistura binária.

Fonte: Autor (2024)

O modelo de PPO, envidencia a adsorção fisica, enquanto o modelo de PSO normalmente se aplica a adsorção química (Pisarev, 2012; Lung *et al.*, 2021). De acordo com Agbovi e Wilson (2021), um fator que concorre para uma cinética de adsorção do tipo PPO é a solução de adsorbato com alta concentração inicial (C_0). No caso da adsorção binária, a concentração inicial de adsorbato foi o dobro (100 mg.L⁻¹), quando comparada com a concentração da adsorção monocomponente.

O modelo DIP foi empregado para investigar o mecanismo controlador da difusão na remoção em sistemas binários (CA_IBU+DIC). A Figura 5.24 mostras que, as curvas cinéticas são multilinearidade no gráfico de $t^{0,5}$ versus q_t , formando três seções lineares, tipicamente associadas às seguintes etapas: (Etapa 1) difusão na camada externa/filme, (Etapa 2) difusão intrapartícula e (Etapa 3) equilíbrio (Das; Dash, 2017).

Nesse sentido, as cinéticas de adsorção de IBU e DIC da adsorção binária (IBU+DIC) por CA foram satisfatoriamente descritas pelo modelo DIP. No processo CA_IBU(+DIC), o modelo DIP apresentou valores de R^2 mais próximos da unidade em todas as etapas, indicando um melhor ajuste aos dados experimentais. No processo CA_DIC(+IBU), os valores de R^2 são significativamente menores, especialmente na Etapa III ($R^2 = 0.908 R^2_{ajust} = 0.862$). No entanto, embora os valores de R^2 e R^2_{ajust} do processo CA_DIC(+IBU) sejam menores, o ajuste ainda pode ser considerado bom, indicando que o modelo DIP também descreve de forma satisfatória a cinética de adsorção da adsorção binária (Asheghmoalla; Mehrvar, 2024).

No sistema CA_IBU(+DIC), os valores de k_d são maiores nas Etapas I e II (3,79 e 2,80 g.mg⁻¹.min^{-0,5}, respectivamente), sugerindo uma difusão mais rápida na camada externa e intrapartícula em comparação com o sistema CA_DIC(+IBU). No sistema CA_DIC(+IBU), o valor de k_d é significativamente menor na Etapa II (k_d = 0,26 g.mg⁻¹.min^{-0,5}), indicando uma difusão intrapartícula mais lenta. Além disso, em CA_IBU(+DIC), o valor de constante *C* na Etapa II (*C*=18,86 mg. g⁻¹), sugerindo uma maior resistência à transferência de massa na etapa de difusão intrapartícula. Em contraste, no sistema CA_DIC(+IBU), o valor de *C* é consideravelmente menor na Etapa II (*C*=0,83 mg. g⁻¹), indicando uma menor resistência à transferência de massa na região de difusão intrapartícula.

A cinética de adsorção binária, assim como na adsorção monocompnente também foi analisada usando o modelo de Boyd, com intuito de envidenciar os mecanismos de transferência de massa no processo de adsorção (Boyd; Adamson e Myers Jr, 1947; Weber; Morris, 1963). Os perfis das curvas do modelo ajustado são mostrados na Figura 5.13, a cinética de Boyd é mostrada na Figura 5.25.

Como mostrado a Figura 5.25, observa-se um comportamento linear, porém, a reta não passa pela origem (0,0), como é mostrado na Tabela 5.23. Portanto, evidencia-se que a difusão no filme (difusão externa), controle o mecanismo de difusão em CA_IBU(+DIC) e CA_DIC(+IBU).

Figura 5.25 – Ajuste do modelo de Boyd à adsorção de CA_IBU(+DIC) (a), CA_DIC(+IBU) (b).

Tabela 5.23 - Parâmetros dos ajustes do modelo de difusão de Boyd.

	Coeficiente angular	Coeficiente linear	R^2	R ² ajust	X^2
CA_IBU(+DIC)	0,026	-0,341	0,987	0,985	0,29
CA_DIC(+IBU)	0,037	- 0,112	0,948	0,942	2,41

Fonte: Autor (2024)

5.4.5 Equilibrio de adsorção binária (CA_IBU+DIC)

A Figura 5.27 mostra as isotermas da adsorção binária CA_IBU+DIC, nas temperaturas de 26, 45 e 55 °C. As isotermas podem ser classificadas como *L3*(Giles *et al.*, 1960). As isotermas apresentam um ponto de inflexão ou ponto B (ponto B de Brunauer), que significa a suturação de primeiro grau ou formação da monocamada. Além disso, as isotermas além do ponto de inflexão sobem constantemente sem inflexão para um nível que representa adsorção em camadas, característica de adsorção física. Um platô curto, no caso da adsorção do IBU(+DIC), significa que as moléculas do adsorbato da

camada adsorvida expõem uma superfície que tem quase a mesma afinidade por mais moléculas do adsorbato do que a superfície original. Quanto mais longo o platô formado, no caso do DIC(+IBU), maior a barreira de energia que deve ser superada antes que a adsorção adicional possa ocorrer em novos locais, após a superfície ter sido saturada até o primeiro grau. Neste caso, as moléculas do adsorbato têm maior afinidade pelo solvente (água) do que pela camada adsorvida (Giles et al., 1960).

Figura 5.27 – Equilíbrio de adsorção sistema binário CA_IBU+DIC nas temperaturas estudadas: 26 C° (a); 45C (b); 55C°(c).

Fonte: Autor (2024)

As isotermas de IBU(+DIC) atingiram maiores valores de q_e do que as isotermas de DIC(+IBU), nas mesmas condições experimentais. Por outro lado, os valores de q_e da adsorção binária foram menores do que os valores de q_e da adsorção monocomponente, cujos valores de percentuais de redução da adsorção foram correspondentes às diferentes temperaturas de trabalho. O fato de IBU e DIC no processo de adsorção binária serem "antagônicos", os dois adsorbatos compentem pelos mesmos sítios de adsorção, concorreu para redução da adsorção dos adsorbatos na adsorção binária.

As isotermas mostradas na Figura 5.27a a 26 °C, mostram um aumento no valor de q_e até cerca de $C_0 = 20$ mg.L⁻¹ para IBU(+DIC), seguido por um ponto de inflexão em $q_e = 26,51$ mg.g⁻¹. No caso de DIC(+IBU), o perfil da curva mostra que os valores de q_e são menores do que na adsorção de IBU(+DIC), com o ponto de inflexão que ocorre, em torno do valor de $q_e = 15$ mg.L⁻¹. Ambas as isotermas exibem um aumento da adsorção até $q_e = 44,48$ mg.g⁻¹ para IBU(+DIC) e $q_e = 33,61$ mg.g⁻¹ para DIC(+IBU). Os valores de q_e dos adsorbatos IBU e DIC diminuiram na adsorção binária em comparação com os valores de q_e obtidos na adsorção monocomponente. O percentuais de redução foram de 42,82% para IBU(+DIC) e de 52,14% para DIC(+IBU).

Na temperatura de 45 °C (Figura 5.27b), as isotermas apresentaram pontos de inflexão em $q_e = 32,63$ mg. g⁻¹ para IBU(+DIC) e $q_e = 19,81$ mg.g⁻¹ para DIC(+IBU), ocorrendo sempre que a concentração inicial do outro adsorbato na solução era superior a 15 mg.L⁻¹. Após esses pontos de inflexão, as curvas de CA_IBU+DIC a 45 °C mostraram um aumento nos valores de q_e igual a 48,65 mg.g⁻¹ para IBU(+DIC) e 35,17 mg.g⁻¹ para DIC(+IBU). Os percentuais de redução dos valores de q_e da adsorção binária, quando comparados com os valores de q_e da adsorção monocomponente foram de 35,01% para IBU(+DIC) e de 52,96% para DIC(+IBU). Em 55 °C (Figura 5.27c), as isotermas da adsorção binária apresentaram pontos de inflexão em $q_e = 27,51$ mg.g⁻¹ para IBU(+DIC) e $q_e = 19,67$ mg.g⁻¹ para DIC(+IBU), seguidos por um aumento na quantidade adsorvida até $q_e = 41,59$ mg.g⁻¹ e 29,86 mg.g⁻¹, respectivamente. Os percentuais de redução dos valores de redução dos valores de 7,99% para IBU(+DIC) e 53,44% para DIC(+IBU).

Portanto, devidos aos perfis das curvas de equilíbrio de adsorção não foi possível aplicar os modelos de Langmuir Estendido e SRS para descrever o comportamento da adsorção no sistema binário CA_IBU+DIC, uma vez que os modelos utilizados (Langmuir estendido e SRS) não foram teorizados para isotermas que apresentam características em degraus conforme a Figura 5.27. No entanto, esses pontos de inflexão nos dados de equilíbrio são altamente prováveis de ocorrer em unidades reais de tratamento de águas residuais devido à interação competitiva de vários adsorventes na solução (Duarte *et al.*,2024).

5.5 Ciclos de adsorção/dessorção

Os resultados obtidos nos ensaios de adsorção/dessorção nos sistemas monocomponentes CA_IBU, CA_DIC e para o sistema binário CA_IBU+DIC são apresentados na Tabela 5.24, onde são detalhados os valores de percentual de remoção (R%) e de dessorção (D%).

Os dados apresentados na Tabela 5.24 indicam elevada eficiência inicial de adsorção (R%) para ambos os sistemas, CA_IBU e CA_DIC, com valores de 98% e 100%, respectivamente, em sistemas monocomponentes e 99% para CA_IBU(+DIC) e 97% para CA_DIC(+IBU) no processo de adsorção binária, no primeiro ciclo. Considerando, as condições experimentais dos testes de adsorção e dessorção realizados, neste estudo.

Ciclos	IBU		DIC					
					IBU(-	+DIC)	DIC(-	+IBU)
	<i>R</i> (%)	D(%)	<i>R</i> (%)	D(%)	<i>R</i> (%)	D(%)	<i>R</i> (%)	D(%)
1	98	88	100	61	99	58	97	44
2	96	76	99	58	97	52	94	41
3	95	64	95	47	95	45	92	37

Tabela 5.24 - Ciclos de adsorção/dessorção monocomponente e binário dos fármacos estudados. DIC

No entanto, ao longo dos ciclos subsequentes, observa-se leve redução no valor de R%. Especificamente, o R% de IBU em sistema monocomponente diminui de 98% no primeiro ciclo para 95% no terceiro ciclo. Para CA_DIC, o valor de R% reduz-se de 100% no primeiro ciclo para 95% no terceiro ciclo. No sistema binário, CA_IBU(+DIC), o R% cai de 99% no primeiro ciclo para 95% no terceiro ciclo, enquanto em CA_DIC(+IBU), a queda é de 97% no primeiro ciclo para 92% no terceiro ciclo.

Por outro lado, os valores de D% apresentam tendência de queda ainda mais acentuada. No sistema monocomponente CA_IBU, D% diminui de 88% no primeiro ciclo para 76% no segundo e 64% no terceiro ciclo. Para CA_DIC, o valor de D%, cai de 61% no primeiro ciclo para 58% no segundo e 47% no terceiro ciclo. No sistema binário, essa tendência é ainda mais pronunciada: o valor de D% em CA_IBU(+DIC) reduz-se de 58% no primeiro ciclo para 52% no segundo e 45% no terceiro ciclo, enquanto em CA_DIC(+IBU), D% cai de 52% no primeiro ciclo para 41% no segundo e 37% no terceiro ciclo.

Com base nos resultados obtidos, observou-se que o o CA utilizado apresentou estabilidade limitada ao longo dos ciclos de adsorção/dessorção, pois apresenta redução significativa tanto nos valores de R% quanto em D%, sugerindo que o CA pode estar se saturando progressivamente ou apresentando leve perda da capacidade adsortiva devido ao aumento da ocupação dos sítios ativos, com o passar de cada ciclo (Zheng *et al.*, 2016; Zhou *et al.*, 2012). Noufel *et al.* (2020) também apresentaram leve queda nos valores de R% e D% após múltiplos ciclos, que foi atribuída à possível diminuição dos sítios de adsorção.

6 CONCLUSÃO

O carvão ativado (CA) obtido a partir dos resíduos de Castanha-do-Brasil (*Bertholletia excelsa*) com a utilização de H₃PO₄ apresentou baixo teor de cinzas e umidade, e uma área de superfície específica de 1.383,62 m².g⁻¹. O CA apresentou características promissoras para adsorção, com predominância de microporos, presença de mesoporos, além de uma maior quantidade de grupos funcionais ácidos na superfície. A análise de DRX confirmou a presença de estruturas amorfas e grafíticas, enquanto as análises de MEV/EDS mostraram uma superfície porosa, com alta concentração de carbono e pequenas quantidades de oxigênio e fósforo, indicando a eficiência do processo de ativação. O FT-IR revelou a presença de grupos funcionais como álcoois, éteres e ácidos carboxílicos, que são essenciais para a interação com adsorvatos.

As condições ótimas determinadas pela análise da superfície de resposta indicaram que a remoção máxima de IBU e DIC foram de 74 - 76% para ambos os adsorbatos. Observou-se que a variável pH da solução não teve grande influência nas variáveis q_e e R% do processo de adsorção CA_IBU. No entanto, no processo CA_DIC, o pH dasolução demonstrou ser um fator relevante.

Os dados experimentais de cinética e equilíbrio de adsorção de CA_IBU foram bem descritos pelo modelo cinético PSO e pela isoterma de Sips, respectivamente. O modelo cinético PPO e a isoterma de Freundlich se ajustaram satisfatoriamente aos dados experimentas da adsorção monocomponente de CA_DIC.

Em conformidade, os parâmetros termodinâmicos mostraram que os processos de adsorção analisados foram espontâneos e exotérmicos, com aumento da desordem na interface sólido-líquido. A variação dos calores isostéricos, indicam superfície heterogênea para o CA.

A análise da ANOVA e dos modelos matemáticos reduzidos, o O DCCR foi capaz de prever as interações entre a mistura binária (IBU+DIC) de forma condizente com o observado experimentalmente. A análise dos resultados mostrou que, para atingir um ponto ótimo de remoção simultânea (desejabilidade), os adsorbatos devem ser inseridos no processo de adsorção com um alto valor de concentração inicial.

O fator de separação, para o sistema binário mostrou que o IBU tem maior preferência pelos sítios ativos do CA do que o DIC. Com relação ao tipo de interação, IBU e DIC são antagônicos, ou seja, competem pelos mesmos sítios de adsorção.

A adsorção binária de CA_IBU(+DIC), e CA_DIC(+IBU), foi descrita adequadamente pelo modelo PPO, enquanto o mecanismo de difusão no filme foi identificado como a etapa controladora da transferência de massa. As isotermas revelaram competição entre os dois adsorbatos pelos sítios ativos do CA, com uma redução significativa na capacidade de adsorção em comparação com a adsorção monocomponente. A presença de pontos de inflexão nas isotermas impediu a aplicação dos modelos de equilíbrio de Langmuir Estendido e SRS.

De acordo com os ciclos de adsorção/dessorção, o CA apresentou redução nos percentuais de remoção e dessorção ao longo de ciclos, o que sugere saturação progressiva, devido ao aumento da ocupação dos sítios ativos em cada ciclo subsequente.

Finalmente, o CA sintetizado a partir de resíduos da castanha-do-Brasil (*Bertholletia excelsa* H.B.K), foi eficaz na adsorção dos antiinflamatórios IBU e DIC em soluções aquosas, tanto em condições monocomponentes quanto binárias.

7 SUGESTÕES PARA TRABALHOS FUTUROS

- Exploração de novos precursores para síntese do CA;
- Adicionar ao DCCR para adsorção de farmacos monocomponente e multicomponente a variavel velocidade de agitação;
- Estudar a viabilidade de adsorção monocomponente e multicomponente de outros farmacos por CA de casca de Castanha do Brasil (*Bertholletia excelsa* H.B.K), ativado com H₃PO₄;
- Analisar o processo de remoção simultânea de farmacos em leito fixo.

REFERÊNCIAS

AGBOVI, H. K.; WILSON, L. D. Adsorption processes in biopolymer systems: fundamentals to practical applications. In **Natural Polymers-Based Green Adsorbents** for Water Treatment, p.1–51, 2021.

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Farmacopeia Brasileira, v. 2. 6 ed. Brasília, 2019.

ALBATRNI, H.; QIBLAWEY, H.; AL-MARRI, M. J. Walnut shell-based adsorbents: A review study on preparation, mechanism, and application. Journal of Water Process Engineering, v. 45, p. 102527, 2022.

ALJEBOREE, A. M., MAHDI, A. B., ALBAHADLY, W. K. Y., IZZAT, S. E., AL KUBAISY, M. M. R., MOHAMMED, B. M., ALDULAIMI, A. O. A., ALKAIM, A. Enhancement of adsorption of paracetamol drug on carbon nanotubes concerning wastewater treatment. **Engineered Science**, v. 20, p. 321-329, 2022.

ALMEIDA, H. S. Produção de biocombustíveis via craqueamento térmico-catalítico de resíduos sólidos de caixas de gordura com carbonato de sódio e lama vermelha ativada termicamente. 2015.

ALMEIDA NARANJO, C. E., ALDÁS, M., CABRERA, G., GUERRERO, V. Caffeine removal from synthetic wastewater using magnetic fruit peel composites: material characterization, isotherm and kinetic studies. **Environmental Challenges**, v. 4, p. 100343, 2021.

ALLUHAYBI, A. A.; HAMEED, A. M.; ALOTAIBI, M. T.; ALHARBI, A.; SHAHAT, A. Synthesis and characterization of carbon nanospheres for adsorption of ibuprofen from aqueous solution: Optimization by Box–Behnken design. **Journal of Molecular Liquids**, v. 383, p. 122059, 2023.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D2866-11: Standard Test Method for Total Ash Content of Activated Carbon. West Conshohocken, PA: ASTM International, 2011.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. **ASTM D2867-17: Standard Test Methods for Moisture in Activated Carbon.** West Conshohocken, PA: ASTM International, 2017.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. **ASTM D3838-05: Standard Practice for Determining Application Amounts of Agricultural Pesticide Products in the Field.** West Conshohocken, PA: ASTM International, 2005.

AMIN, M., SHAH, H. H., IQBAL, A., FAROOQI, Z., KRAWCZUK, M., ZIA, A. Conversion of Waste Biomass into Activated Carbon and Evaluation of Environmental Consequences Using Life Cycle Assessment. **Applied Sciences**, v. 12, n. 11, p. 5741, 2022.

ANDAS, J.; WAZIL, N. From waste mango kernel into high surface area activated carbon. Materials Today: **Proceedings**, v. 19, p. 1541-1546, 2019.

ASSUNÇÃO, T. C.; JUNIOR, O. M. R. Efeitos adversos no uso indiscriminado de antiinflamatórios não esteroidais: diclofenaco versus ibuprofeno. Research, **Society and Development**, v. 11, n. 13, p. e532111335937-e532111335937, 2022.

ASHEGHMOALLA, M.; MEHRVAR, M. Adsorption of a Multicomponent Pharmaceutical Wastewater on Charcoal-Based Activated Carbon: Equilibrium and Kinetics. **Water**, v. 16, n. 15, p. 2086, 2024.

AYOUB, G. M.; AL-HINDI, M.; YAHFOUFI, R.; AYOUB, G. M. The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. **Reviews in Environmental Science and Bio/Technology**, v. 17, p. 109-145, 2018.

BARCZAK, M.; WIERZBICKA, M.; BOROWSKI, P. Sorption of diclofenac onto functionalized mesoporous silicas: experimental and theoretical investigations. **Microporous and Mesoporous Materials**, v. 264, p. 254-264, 2018.

BALAMURUGAN, J.; LAKSHMANAN, M. Non-steroidal anti-inflammatory medicines. Introduction to Basics of Pharmacology and Toxicology: Volume 2: Essentials of Systemic Pharmacology: From Principles to Practice, p. 335-352, 2021.

BEDIN, K. C., MARTINS, A. C., CAZETTA, A. L., PEZOTI, O., ALMEIDA, V. C. KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. **Chemical Engineering Journal**, v. 286, p. 476-484, 2016.

BEN-ALI, Samia. Application of raw and modified pomegranate peel for wastewater treatment: a literature overview and analysis. International Journal of Chemical Engineering, v. 2021, p. 1-19, 2021.

BENSAL, R. C.; DONNET, J. B.; STOECKLI. F. Active carbon. New York: 1988.

BINDU, S.; MAZUMDER, S.; BANDYOPADHYAY, U. Non-steroidal antiinflammatory drugs (NSAIDs) and organ damage: A current perspective. **Biochemical pharmacology**, v. 180, p. 114147, 2020.

BLASCO, J.; TROMBINI, C. Ibuprofen and diclofenac in the marine environment-a critical review of their occurrence and potential risk for invertebrate species. 2023.

BOEHM, H. P. Some aspects of the surface chemistry of carbon blacks and others carbons, **Carbon**, v. 32, n. 5, p. 759-769, 1994.

BOEHM, H. P. Surface oxides on carbon and their analysis: a critical assessment. Carbon, v. 40, p. 145-149, Feb. 2002.

BOYD, G. E.; ADAMSON, A. W.; MEYERS JR., L. S. The exchange adsorption of ions fromaqueous solutions by organic zeolites. II. Kinetics. Journal of the American Chemical Society, v. 69, n. 11, p. 2836 – 2848, 1947.

BRANDÃO, A.C. T.; QUEIROZ, V.; SILVA, R. G. C. Síntese e caracterização de carvão ativado quimicamente com H3Po4 e NaOH à partir da casca de pequi (Caryocar brasiliense). **Brazilian Journal of Development**, v. 6, n. 8, p. 60945-60962, 2020.

BHADRA, B. N.; AHMED, I.; KIM, S.; JHUNG, S. H. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. **Chemical Engineering Journal**, v. 314, p. 50-58, 2017.

BORGES, R. M.; MINILLO, A.; LEMOS, E. G. M.; PRADO, H. F. A.; TANGERINO, Edson P. Uso de filtros de carvão ativado granular associado a microrganismos para remoção de fármacos no tratamento de água de abastecimento. **Engenharia Sanitaria e Ambiental**, v. 21, n. 04, p. 709-720, 2016.

BRESCIA, E. A.; VASCONCELOS, W. L. Revisão teórica da interconectividade de materiais porosos hierárquicos-caracterização por adsorção física. **The Journal of Engineering and Exact Sciences**, v. 8, n. 1, p. 13502-01-15e, 2022.

BROGDEN, R. N.; HEEL, R. C.; PAKES, G. E.; SPEIGHT, T. M.; AVERY, G. S. Diclofenac sodium: a review of its pharmacological properties and therapeutic use in rheumatic diseases and pain of varying origin. **Drugs**, v. 20, p. 24-48, 1980.

BULBUL, S.; ERGUN, H. Investigação da usabilidade do carvão ativado como material de enchimento em componentes de borracha nitrílica butadieno/borracha natural e modelagem por análise de regressão. **Journal of Elastomers & Plastics**, v. 1, pág. 53-73, 2024.

BOUVIE, L.; BORELLA, D. R.; SILVA, A. C.; LEONEL, S.; PORTO, P. A. Ol. Caracterização físico-química dos frutos de castanheira do Brasil. **Nativa**, v. 4, n. 2, p. 107-111, 2016.

CAMPOS, M. M. C. Anti-inflamatórios não esteroides: tratamento da água nas estações de tratamento da água e toxicidade. 2021. Tese de Doutorado.

CAPISTRANO, A. J. R., MARTINS, E. F., LIMA, A. B., OLIVEIRA, R. A. Ibuprofen removal using activated carbon from acid-modified Acacia sawdust. **Energy, Ecology and Environment**, v. 8, n. 2, p. 101-112, 2023.

CARVALHO, L. M.; DOS SANTOS, R. M.; DE SOUZA, A. A.; DE LIMA, F. C. Activated carbon produced from coconut shell as efficient adsorbent for the removal of dyes from aqueous solutions. **Journal of Environmental Management**, v. 154, p. 117-123, 2023.

CARTAXO, A. S. B.; ALBUQUERQUE, M. V. C.; SILVA, M. C. C. P.; RODRIGUES, R.; RAMOS, R. O.; SÁTIRO, J. R.; LOPES, W. S.; LEITE, V. D. Contaminantes emergentes presentes em águas destinadas ao consumo humano: ocorrência, implicações e tecnologias de tratamento. **Brazilian Journal of Development**, v. 6, n. 8, p. 61814-61827, 2020.

CERON, L. P. Verificação da capacidade de adsorção da cinza da casca de arroz em efluente de cromo hexavalente em fluxo contínuo. **Engevista**, v. 21, n. 1, p. 114-125, 2019.

CHABANI, M.; AMRANE, A.; BENSMAILI, A. Kinetic modelling of the adsorption of nitrates by ion exchange resin. **Chemical Engineering Journal**, v. 125, p. 111–117, 2006.

CHEN, J.; OUYANG, J.; CAI, X.; XING, X.; ZHOU, L.; LIU, Z.; CAI, D. Removal of ciprofloxacin from water by millimeter-sized sodium alginate/H3PO4 activated corncobbased biochar composite beads. **Separation and Purification Technology**, v. 276, p. 119371, 2021.

CHEN, M.; ZHENG, J.; DAI, R.; WU, Z.; WANG, Z. Preferential removal of 2,4dichlorophenoxyacetic acid from contaminated waters using an electrocatalytic ceramic membrane filtration system: Mechanisms and implications. **Chemical Engineering Journal**, v. 387, p. 124132, 2020.

CHENARANI, B.; LOTFOLLAHI, M. N. Granulated graphene oxide-activated carbon for adsorptive removal of diclofenac sodium and ibuprofen in a continuous fixed-bed column. **Materials Chemistry and Physics**, p. 129506, 2024.

COSTA, R. L. T.; NASCIMENTO, R. A.; ARAÚJO, R. C. S.; VIEIRA, M. G. A.; SILVA, M. G.; CARVALHO, S. M. L.; FARIA, L. Removal of non-steroidal antiinflammatory drugs (NSAIDs) from water with activated carbons synthetized from waste murumuru (Astrocaryum murumuru Mart.): Characterization and adsorption studies. **Journal of Molecular Liquids**, v. 343, p. 116980, 2021.

CRITTENDEN, J. C.; TRUSSELL, R. R.; HAND, D. W.; HOWE, K. J.; TCHOBANOGLOUS, G. (2005) Water treatment: principles and design. 2. ed. Nova York: Wiley. 1968 p.

CRUZ, E. S.; ANDRADE, J. S. Benefícios nutricionais da Castanha-do-Brasil no tratamento de aterosclerose em idosos: Nutritional benefits of Brazil Nut in the treatment of atherosclerosis in the elderly. **Brazilian Journal of Development**, v. 8, n. 11, p. 73060-73078, 2022.

CUERDA-CORREA, E. M.; ALEXANDRE-FRANCO, M. F.; FERNÁNDEZ-GONZÁLEZ, C. Advanced oxidation processes for the removal of antibiotics from water. An overview. **Water**, v. 12, p. 1-57, 2020.

DAS, S.; DASH, H. R. Handbook of metal-microbe interactions and bioremediation. **Boca Raton**: CRC Press, 2017.

DEY, S.; BANO, F.; MALIK, A. Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory. In: Pharmaceuticals and personal care products: waste management and treatment technology. **Butterworth-Heinemann**, 2019. p. 1-26.

DILEKOGLU, M. F.; YAPICI, M. Adsorption of naproxen pharmaceutical micropollutant from aqueous solutions on superior activated carbon synthesized from sheep manure: Kinetics, thermodynamics, and mechanism. Journal of Molecular Liquids, v. 381, p. 121839, 2023.

DINDAS, G. B.; ÇALIŞKAN, Y.; ÇELEBI, E. E.; TEKBAŞ, M.; BEKTAŞ, N.; YATMAZ, H. C. Treatment of pharmaceutical wastewater by combination of electrocoagulation, electro-fenton and photocatalytic oxidation processes. Journal of Environmental Chemical Engineering, v. 8, n. 3, p. 103777, 2020.

DO, D. D. Adsorption Analysis: Equilibria and Kinetics. Londres: Imperial College Press, 1998.

DOLAS, H. Activated carbon synthesis and methylene blue adsorption from pepper stem using microwave assisted impregnation method: Isotherm and kinetics. Journal of King **Saud University-Science**, p. 102559, 2023.

DOMINGUES, L. F.; CRUZ, G. Q. N.; CASTRO, I. P.; ARCHIOLI, I. A.; LOPES, L. C.; OLIVEIRA, M. R. M. Produção de carvão a partir da casca de laranja ativado com cloreto de cálcio (CaCl2) e sua aplicação em tratamento de água contaminada com nitrato (NO3-). **Brazilian Journal of Development**, v. 7, n. 1, p. 404-413, 2021.

DOUINAT, O.; BESTANI, B.; BENDERDOUCHE, N.; BOUCHERDOUD, A. Use of activated charcoal based on Olea europaea leaves for the removal of pollutants from liquid effluents. **Water Desalination Treatment**, v. 210, p. 258-272, 2021.

DROŻDŻAL, S.; LECHOWICZ, K.; SZOSTAK, B.; ROSIK, J.; KOTFIS, K.; MACHOY-MOKRZYŃSKA, A.; BIAŁECKA, M.; CIECHANOWSKI, K.; GAWROŃSKA-SZKLARZ, B.. Kidney damage from nonsteroidal anti-inflammatory drugs—Myth or truth? Review of selected literature. **Pharmacology Research & Perspectives**, v. 9, n. 4, p. e00817, 2021.

DUARTE, E. D. V.; BRIÃO, G. V.; RIBEIRO, N. F. P.; DA SILVA, M. G. C.; VIEIRA, M. G. A.; DE CARVALHO, S. M. L. Ternary adsorption of Auramine-O, Rhodamine 6G, and Brilliant Green onto Arapaima gigas scales hydroxyapatite: Adsorption mechanism investigation using CCD and DFT studies. **Sustainable Materials and Technologies**, v. 31, p. e00391, 2022.

DUARTE, E. D. V.; RIBEIRO, N. F. P.; SILVA, M. G. C.; VIEIRA, M. G. A.; CARVALHO, S. M. L. Pirarucu hydroxyapatite applied to ternary competitive adsorption of synthetic basic dyes as contaminants of emerging concern: kinetic, equilibrium, and ANN studies. **Environmental Science and Pollution Research**, v. 31, n. 18, p. 26942-26960, 2024.

EITKAMP, J.; KLEINSCHMIT, P.; KISS, A.; BERKE, C. H. Proceedings from the Ninth International Zeolite Conference, in: R. Von Ballmoos, J. B. Higgins, M. M. J. Treacy (Eds.),**Stoneham**, 1993.

EGASHIRA, R.; KITA, K.; KAWASAKI, N. Surface chemistry and adsorption properties of activated carbon modified with sulfuric acid. Journal of Colloid and Interface Science, v. 505, p. 387-395, 2018.

ESPASANDIM, J. V. F.; CHAVES, L.S.; NEVES, M. A. F. S.; HENRIQUE JÚNIOR, S. S. Fatores que influenciam a capacidade de adsorção de cobre (II) no pó da casca de coco verde. **Revista Eletrônica Perspectivas da Ciência e Tecnologia**, ISSN: 1984-5693, v. 11, 2019.

FAUST, S. D.; ALY, O. M. Adsorption Processes for Water Treatment. Boston: Butterworth Publishers, 1987

FERREIRA, R. C.; LIMA, H. H. C.; COUTO JUNIOR, O. M.; ARROYO, P. A.; CARVALHO, K. Q.; BARRO, M. A. S. D. Utilização de carvão ativado de dendê in natura e funcionalizado em meio ácido na adsorção de paracetamol. **Matéria (Rio de Janeiro),** v. 23, p. e-11968, 2018.

FERREIRA, I. V. Carvão ativado de resíduo de Baru para adsorção de fármacos. 2022.

FREUNDLICH, H. M. F. Over the adsorption in solution. Journal of Physical Chemistry, v. 57, p. 385 – 470, 1906.

FUENTES, A. L. B.; BENITO, D. E.; MONTES, M. L.; SCIAN, A.N.; LOMBARDI, M. B. Paracetamol and Ibuprofen Removal from Aqueous Phase Using a Ceramic-Derived Activated Carbon. **Arab J Sci Eng.**, v. 48, p.525-537, 2023.

GAO, Y.; XU, S.; YUE, Q.; WU, Y.; GAO, B. Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater. **Journal of the Taiwan Institute of Chemical Engineers**, v. 61, p. 1876-1070, 2016.

GAYATHIRI, M.; PULINGAM, T.; LEE, K. T.; SUDESH, K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. **Chemosphere**, v. 294, p. 133764, 2022.

GEANKOPLIS, C. J. **Transport Process and Unit Operations**. 3 ed., New Jersey Prentice Hall International, 1993.

GEISSLINGER, G.; ESTOQUE, K. P.; BACH, G. L.; LOEW, D.; BRUNA, K. Pharmacological differences between R (–) - and S (+) -ibuprofen. **Agents and Actions**, v. 27, p. 455-457, 1989

CGHALANDARI, V.; HASHEMIPOUR, H.; BAGHERI, H. Investigação experimental e de modelagem do equilíbrio de adsorção de CH4, CO2 e N2 em carvão ativado e previsão do equilíbrio de adsorção multicomponente. **Equilíbrio de Fase Fluida**, v. 508, p. 112433, 2020.

GIL, A.; TAOUFIK, N.; GARCIA, A. M.; KORILI, S. A. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon. **Environmental Technology**, 2020.

GILES, C. H.; SMITH, D.; HUITSON, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. **Journal of Colloid and Interface Science**, v. 47, n. 3, p. 755-765, 1974.

GILES, C. H; SMITH, D. Studies in Adsorption. Part XI: A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. **Journal of the Chemical Society**, v. 3973, n. 1, p. 786-795, 1960.

GOMES, D.; CARDOSO, M.; MARTINS, R. C.; QUINTA-FERREIRA, R. M.; GANDO-FERREIRA, L. M. Removal of a mixture of pharmaceuticals sulfamethoxazole

and diclofenac from water streams by a polyamide nanofiltration membrane. **Water Science and Technology**, v. 81, n. 4, p. 732-743, 2020

GRASSI, P.; MANTELLI, R. A. F.; AHMAD, N.; NAWAZ, A.; SILVA, L. F. O.; OLIVEIRA, M. L. S.; SALLA, J. S.; GERHARDT, A.; COLLAZZO, G. C.; JAHN, S. L.; DOTTO, G. L. Valorization of a poultry industry floated sludge as a raw material to produce char and activated carbon for pharmaceutical compounds adsorption. **Environmental Science and Pollution Research**, v. 30, n. 46, p. 102641-102652, 2023.

HALL, K. R; EAGLETON, L. C.; ACRIVOS, A.; VERMEULEN, T. Pore- and soliddiffusion kinetics in fixed-bed adsorption under constant-pattern conditions. **Industrial and Engineering Chemistry Fundamentals**, v. 5, n. 2, p. 212 – 223, 1966

HARO, N. K.; DÁVILA, I. V. J.; NUNES, K. G. P.; ESPINA DE FRANCO, M. A.; MARCÍLIO, N. R.; FÉRIS, L. A. Kinetic, equilibrium and thermodynamic studies of the adsorption of paracetamol in activated carbon in batch model and fixed-bed column. **Applied Water Science**, v. 11, p. 1-9, 2021

HEIDARINEJAD, Z.; DEHGHANI, M. H.; HEIDARI, M.; JAVEDAN, G.; ALI, I.; SILLANPÄÄ, M. Methods for preparation and activation of activated carbon: a review. **Environmental Chemistry Letters**, v. 18, p. 393-415, 2020.

HEYLMANN, K. K. A.; LOPES, B. V.; AFONSO, T. F.; DEMARCO, C. F.; CADAVAL JUNIOR, T. R.; QUADRO, M. S.; ANDREAZZA, R. Produção, caracterização e aplicação de carvão ativado de caroço de pêssego no tratamento de efluente têxtil. **Engenharia Sanitária e Ambiental**, v. 26, p. 485-494, 2021.

HMOUBDAH, M.; FORTUNATO, M. E.; PAPARO, R.; TRIFUOGGI, M.; EL-QANNI, A.; TESSER, R.; MURZIN, D. Y.; SALMI, T.; RUSSO, V. Ibuprofen Adsorption on Activated Carbon: Thermodynamic and Kinetic Investigation via the Adsorption Dynamic Intraparticle Model (ADIM). **Langmuir**, v. 39, n. 33, p. 11510-11519, 2023.

HO, Y. S.; MCKAY, G. A kinetic study of dye sorption by biosorbent waste product pith. **Resources, Conservation and Recycling,** v. 25, p. 171 – 193, 1999.

IRANI, E.; AMOLI-DIVA, M. Hybrid adsorption–photocatalysis properties of quaternary magneto-plasmonic ZnO/MWCNTs nanocomposite for applying synergistic photocatalytic removal and membrane filtration in industrial wastewater treatment. Journal of Photochemistry and amp; Photobiology, A: **Chemistry**, v. 391, p. 112359, 2020.

ISLAM, M.; ISLAM, M.; MITTAL, H.; AL ALILI, A.; ALHASSAN, S. Capturing water vapors from humid air using microporous activated carbon derived from sunflower seed shells. **Powder Technology**, v. 428, p. 118790, 2023.

ISLAM, T.; LIU, J.; SHEN, G.; YE, T.; PENG, C. Synthesis of chemically modified carbon embedded silica and zeolite from rice husk to adsorb crystal violet dye from aqueous solution. **Applied Ecology and Environmental Research**, v. 16, n. 4, p. 3955-3967, 2018.

ISSAKA, E.; AMU-DARKO, J. O.; YAKUBU, S.; FAPOHUNDA, F. O.; ALI, N.; BILAL, M. Advanced catalytic ozonation for degradation of pharmaceutical pollutants—A review. **Chemosphere**, v. 289, p. 133208, 2022.

JACOB, A. et al. Remoção de emergentes contaminantes em água com carvão ativado derivado de biomassa. **Environmental Science and Pollution Research**, v. 24, n. 1, p. 345-356, 2019.

JIANG, M.; SU, Y.; YANG, L.; QI, P.; WANG, J.; XIONG, Y. Study on H3PO4activated carbon catalytic co-pyrolysis of bamboo and LDPE to poly-generation syngas and aromatics at low temperature. **Fuel**, v. 369, p. 131737, 2024.

KERKHOFF, C. M.; MARTINELLO, K. B.; FRANCO, D. S. P.; NETTO, M. S.; GEORGIN, J.; FOLETTO, E. L.; PICCILLI, D. G. A.; SILVA, L. F. O.; DOTTO, G. L. Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from *Butia capitata* endocarp. **Journal of Molecular Liquids,** v. 339, p. 117184, 202

KEUM, J.; KIM, J.; LEE, S.; KIM, B. Removal of emerging contaminants using magnetic carbon composites from agricultural waste. **Science of the Total Environment**, v. 713, p. 136538, 2020.

KOBER, R.; SCHWAAB, M.; STEFFANI, E.; ALBERTON, A. L. D-optimal experimentais designs for accurate parameter estimation of adsorption equilibrium models: initial concentration and solvent volume to adsorbent mass ratio as independent variables. **Adsorption**, v. 27, p. 1013-1022, 2021.

KWAŚNIEWSKA, A.; ŚWIETLICKI, M.; PRÓSZYŃSKIE, A.; GŁADYSZEWSKI, G. Physical Properties of Starch/Powdered Activated Carbon Composite Films. **Polymers**, v. 13, n. 24, p. 4406, 2021.

LACH, J.; SZYMONIK, A. Adsorption of diclofenac sodium from aqueous solutions on commercial activated carbons. **Desalination And Water Treatment**, v. 186, p. 418-429, 2020.

LAGERGREN, S. Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenka Vetenskapsakademiens. **Handlingar**, v. 24, n. 4, p. 1–39, 1898.

LANGMUIR, I. The Adsorption of gases on plane surfaces of glass, mica and platinum. **Journal of the American Chemical Society**, v. 40, n. 9, p. 1361 – 1403, 1918.

LACH, J.; SZYMONIK, A. Adsorption of diclofenac sodium from aqueous solutions on commercial activated carbons. **Desalination and Water Treatment**, v. 186, p. 418–429, 2020.

LI, L.; QUINLIVAN, P. A.; KNAPPE, D. R. U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. **Carbon,** v. 40, n. 12, p. 2085-2100, 2002.

LIMA, E. C.; HOSSEINI-BANDEGHARAEI, A.; MORENO-PIRAJÁN, J. C.; ANASTOPOULOS, I. A critical review of the estimation of the thermodynamic

parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. **Journal of Molecular Liquids**, v. 273, p. 425-434, 2019.

LINS, P. V. S.; HENRIQUE, D. C.; IDEIA, A. H.; DUARTE, J. L. S.; DOTTO, G. L.; YAZIDI, A.; SELLAOUI, L.; ERTO, A.; ZANTA, C. L. P. S.; MEILI, L. Adsorption of a non-steroidal anti-inflammatory drug onto MgAl/LDH-activated carbon composite– Experimental investigation and statistical physics modeling. **Colloids and Surfaces A: Physicochemical and Engineering Aspects,** v. 586, p. 124217, 2020.

LONAPPAN, L.; BRAR, S. K.; DAS, R. K.; VERMA, M.; SURAMPALLI, R. Y. Diclofenac and its transformation products: environmental occurrence and toxicity—a review. **Environment International**, v. 96, p. 127-138, 2016

LOPES, C. N. Y.; SILVA, J. G. D.; LIMA, L. R. R.; CAETANO, G. C.; OSTROSKI, I. Comparação do processo de adsorção em batelada e em leito fixo do ácido naftênico 1, 4-ciclohexanodicarboxílico em carvão ativado de osso de boi. **Engenharia Sanitária e Ambiental,** v. 27, p. 663-672, 2022.

LOGANATHAN, P.; SHIM, W. G.; SOUNTHARARAJAH, D. P.; KALARUBAN, M.; NUR, T.; VIGNESWARAN, S. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon. **Environmental Science and Pollution Research**, v. 25, p. 16664-16675, 2018.

LUO, Y.; LI, D.; CHEN, Y.; XIAOYING, S.; CAO, Q.; LIU, X. The performance of phosphoric acid in the preparation of activated carbon-containing phosphorus species from rice husk residue. **Journal of Materials Science**, v. 54, n. 6, p. 5008-5021, 2019.

MABROUKI, J.; ABBASSI, M. A.; KHIARI, B.; JELLALI, S.; JEGUIRIM, M. Investigations on the potential for energy valorization of Tunisian biomass: thermogravimetric characterization and kinetic degradation analysis. **Comptes Rendus Chimie**, v. S2, p. 81-92, 2022.

MALESIC, N.; LIAKOS, E. V.; EVGENIDOU, E.; KYZAS, G. Z.; BIKIARIS, D. N.; LAMBROPOULOU, D. A. Low-cost agricultural wastes (orange peels) for the synthesis and characterization of activated carbon biosorbents in the removal of pharmaceuticals in multi-component mixtures from aqueous matrices. Journal of Molecular Liquids, v. 368, p. 120795, 2022.

MANSOUR, F.; AL-HINDI, M.; YAHFOUFI, R.; AYOUB, G. M. The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. **Reviews in Environmental Science and Bio/Technology**, v. 17, p. 109-145, 2018.

MANSOURI, F.; CHOUCHENE, K.; WALI, A.; LABILLE, J.; ROCHE, N.; KSIBI, M. Adsorption of anti-inflammatory and analgesic drugs traces in water on clay minerals. **Chemosphere**, p. 141469, 2024.

MARSH, H.; RODRÍGUEZ-REINOSO, F. Activated cabon. Elsevier, 2006.

MASSON, S.; GINEYS, M.; DELPEUX-OULDRIANE, S.; REINERT, L.; GUITTONNEAU, S.; BÉGUIN, F.; DUCLAUX, L. Single, binary, and mixture

adsorption of nine organic contaminants onto a microporous and a microporous/mesoporous activated carbon cloth. **Microporous and Mesoporous Materials**, v. 234, p. 24-34, 2016.

MCKAY, G.; OTTERBURN, M. S.; SWEENEY, A. G. The removal of colour from effluent using various adsorbents – III. Silica: rate processes. **Water Research**, v. 14, p. 15-20, 1980.

MELO JÚNIOR, C A. **Cinética de a.sorção de diclofenaco sódico em carvão ativado granulado**. 2021. Trabalho de Conclusão de Curso. Universidade Federal do Rio Grande do Norte.

MELO, GBM. Remoção de manchas de óleo em meio aquoso utilizando nanopartículas magnéticas dispersas em matriz de parafina. 2014. Tese de Doutorado. Dissertação de M. Sc., SE-4/IME, Rio de Janeiro, RJ, Brasil.

MBARKI, F. et al. Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H₃PO₄, ZnCl₂ and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic. **Industrial Crops and Products**, v. 178, p. 114546, 2022.

MIRANDA, L. G. **Compósitos à base de polímeros e zeólitas para adsorção e fotodegradação de compostos orgânicos voláteis**. 2019. Dissertação de Mestrado. Pontifícia Universidade Católica do Rio Grande do Sul.

MOULEFERA, I. et al. Effect of Co-solution of Carbon Precursor and Activating Agent on the Textural Properties of Highly Porous Activated Carbon Obtained by Chemical Activation of Lignin With H3PO4. **Frontiers in Materials**, v. 7, p. 153, 2020.

MUMPUNI, I. D.; MASLAHAT, M.; SUSANTY, D. Activation of oil palm empty bunches with hydrochloride acid & phosphoric acid and characterization based SNI No. 06-3730-1995. Journal Sains dan Nanoteknologi, v. 11, n. 1, p. 291, 2021.

NAMI, S. et al. Review of the removal of antibiotics from water by adsorption onto carbonaceous materials. **Carbon**, v. 126, p. 122-145, 2018.

NASCIMENTO, B. F. Adsorção de furfural em carvão ativado do endocarpo de açaí. 2019. Dissertação de Mestrado. Universidade Federal de Pernambuco.

NASCIMENTO, K. K. R. et al. Estudo da remoção de diclofenaco de sódio em meio aquoso usando carvão ativado. **Revista Ibero-Americana de Ciências Ambientais**, v. 13, n. 10, p. 137-153, 2022.

NDIAYE, A. D.; KANKOU, M. S. Modelagem de isotermas de adsorção de produtos farmacêuticos em vários adsorventes: Uma Breve Revisão. J. Mater. Meio Ambiente. Ciência, v. 8, pág. 1264-1276, 2020.

NEME, I.; GONFA, G.; MASI, C. Preparation and characterization of activated carbon from castor seed hull by chemical activation with H₃PO₄. **Results in Materials**, v. 15, p. 100304, 2022.

NEME, I.; GONFA, G.; MASI, Chandran. Activated carbon from biomass precursors using phosphoric acid: A review. **Heliyon**, 2022.

NOUFEL, K.; DJEBRI, N.; BOUKHALFA, N.; BOUTAHALA, M.; DAKHOUCHE, A.. Removal of bisphenol A and trichlorophenol from aqueous solutions by adsorption with organically modified bentonite, activated carbon composites: A comparative study in single and binary systems. **Groundwater for Sustainable Development**, v. 11, p. 100477, 2020.

OGASAWARA, S. et al. Efficient removal of pharmaceuticals from water using magnetic activated carbon derived from coconut shell. **Journal of Water Process Engineering**, v. 31, p. 1-9, 2019.

OGINNI, O.; SINGH, K.; PORTO, G.; DAWSON-ANDOH, B.; MCDONALD, L.; SABOLSKY, E. Effect of one-step and two-step H₃PO₄ activation on activated carbon characteristics. **Bioresource Technology Reports**, v. 8, p. 100307, 2019.

OLOWONYO, I. A.; SALAM, K. K.; AREMU, M. O.; LATEEF, A. Synthesis, characterization, and adsorptive performance of titanium dioxide nanoparticles modified groundnut shell activated carbon on ibuprofen removal from pharmaceutical wastewater. **Waste Management Bulletin**, v. 1, n. 4, p. 217-233, 2024.

OMOROGIE, M. O.; BABALOLA, J. O.; ISMAEEL, M.O.; MCGETTRICK, J. D.; WATSON, T. M.; DAWSON, D.M.; CARTA, M.; KUEHNEL, M. F. Activated carbon from Nauclea diderrichii agricultural waste – a promising adsorbent for ibuprofen, methylene blue and CO₂. Advanced Powder Technology, v. 32, n. 3, p. 866-874, 2021.

OSAMAN, A. I.; AYATI, Ali; FARGHALI, M.; KRIVOSHAPKIN, P.; TANHAEI, B.; KARIMI-MALEH, H.; KRIVOSHAPKINA, E.; TAHERI, P.; TRACEY, C.; AL-FATESH, A.; IHARA, I.; ROONEY, D. W.; SILLANPÄÄ, M. Advanced adsorbents for ibuprofen removal from aquatic environments: a review. **Environmental Chemistry Letters**, v. 22, n. 1, p. 373-418, 2024.

ÖZDEMİR, D.; BULBUL, S.; ERGÜN, M. E. Production of activated carbon from the waste paper by chemical activation method. **International Advanced Researches and Engineering Journal**, v. 7, n. 1, p. 52-61, 2023.

OBRADOVIC, M.; DAKOVIĆ, A.; SMILJANIĆ, D.; OŽEGOVIĆ, M.; MARKOVIĆ, M.; ROTTINGHAUS, G. E.; KRSTIĆ, J. Ibuprofen and diclofenac sodium adsorption onto functionalized minerals: Equilibrium, kinetic and thermodynamic studies. **Microporous and Mesoporous Materials**, v. 335, p. 111795, 2022.

ORTIZ-BUSTOS, J.; SOARES, S. F.; PÉREZ DEL PULGAR, H.; PÉREZ, Y.; GÓMEZ-RUIZ, S.; DANIEL-DA-SILVA, A. L.; DEL HIERRO, I. Tuning adsorption capacities of hybrid mesoporous silica nanospheres and adsorption mechanism study for sulfamethoxazole and diclofenac removal from water. **Journal of Molecular Liquids**, v. 398, p. 124213, 2024

PAIXÃO, A. G. P.; LUCAS, R. A.; SOUZA, G. C. Conceitos modernos para o clareamento dental: uma revisão narrativa da literatura. **Brazilian Journal of Development**, v. 9, n. 1, p. 2913-2929, 2023.

PAULETTO, P. S.; LÜTKE, S. F.; DOTTO, G. L.; SALAU, N. P. G. Adsorption mechanisms of single and simultaneous removal of pharmaceutical compounds onto activated carbon: isotherm and thermodynamic modeling. Journal of Molecular Liquids, v. 336, p. 116203, 2021.

PEÑA-GUZMÁN, C.; ULLOA-SÁNCHEZ, S.; MORA, K.; HELENA-BUSTOS, R.; LOPEZ-BARRERA, E.; ÁLVAREZ, J.; RODRIGUEZ-PINZÓN, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. **Journal of Environmental Management,** v. 237, p. 408-423, 2019.

PERILLI, T. A. G.; SICUPIRA, D. C.; MANSUR, M. B.; LADEIRA, A. C. Q. Avaliação da capacidade adsortiva de carvão ativado para a remoção de manganês. **HOLOS**, v. 3, p. 264-271, 2014.

EREIRA, B. F.; AZÊDO, G. M.; VENTOCILLA, N. V. I.; MARTINS, P. G.; ALMEIDA, A. Cristine G. Efeitos adversos associados ao uso excessivo de Diclofenaco: revisão sistemática: Adverse effects associated with overuse of diclofenac: a systematic review. **Brazilian Journal of Health Review**, v. 5, n. 6, p. 24937-24951, 2022.

PEREIRA, D.; GIL, M.V.; ESTEVES, V. I.; SILVA, N. J. O.; OTERO, M.; CALISTO, V. Ex-situ magnetic activated carbon for the adsorption of three pharmaceuticals with distinct physicochemical properties from real wastewater. **Journal of Hazardous Materials**, v. 443, p. 130258, 2023.

PIRES, M. G. Adsorção de Dióxido de Carbono em Zeolita nay'' Binder-free''. 2021. Tese de Doutorado. Instituto Politecnico de Braganca (Portugal).

POSSEBON, E.; VIEIRA, M. F. Isotermas de adsorção de ivermectina em carvão ativado funcionalizado com grafeno. **Engineering Sciences**, v. 9, n. 2, p. 101-109, 2021.

PRIGOL, Giovani Spiazzi. Adsorção de diclofenaco sódico em carvão ativado. 2018.

PREGLO, A. J. R.; NAMATA, J.; CACULBA, J.; SÁNCHEZ, G.; JOYNO, C.; PAGALAN, E.; ARAZO, R. O. Paracetamol Removal from Aqueous Solution Through Activated Carbon from Mango Seeds. **Chemistry Africa**, v. 6, n. 2, p. 699-710, 2023.

RASZL, R. C. M. Estudo da adsorção de herbicida ácido 2,4-diclorofenoxiacético em processo contínuo e descontínuo utilizando-se de carvão ativo granular. 2021. Dissertação (Mestrado em Ciências Ambientais) — Universidade Estadual Paulista, Sorocaba, 2021.

REGG, S. J.; SING, K. S. W. Adsorption. Surface Area and Porosity. Academic Press. London, 1982.

REZA, S.; YUN, C. S.; AFROZE, S.; AZAD, A. Preparation of activated carbon from biomass and its applications in water and gas purification: a review. **Arab Journal of Basic and Applied Sciences**, v. 27, n. 1, p. 208-238, 2020.

ROMERO-HERNANDEZ, J. J.; PAREDES-LAVERDE, M.; SILVA-AGREDO, J.; MERCADO, D. F.; ÁVILA-TORRES, Y.; TORRES-PALMA, R. A. Pharmaceutical adsorption on NaOH-treated rice husk-based activated carbons: kinetics,

thermodynamics, and mechanisms. Journal of Cleaner Production, v. 434, p. 139935, 2024.

ROVANI, S. **Preparo e caracterização de carvão e carvão ativado a partir de resíduos agroindustriais e aplicação na remoção de estrogênios**. 2015. Tese (Doutorado em Química) — Universidade Federal do Rio Grande do Sul, Porto Alegre, 2015.

RUTHVEN, D. M. Adsorption, fundamentals. In: Kirk-Othmer, (ed.) Encyclopedia of Chemical Technology. Wiley, Hoboken (2001).

RUTHVEN, D. M. **Physical Adsorption and the Characterization of Porous Adsorbents.** John Wiley e sons, 1984.

SILVA, J. S.; BARROS, R. S.; CRUZ, L. O.; CRUZ, L. O.; ANI, F. N.; SALGADO, M. F. Produção de carvão ativado da casca do babaçu e sua eficiência no tratamento de água para o consumo humano. In: **ENGENHARIA FLORESTAL: DESAFIOS, LIMITES E POTENCIALIDADE.** Editora Científica Digital, 2020. p. 654-685.

SAXENA, M.; KUSHWAHA, J. P.; KULSHRESHTHA, S.; KAUR, G.; SINGH, N. Ofloxacin and doxycycline competitive/binary adsorption on to MCM-41: isotherm modelling and evaluation. **Physics and Chemistry of Liquids**, v. 61, n. 1, p. 25-40, 2023.

SAHIN, O. I.; SAYGI-YALCIN, B.; SALOGLU, D. Adsorção de ibuprofeno de águas residuais usando carvão ativado e óxido de grafeno incorporados em quitosana–PVA: equilíbrio, cinética e termodinâmica e otimização com design composto central. **Tratamento de Água,** v. 179, págs. 396-4, 2020.

SAMUEL, A.; BOATENG, A. Adsorption of Cr (VI) ions from aqueous solution using chemically activated carbons from baobab (Adansonia digitata L.) and neem (Azadirachta indica A. Juss.) fruit hulls. **Applied Water Science**, v. 9, n. 5, p. 1-10, 2019.

SANTANA, J. S.; SANTOS, B. R.; DE OLIVEIRA RESENDE, B. Utilização da casca de banana como biossorvente para adsorção de metais pesados viabilizando sua utilização em águas residuárias da industria galvânica. **INOVAE-Journal of Engineering, Architecture and Technology Innovation**, v. 8, n. 1, p. 143-157, 2020.

SAUCE, S. et al. Produção de carvão ativado a partir de resíduos de casca de coco e madeira por ativação com ácido fosfórico. **Revista Iberoamericana de Polímeros**, v. 19, n. 1, p. 21-37, 2018.

SEABRA, C. I. R. **Farmacocinética do ibuprofeno**. 2015. Tese (Doutorado) — Universidade Fernando Pessoa, Portugal, 2015.

SHAFEEYAN, M. S.; DAUD, W. M. A. W.; HOUSHMAND, A.; SHAMIRI, A. A review on surface modification of activated carbon for carbon dioxide adsorption. **Journal of Analytical and Applied Pyrolysis**, v. 89, n. 2, p. 143-151, 2010.

SINGH, S.; DASH, U. N.; TALUKDAR, M. Solubility enhancement and study of molecular interactions of poorly soluble ibuprofen in presence of urea, a hydrotropic agent. **Materials Today: Proceedings**, v. 30, p. 246-253, 2020.
SHAFEEYAN, M. S.; DAUD, W. M. A. W.; HOUSHMAND, A.; SHAMIRI, A. A review on surface modification of activated carbon for carbon dioxide adsorption. **Journal of Analytical and Applied Pyrolysis**, v. 89, n. 2, p. 143-151, 2010.

SHAMSUDIN, M. S. et al. Performance and interactions of diclofenac adsorption using Alginate/Carbon-based Films: experimental investigation and statistical physics modelling. **Chemical Engineering Journal**, v. 428, p. 131929, 2022.

SIERA, I.; MORENO, J. Efficient adsorption of pharmaceutical drugs from aqueous solution using activated carbon materials. Journal of Environmental Science and Technology, 2024.

SILVA, Paula Mayara Morais et al. Adsorptive removal of basic dye onto sustainable chitosan beads: Equilibrium, kinetics, stability, continuous-mode adsorption and mechanism. **Sustainable Chemistry and Pharmacy**, v. 18, p. 100318, 2020.

SILVA, S. K. C. Remoção do corante têxtil c.i. reactive blue 203 utilizando casca de manihot esculenta crantz como adsorvente. 2019. 78f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Universidade Federal Rural do Semi-Árido, UFERSA, Mossoró. 2019.

SIPS, R. On the structure of a catalyst surface. **The Journal of Chemical Physics**, v. 16, n. 5, 1948.

SIPS, R. On the structure of a catalyst surface ii. **The Journal of Chemical Physics**, v. 18, p. 1024–1026, 1950.

SONG, Y. X.; CHEN, S.; NAN, Y.; FAN, H.; LI, N. Nanocomposites of zero-valent Iron@Activated carbon derived from corn stalk for adsorptive removal of tetracycline antibiotics. **Chemosphere**, v. 255, p. 126917, 2020

SOUZA, C. D. R.; SILVA, K. C. Potencial energético dos resíduos da castanha do Brasil (Bertholletia excelsa HBK) para produção de carvão ativado. **Research, Society and Development**, v. 10, n. 2, p. e53310212698-e53310212698, 2021.

SOUZA, C. D. R.; TEIXEIRA, M. M.; FERNANDES, S. R. L. Influência dos parâmetros na síntese do carvão ativado da casca do Astrocaryum aculeatum no processo de adsorção. **Revista Principia-Divulgação Científica e Tecnológica do IFPB**, 2022.

SPACIARI, A. C. **Tratamento de efluentes contendo ibuprofeno utilizando membranas funcionalizadas**. 2022. Dissertação de Mestrado. Universidade Tecnológica Federal do Paraná.

SRIATUN, S.; HERAWATI, S.; AISYAH, I. Effect of Activator Type on Activated Carbon Characters from Teak Wood and The Bleaching Test for Waste Cooking Oil. Jurnal Rekayasa Kimia & Lingkungan, v. 15, n. 2, p. 79-89, 2020.

STREIT, A.F. M.; COLLAZZO, G. C.; DRUZIAN, S. P.; VERDI, R. S.; FOLETTO, E. L.; OLIVEIRA, L. F. S.; DOTTO, G. L. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. **Chemosphere**, New York, v. 262, p. 128322, 2021.

SUI, Q.; CAO, X.; LU, S.; ZHAO, W.; QIU, Z.; YU, G. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. **Emerging Contaminants**, v. 1, n. 1, p. 14-24, 2015.

TAN, I. A. W.; HAMEED, B. H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of basic dye on activated carbon derived from oil palm empty fruit bunch. **Journal of Applied Sciences**, v. 10, n. 21, p. 2565-2571, 2010.

TEIXEIRA, J. L. **Obtenção e caracterização de carvão ativado a partir da casca de coco verde**. 2020. 88 f. Dissertação (Mestre em Engenharia) - Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul. Porto Alegre, 2020.

THABEDE, P. M.; MTUNZI, F.; NYAMUKAMBA, P. Sorption Behaviour of Ibuprofen Using Activated Carbon Derived from Rose Geranium (Pelargonium graveolens L.) Leaves. **Applied Sciences**, v. 13, n. 8, p. 5133, 2023.

THAKUR, A.; SHARMA, N.; MANN, A. Removal of ofloxacin hydrochloride and paracetamol from aqueous solutions: Binary mixtures and competitive adsorption. Materials Today: **Proceedings**, v. 28, p. 1514-1519, 2020.

THOMMES, M.; KANEKO, K.; NEIMARK, A. V.; OLIVIER, J. P.; RODRIGUEZ-REINOSO, F.; ROUQUEROL, J.; SING, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). **Pure and Applied Chemistry**, v. 87, p. 1051–1069, 2015.

HUE, P. S., LIMA, D. R., NAUSHAD, M., LIMA, E. C., ALBUQUERQUE, Y. R. T. de, DIAS, S. L. P., CUNHA, M. R., DOTTO, G. L., & BRUM, I. A. S. de. High removal of emerging contaminants from wastewater by activated carbons derived from the shell of cashew of Para. **Carbon Letters**, v. 31, p. 13-28, 2021.

TRAN, H. N. Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient KD (qe/Ce) or Freundlich Constant (KF): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions. Adsorption Science & Technology, 2022.

TEJADA-TOVAR, C. N.; VILLABONA-ORTÍZ, A.; COLPAS-CASTILLO, F.; SANMARTÍN-ÁLVAREZ, Z.; LANDÁZURY-GALÉ, D. Biochars derived from cocoa synthesized at low temperature impregnated with zinc chloride for the removal of ibuprofen in different solutions. **Ingeniería y Competitividad**, v. 24, n. 1, p. e20510941, 2022.

VAN TRAN, T., NGUYEN, D. T. C., LE, H. T. N., VO, D.-V. N., NANDA, S., & NGUYEN, T. D. Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. **Journal of Environmental Sciences**, v. 93, p. 137-150, 2020

VASILACHI, I. C., ASIMINICESEI, D. M., FERTU, D. I., & GAVRILESCU, M. Occurrence and fate of emerging pollutants in water environment and options for their removal. **Water**, v. 13, n. 2, p. 181, 2021.

VIOTTI, P. V., MOREIRA, W. M., SANTOS, O. A. A., BERGAMASCO, R., VIEIRA, A. M. S., & VIEIRA, M. F. Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. **Journal of Cleaner Production**, v. 219, p. 809-817, 2019.

WANG, Q., TANG, X., ZENG, W., WANG, F., WEIJIA, G., CHEN, J., WANG, J., LI, G., & LIANG, H. Pilot-scale biological activated carbon filtration–ultrafiltration system for removing pharmaceutical and personal care products from river water. **Water**, v. 14, n. 3, p. 367, 2022.

WEBER, W. J.; MORRIS, J. C. Kinetics of Adsorption of Carbon from Solution. Journal of the Sanitary Engineering Division, v. 89, n. 2, p. 31 – 60, 1963.

WESTPHALEN, A. P. C.; CORÇÃO, G.; BENETTI, A. D. Utilização de carvão ativado biológico para o tratamento de água para consumo humano. **Engenharia Sanitaria e Ambiental**, v. 21, p. 425-436, 2016.

XIE, J., LIU, M., LI, J., YU, F., LV, Y., LIU, Y., LIN, C., YE, X., & LE, M. Ultraefficient adsorption of diclofenac sodium on fish-scale biochar functionalized with H3PO4 via synergistic mechanisms. **Environmental Pollution**, v. 322, p. 121226, 2023.

XU, W. Efeito da temperatura de ativação nas propriedades do carvão ativado com H3PO4. **BioRecursos**, v. 2, 2021.

YAKOUT, SM; EL-DEEN, G. Sharaf. Caracterização do carvão ativado preparado pela ativação com ácido fosfórico de caroços de azeitona. **Jornal Árabe de Química**, v. 9, p. S1155-S1162, 2016.

YOUNES, H. A., TAHA, M., MAHMOUD, R., MAHMOUD, H. M., & ABDELHAMEED, R. M. High adsorption of sodium diclofenac on post-synthetic modified zirconium-based metal-organic frameworks: experimental and theoretical studies. Journal of Colloid and Interface Science, v. 607, p. 334-346, 2022.

YOUNG, A. Production of activated carbon from agricultural waste and its application for wastewater treatment. **Applied Water Science**, v. 10, p. 1-12, 2020.

ZAINI, H., ABUBAKAR, S., RIHAYAT, T., & SURYANI, S. Adsorption and kinetics study of manganese (II) in wastewater using vertical column method by sugar cane bagasse. In: *IOP* Conference Series: Materials Science and Engineering. IOP Publishing, 2018, p. 012025.

ZHANG, C., CHEN, J., CHEN, W., LIU, J., & CHEN, D. Hydrothermal synthesis of Cu2O/CuO/hierarchical porous N-doped activated carbon with exceptional electrochemical performance. **Journal of Energy Storage**, v. 60, p. 106600, 2023.

ZHANG, J.; WANG, Z.; ZOU, L. Experimental investigation on the preparation of active carbon with cottonwood based on phosphoric acid activation method. **Materials Express**, v. 10, n. 4, p. 531-536, 2020.

ZHANG, Q., JEKEL, M., ZHANG, Y., & RUHL, A. S. A quick test method for predicting the adsorption of organic micropollutants on activated carbon. **Water Research**, p. 119217, 2022.

ZHANG, Y.; MA, Q.; CHEN, Z.; SHI, Y.; CHEN, S.; ZHANG, Y. Enhanced adsorption of diclofenac onto activated carbon derived from PET plastic by one-step pyrolysis with KOH. **Environmental Science and Pollution Research**, 2023. Disponível em: https://dx.doi.org/10.1007/s11356-023-30376-0.

ZHOU, J. H.; SUI, Z. J.; ZHU, J.; LI, P.; CHEN, D.; DAI, Y. C.; YUAN, W. -K. 128 Characterization of sufarce oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. **Carbon**, v. 45, p.785-996, 2007.

ZHOU, Y.; LU, P.; LU, J.. Application of natural biosorbent and modified peat for bisphenol a removal from aqueous solutions. **Carbohydrate Polymers**, v. 88, n. 2, p. 502-508, 2012.

ZOMER, M. L.; MARQUES, C. R. M.; CAMPOS, D. P.; MELO, A. R. Utilização do bagaço de laranja e da cinza da casca de arroz como adsorventes de efluente têxtil. **Revista de Engenharia e Tecnologia**, v. 14, n. 1, p. 204-216, 2022.

ZULKANIA, A.; IQBAL, M.; SYAMSUMARLIN, S. Characterization of adsorbents derived from palm fiber waste and its potential on methylene blue adsorption. **Key Engineering Materials**, v. 841, p. 273-277, 2020.

ZULUAGA, D. Magnetic graphene oxide/Fe3O4 nanocomposites for the removal of cephalexin from aqueous solutions: Adsorption mechanism and reuse study. **Journal of Molecular Liquids**, v. 332, p. 115895, 2021.

ZHENG, X.; DAI, J.; PAN, J. Synthesis of β -cyclodextrin/mesoporous attapulgite composites and their novel application in adsorption of 2, 4, 6-trichlorophenol and 2, 4, 5-trichlorophenol. **Desalination and Water Treatment**, v. 57, n. 30, p. 14241-14250, 2016.