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Abstract

Network slicing at the radio access network (RAN) domain, called RAN slicing, requires elas-

ticity, efficient resource sharing, and customization to deal with scarce and limited frequency

spectrum resources while fulfilling the slice intents in an intent-based system. In this scenario,

radio resource scheduling is an essential function to provide the resource management needed

to prevent intent violations, hence providing sufficient radio resources for RAN slices to ac-

complish their intents. The wide variety of scenarios supported in 5G and beyond 5G (B5G)

networks makes the radio resource scheduling (RRS) problem in RAN slicing scenarios a signif-

icant challenge. This thesis proposes an intent-based RRS for RAN slicing using reinforcement

learning (RL) to fulfill the slice intent. The proposed method aims to prevent intent violations by

making the management of resource block groups (RBGs) available between slices and users’

equipment (UEs) using inter-slice and intra-slice schedulers, respectively. This thesis also pro-

poses investigating a slice prioritization structure to ensure the intent of more important slices

when the available radio resources are insufficient to guarantee all slice’s intents. This thesis

proposal presents results obtained using an intent-based RRS with RL for a fixed number of

slices and also for multiple network scenarios, aiming to demonstrate the importance of intent-

based RRS design for scenarios with RAN slicing. The proposed method outperformed the

baselines in fixed and multiple network scenarios, protecting high-priority slices and minimiz-

ing the total number of violations.

Keywords — Radio resource scheduling, RAN slicing, intent-based scheduling, reinforce-

ment learning, mobile networks.



Resumo

O fatiamento da rede móvel no domínio da rede de acesso requer elasticidade, compartilha-

mento de recursos de forma eficiente e customização para lidar com a escassez e limitação dos

recursos de rádio enquanto cumpre as intenções das fatias de rede definidas em um contrato

de nível de serviço. Nesse cenário, o alocador de recursos de rádio é essencial para prover a

administração de recursos a fim de prevenir as violações de intenções de rede, e consequente-

mente oferecer recursos de rádio suficientes para as fatias de rede de acesso cumprirem seus

objetivos. A grande variedade de cenários suportados nas redes 5G e pós-5G torna o problema

da alocação de recursos de rádio em cenários de fatiamento da rede de acesso ainda mais de-

safiador. Essa tese propõe investigar um alocador de recursos de rádio baseado nas intenções

das fatias de rede de acesso, utilizando aprendizado por reforço para cumprir as intenções de

rede. O método proposto tem por objetivo prevenir as violações de intenções de rede através

da administração de recursos de rádio disponíveis entre as fatias de rede de acesso e usuários

usando um alocador de recursos de rádio entre as fatias de rede e outro para os usuários dentro

da fatia de rede. Esta tese também descreve uma estrutura para priorização de fatias de rede para

assegurar os requisitos definidos nas intenções de rede para as fatias mais importantes quando

os recursos de rádio não são suficientes para garantir todas as intenções de rede requisitadas.

Esta tese apresenta os resultados obtidos usando um alocador de recursos de rádio baseado nas

intenções das fatias de rede de acesso, utilizando aprendizado por reforço para um número fixo

de fatias de rede e também para múltiplos cenários de rede para evitar violações de intenções

de rede, e demonstra a importância de um alocador de recursos de rádio baseado nas intenções

das fatias de rede em cenário com fatiamento da rede de acesso. O método proposto apresentou

melhor desempenho em comparação aos métodos da literatura avaliados tanto na proteção de

slices prioritários quanto na minimização do número total de violações.

Palavras-chave — Alocação de recursos de rádio, fatiamento da rede de acesso, alocação

baseada em intenções, aprendizado por reforço, redes móveis.



Chapter 1

Introduction

6G networks will support various applications thanks to new technologies and architec-

tures designed to improve network capacity and provide higher throughput, lower latency, and

increased reliability [1]. Some applications that will benefit from 6G are smart healthcare, smart

cities, extended reality, virtual reality, holographic communication, and cloud gaming [1–3].

Technologies such as network slicing, artificial intelligence, and advanced resource allocation

techniques are key enablers and are essential for providing network functionality to meet ap-

plication requirements while improving resource utilization efficiency [1, 2]. The network has

the complex task of distributing the available resources among various applications, each with

different requirements while improving resource utilization efficiency and providing guarantees

of service-level agreement (SLA) fulfillment.

Network slicing provides service customization, isolation, and multi-tenancy support on

shared physical network infrastructure, enabling logical and physical separation of network re-

sources. Therefore, 5G and beyond 5G (B5G) systems are capable of deploying different con-

figurations and structures for each specific service by creating slices on demand and changing

their functions online [4]. End-to-end network slicing involves the radio access network (RAN),

transport network, and the core network domains, providing computational and network re-

source management. RAN slicing (network slicing at the RAN domain) requires elasticity,

efficient resource sharing, and customization to manage scarce and limited frequency spectrum

resources [4]. One of the multiple RAN slicing functions is to deploy a radio resource schedul-

ing (RRS) to allocate radio resources among slice instances (called inter-slice scheduling). An-

other RRS deals with resources within slice instances (named intra-slice scheduling) [5]. The

intra-slice RRS allocates the radio resources assigned by the inter-slice RRS to the users’ equip-
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ment (UEs). The inter- and intra-slice RRS schedulers must distribute the radio resources to

fulfill the slices’ intents.

RRS usually presents a high complexity in network slice scenarios in 5G and B5G net-

works due to the wide variety of network structures and application requirements [5]. RRS must

work in various scenarios to enable radio resource management that meets the requirements of

the slices. Therefore, new RRS methods should (i) attend to different types of slice with dif-

ferent requirements, (ii) provide sufficient radio resources for each slice to fulfill its network

intents, and (iii) prioritize the most important slice intents when the amount of available radio

resources is not sufficient to satisfy all slices’ requirements.

The RAN is a data-rich environment where data is continuously gathered in the form

of radio measurements or other system observations by user devices and network entities. In

this context, machine learning is a key enabler in handling large data sets, which presents an

opportunity to give data a central role in wireless networking [6]. Therefore, machine learning

techniques such as reinforcement learning (RL) are up-and-coming to learn from network data

and create flexible policies to deal with the wide variety of RRS scenarios that 5G and B5G

hold [7].

The RRS needs to be aware of the diverse requirements of the different 6G applications.

Then, it is the responsibility of the RRS to allocate the radio resources required to meet these

application requirements. The slice consumer declares the communication service requirements

to the operator in an SLA through network performance attributes, such as throughput, latency,

and reliability requirements [8]. Another alternative is to declare these communication service

requirements in network slice intents in an intent-based system. An intent-based system han-

dles intents via a closed-loop process where intents formally specify requirements, goals, and

constraints given to a technical system [9]. Using the RRS as an intent-based system, slice

intents (requirements and goals) can be provided via a common intent model [10]. In this con-

text, the intent-based RRS is responsible for allocating radio resources to fulfill the received

intents. Instead of defining the RRS policy to deal with a specific group of slices, intent-based

RRS receives the intents and implements a policy to fulfill the requested intents. It is possible

to add more slices and applications to the system by specifying or updating intents, and the

intent-based RRS is expected to automatically adapt its policy to meet the intents of the new

slice.

When considering RRS methods for RAN slicing scenarios, data-driven approaches have
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gained increasing attention due to their ability to directly build knowledge about the network

from data without the need for statistical models of the system [11]. Machine learning tech-

niques, particularly RL, can learn from network data and create flexible policies to deal with

the wide variety of RRS scenarios in B5G networks [6, 7]. There are different RRS methods

using RL for RAN slicing [12–19]. The methods presented in [12–14] focus on maximiz-

ing/minimizing specific network metrics, such as maximizing the slice throughput or mini-

mizing the transmission delay. These works, however, do not consider the case of minimum

performance guarantees and, therefore, are incompatible with an intent-based system as they

cannot fulfill specific network requirements. Related works [15–19] have an SLA satisfaction

rate (SSR) approach in which the network slice objectives are specified. However, they do not

provide intent prioritization mechanisms or track intent drift to avoid future intent violations.

Additionally, the works in [12–19] do not generalize well to diverse network scenarios.

Specifically, they define a group of slice types, usually enhanced mobile broadband (eMBB),

ultra-reliable low latency communication (URLLC), and massive machine-type communica-

tion (mMTC), and design RRSs that are trained to handle specific network conditions (e.g.,

channel conditions, network load, traffic profiles). Moreover, the authors do not evaluate the

performance of their methods when dealing with previously unseen and different network sce-

narios and do not provide clear guidelines on how to tackle scenarios that go beyond those con-

sidered in these works or how to consider varying numbers of active slices, UEs, and channel

characteristics. However, when proposing an RRS method for RAN slicing to B5G networks,

it is essential to assess the method’s capacity to generalize or be utilized for different network

scenarios. This thesis focuses on developing a single RRS method that is able to generalize well

across different network scenarios to provide a solution for production cellular networks.

This thesis investigates the usage of intent-based RRS methods for RAN slicing using RL

with slice prioritization, using different slice types and quality of service (QoS) intents based

on throughput, latency, and packet loss rate. This thesis is organized into two investigations

written in self-contained Chapters 3 and 4. The former investigates the use of an intent-aware

RRS method for RAN slicing scenarios with eMBB, URLLC, and best-effort (BE) slice types

with variations in channel trajectories experienced by UEs in each RL episode. The proposed

RL agent implements an inter-slice scheduler with optimized predefined weights to prioritize

slice intents. The intra-slice scheduler utilizes a round-robin algorithm. It defines different traf-

fic models and varies the magnitude of traffic for each UE according to its slice type, assessing
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the RL agent capacity to generalize its decision for different network conditions. This chap-

ter investigates the proposed method’s capacity to generalize for different channel and traffic

conditions when considering regular slice types eMBB, URLLC, and BE.

In Chapter 4, this thesis presents an enhanced intent-based RRS using multi-agent rein-

forcement learning (MARL) where the generalizability is evaluated in different network scenar-

ios with multiple slice types. The intent-based RRS uses an RL agent to inter-slice scheduling

and MARL with shared parameters to the intra-slice scheduler. The proposed method is eval-

uated in various network scenarios with different numbers of active slices, slice types, channel

trajectories, number of UEs, and UE characteristics. It approaches the capacity of the proposed

method and baselines of dealing with various network scenarios when trained and tested in the

same network scenario, when training and testing in different network scenarios, and finally

when using transfer learning to improve performance in specific network scenarios.

1.1 Objectives

1.1.1 General objectives

Formulate an intent-based RRS using RL focusing on inter-and intra-slice allocation to

fulfill slice intents in an intent-based network, providing support to distinct slice types with their

requirements and priorities. The proposed method should avoid intent violations and prioritize

critical slices when available resources are insufficient to meet all the slice’s intents.

1.1.2 Specific objectives

The specific objectives to be approached in this thesis are as follows.

1. Discuss the RRS challenges in future networks in scenarios with RAN slicing.

2. Study of RRS proposals for RAN slicing scenarios emphasizing reinforcement learning

solutions, with their challenges and opportunities.

3. Create an RL environment for RRS validation in scenarios with RAN slicing to facilitate

the deployment of different RL techniques for comparison.

4. Design the RRS method with support for different intents for each slice, with the flexibil-

ity to change its requirements in real-time, promoting the necessary network adaptations
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to meet intents still.

5. Investigate important network data features for RRS and alternatives to decrease the num-

ber of inputs in the RL agent since there is a massive amount of information available in

the RAN.

6. Investigate the generalizability of the proposed RRS methods and baselines methods for

different network scenarios with various numbers of active slices, types of slices, channel

trajectories, number of UEs, and UE characteristics.

1.2 Outline

This thesis proposal is organized as follows: Chapter 2 presents the fundamental concepts

for understanding the proposed method to RRS with RAN slicing, such as the RRS process in

5G networks, network slicing, intent-based networks, and RL algorithms. Chapter 3 presents

the intent-aware RRS using RL in the inter-slice scheduler in a scenario with a fixed number of

slices and UEs, providing results and discussions about the slice’s intents fulfillment. It con-

siders only eMBB, URLLC, and BE slice types. Chapter 4 presents a proposal for improved

intent-based RRS method using MARL for both inter-and intra-slice scheduling. It investi-

gates the generalizability of different network scenarios. Finally, Chapter 5 concludes the thesis

proposal, summarizing the results presented and future work.

1.3 Outcomes

The following list summarizes the papers produced as part of this thesis effort.
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less Communications, 23(3), pp.2253-2267.

2. Nahum, C., Ramalho, L., Klautau, A., Medeiros, E., Almeida, I. and Trojer, E.,
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duction. IEEE Communications Letters, 25(8), pp.2758-2762.
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Chapter 2

Theoretical foundations

This chapter presents the main fundamental concepts of the thesis to facilitate the under-

standing process through the following chapters. It explains the RRS process in 5G networks

and some existing scheduling mechanisms available to be used in scheduler algorithms. It de-

fines the concept of network slicing, focusing on RRS to clarify the differences between RRS

with and without RAN slicing. It explains the intent-based networks and establishes the mo-

tivation for an intent-based RRS method. Finally, it presents the RL technique focusing on

proximal policy optimization (PPO) and soft actor-critic (SAC) methods.

2.1 Radio resource scheduling

A key characteristic of mobile radio communication is the significant and usually rapid

variations in instantaneous channel conditions caused by frequency-selective fading, distance-

dependent path loss, and random interference variations due to transmissions in other cells and

by different devices. Channel-dependent scheduling exploits these variations by dynamically

sharing time-frequency resources between users. Dynamic scheduling is used in long term

evolution (LTE), and on a high level, the new radio (NR) scheduling framework is similar

to the one in LTE. Therefore, the base station scheduler takes allocation decisions based on

channel quality reports obtained from network devices, also taking into account different traffic

priorities and quality of service requirements when forming the scheduling decisions to be sent

to the scheduled devices [20, Subsection 5.1].

The scheduler is part of the medium access control (MAC) layer and controls the as-

signment of uplink and downlink resources in terms of so-called resource blocks (RBs) in the
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frequency domain and orthogonal frequency division multiplexing (OFDM) symbols and slots

in the time domain. The essential operation of the scheduler is dynamic scheduling, with the

base station taking the scheduling decisions, usually once per slot, and sending scheduling in-

formation to the selected devices. The uplink and downlink scheduling are separated in NR.

Hence, their decisions are independent of each other [20, Subsection 6.4].

Fig. 2.1 illustrates the downlink and uplink scheduling process. The downlink sched-

ule controls the device transmission and the set of RBs upon which the device’s information

should be transmitted. The transport format selection comprises the transport block size, modu-

lation scheme, and antenna mapping. The base station controls the logical channel multiplexing

for downlink transmissions. The uplink scheduler works similarly but controls which devices

should transmit on which uplink RBs. In the uplink, the device is responsible for selecting from

which radio bearer(s) the data are taken according to a set of rules the base station can configure.

The scheduling strategies are implementation-specific and not specified by 3GPP. However, the

overall goal of most schedulers is to use the channel variation information, obtained through

channel state information (CSI), between devices as an advantage by scheduling transmissions

to devices on resources with advantageous channel conditions in both the time and frequency

domains [20, Subsection 6.4].
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Figure 2.1: Downlink and uplink scheduling process in NR communications.

Only a set of supporting mechanisms are standardized, on top of which a vendor-specific
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scheduling strategy is implemented since the NR does not standardize scheduling behavior.

Therefore, the information that the scheduler needs depends on the specific scheduling strategy

implemented. However, most schedulers need information on at least the channel conditions on

the device (CSI) and buffer status [20, Subsection 14.1].
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Figure 2.2: General view of scheduling and admission control process emphasizing the scheduler deci-

sion at each TTI.

Fig. 2.2 shows a general view of a base station scheduling process valid for the downlink

and uplink. Since radio resources are limited, an admission control module handles new device

requests. It evaluates if the network can provide a minimum service level to the new device

without harming other UEs connections [21]. If the admission control decides that the network

cannot provide radio resources to new devices, it should deny the network entry of UEs. In each

transmission time interval (TTI), the scheduler is responsible for distributing the available RBs

between connected UEs. Considering an OFDM system, there is only one UE allocated per RB.

The scheduler distributes the RBs following the scheduler’s design and the network status. For

example, a scheduler that aims to maximize total system throughput should prioritize allocat-

ing UEs with higher spectral efficiency (SE) and incoming traffic. Therefore, the base station

scheduler functions depend on the network system goals defined by the network operators.
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There are several categories of algorithms for radio resource scheduling in the literature,

each containing a set of algorithms with common characteristics, such as QoS-unaware and

QoS-aware schedulers.

2.1.1 QoS-unaware methods

The QoS-unaware schedulers aim to maximize/minimize general system metrics, such as

maximizing the total system throughput, minimizing the total latency, or increasing the network

fairness in the allocation process without focusing on fulfilling UE’s QoS requirements. Some

typical examples of QoS-unaware algorithms are the round-robin (RR), maximum throughput

(MT), and proportional fair (PF) methods.

RR is largely used in radio resource allocation because of its simplicity and low com-

plexity, focusing mainly on increasing fairness between users. This algorithm allocates the

same amount of radio resources per user. When the number of RBs is smaller than the num-

ber of users, it alternates the number of users served per time to provide all users with the

same amount of RBs along with time. This strategy lacks spectral efficiency and throughput

performance since it does not consider the CSI information when performing the allocation

process [22].

MT algorithm aims to maximize the system achieved throughput by allocating resources

to the UEs with higher SE values and high incoming traffic. The maximum throughput algo-

rithm does not take into account fairness between users, always prioritizing the UEs with higher

SE values [22]. PF algorithm aims to increase the system achieved throughput while provid-

ing a minimum level of service for all users, increasing the system’s fairness. It considers a

maximum throughput calculation divided by the average throughput of each UE, so when the

average throughput of a given UE is small, the proportional fair should increase the chances of

allocating this UE. When the average throughput discrepancy is not high, the method should

prioritize UEs with higher throughput capacities [22].

Due to the QoS-unaware methods simplicity, they do not meet the increased requirement

that arose at 5G to provide individual QoS requirements fulfillment to the maximum number of

UEs in the mobile network.
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2.1.2 QoS-based methods

The QoS-based algorithms aim to fulfill individual UEs requirements defined by QoS re-

quirements, enabling different scheduling treatments for various applications. For example, a

video streaming application should be differentiated from a best-effort application (web browser

traffic and email services) providing higher throughputs for the former and more relaxed per-

formance for the best-effort applications since it has elastic requirements [5]. The fulfillment

of the UE’s QoS requirements gained attention since LTE with QoS-aware RRS designed to

maximize specific utility functions, which attempts to guarantee QoS for the maximum possi-

ble number of users [23]. LTE standardization introduced several QoS class identifiers (QCIs)

to support different requirements, such as guaranteed bit rate and non-guaranteed bit rate ser-

vices [5]. QoS-unaware RRS allocates the RBs based on different buffer status, channel quality

information (CQI), transmission queues, allocation history, etc. Otherwise, a QoS-aware also

considers QoS priorities in resource allocation decision-making, provisioning the required ser-

vices as throughput, delay, and latency [5]. The work [24] presents an example of a method

that tries to balance the total system throughput maximization with the fulfillment of the QoS

requirements using a called enhanced utilization resource allocation (EURA).

In 5G mobile networks, the problem of QoS requirements fulfillment becomes more com-

plex since 5G users are diverse in demand for resources due to the diversity of applications such

as ultra-high-definition videos, online games, and time-critical applications. It results in re-

quirements such as high reliability, very low latency, and high data rate, increasing the need

for efficient RRS approaches to satisfy network resource demands [25]. With more stringent re-

quirements, 5G and B5G mobile networks provide a high volume of RAN data with information

that could be obtained through network controllers [26] to be used in the RRS design.

It is challenging to propose methods that can extract all the benefits of the data available.

This fact motivates the flourishing of machine learning for communications, gaining consider-

able momentum in computational vision and communication [27]. When contrasted to other

artificial intelligence techniques, the main characteristic of machine learning is that the de-

signed models are based on experience learned automatically from data [28], which is abundant

in mobile communications, mainly in the RAN that has a large amount of information about

the mobile network, UEs, and applications running, being extremely useful to learn complex

patterns and improve network operations.
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2.2 Network slicing

Network slicing provides service customization, isolation, and multi-tenancy support on

shared physical network infrastructure through logical separation of the network resources [4].

It has a basis on infrastructure as a service (IaaS) from cloud computing models where an

infrastructure provider can share their computer, network, and storage resources with more than

one client using virtualization to create isolated virtual networks over a shared infrastructure.

In the 5G and B5G context, a network slice is an implementation of virtual network functions

(VNFs) interconnected via a virtual network that enables the creation of cost-efficient end-to-

end network slices and dedicates them to dynamic provisioning of main features of 5G.

The network slicing concept has gained attention from different standardization bodies

that define network slicing architectures, such as 3GPP [29], NGMN [30] and ITU-T [31]. Us-

ing network slicing, VNFs can adapt their operations depending on the service intents in the

SLA specified for each slice [4]. The network defines service by creating different slices with

their virtual structure and resources. Therefore, each slice can configure a virtual network with

specific characteristics to provide requested services and guarantee the fulfillment of their re-

quirements, e.g., a real-time communication application could be assigned to a slice that has

VNFs near the application location to reduce communication latency and provide a radio re-

source reservation to the slice devices. The seven main principles of network slicing concept

and operation are automation, isolation, customization, elasticity, programmability, end-to-end,

and hierarchical abstraction [4].

Automation using signaling-based mechanisms allows clients to define their slice require-

ments, such as jitter, latency, and duration of a network slicing, enabling an on-demand configu-

ration without needing fixed contractual agreements and manual intervention. Isolation ensures

the performance and security of each slice without performance interference among them. Cus-

tomization enables different treatments of slices with distinct requirements through resource

allocations, network configuration, and policies. This customization can be improved using

big data and context awareness features in the slices to perceive how to perform changes in

the network, improving attended slices. Elasticity guarantees that slice’s resources can be in-

creased/decreased to attend the desired SLA over different conditions. Programmability enables

clients (third parties) to control their slices’ resources via APIs, which generate much flexibility

in resource management and service customization [4].

End-to-end abstraction is a characteristic of network slicing due to the provisioning of a
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complete application working from the service provider to the end user, combining resources of

different infrastructure providers and heterogeneous technologies such as RAN, core network,

transport, and cloud to implement a network slice. Finally, hierarchical abstraction enables the

tenants of the slices to create partial or complete slices inside their contracted slice [4].

Fig. 2.3 shows a network slice diagram based on [4, 32]. Vertical segments, application

providers, or mobile network operators own one or more slices based on their service intents.

The network slices comprehend customized resources to fulfill personalized service perfor-

mance requirements. One slice for mobile devices (slice A) and another for Internet of Things

devices (slice B) are depicted in Fig. 2.3. Each network slice contains an end-to-end communi-

cation with virtualized resources allocated in the physical infrastructure. Both slices can share

or isolate resources from the access, transport, and core network.
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Figure 2.3: Network slicing example representing one slice for mobile devices and another to Internet

of Things devices over a physical infrastructure.

It is important to emphasize that all slices consume limited physical resources, even if

these resources are virtually isolated. Thus, network slicing management should avoid overpro-

visioning slice resources to fulfill its requirements since it may cause performance degradation

of other slices in the network, mainly under high network resource utilization conditions.

Each network slice instance has a life-cycle management process that verifies if the ser-

vice intents are fulfilled and improves the allocation of the network slicing. This life cycle

includes four phases [4] illustrated in Fig. 2.4. The preparation phase is responsible for prepar-
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ing and supporting the network slice. The instantiation, configuration, and activation phases

allocate and initiate the resources needed for the slice instance. After the network slice instance

is activated, it handles network traffic. The run-time phase involves supervising the network

slicing process and monitoring network metrics to attend to intents defined in the SLA. If a

fault is detected or there is an opportunity to improve the slicing process, the slice instance can

be upgraded, reconfigured, or scaled. Each slice instance continuously reports its status to a

controller. The decommissioning phase starts when a slice instance is finalized by request or

execution time defined in the SLA, so this phase starts the deactivation and termination of the

slice instance, reclaiming the allocated resources.
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Figure 2.4: Network slicing instance life-cycle.

As explained before, a network slice has to deliver an end-to-end solution to a service,

making continuous management and monitoring of resources to attend to slice requirements.

This management and monitoring can be applied on RAN, transport network, and the core

network domains of a mobile network. Therefore, it is essential to emphasize that the network

slice needs to be applied to these three domains to enable end-to-end network slicing.

2.2.1 RAN slicing and radio resource scheduling

This work focuses on network slicing in the RAN domain, called RAN slicing, and dis-

cusses the RAN slicing optimizations in the RRS to meet slice intents. RAN slice implemen-

tation demands dynamic resource management, resource isolation, and sharing [4]. Dynamic

resource management enables efficient resource sharing through sophisticated MAC functions,

considering different intents for each slice. For example, a URLLC slice has a stringent latency

requirement, whereas an eMBB slice requires high data rates. Therefore, the network should

provide different treatments to these RAN slices since they present distinct network function

behaviors and RRS needs.
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The isolation and sharing of resources are essential aspects of RAN slicing due to the

required spectrum isolation for some critical applications focused on latency and security.

However, complete slice isolation reduces multiplexing gains in the processing and spectrum

resource. Therefore, different levels of isolation of slice resources are supported in RAN

slicing architectures, allowing isolated slices or complete sharing of RAN functions and ra-

dio resources. As an example, it is possible to deploy slices that contain isolated/dedicated

RRC/PDCP/RLC/MAC/PHY1 layers or RRC/PDCP/RLC layers isolated with shared MAC and

PHY layers among slices [33].

This work aims to maximize the multiplexing gains of radio resources. At the same time,

it maximizes the slice SLAs fulfillment. Thus, it considers a RAN slicing structure with isolated

RRC/PDCP/RLC layers and shared MAC and PHY layers [33]. Using this configuration, radio

resources are shared among slices, with an inter-slice scheduler distributing the radio resources

between slices and an intra-slice scheduler distributing the assigned radio resources made by

the inter-slice scheduler for each slice among the UEs. Therefore, both the inter- and intra-slice

scheduling are responsible for allocating the available radio resources, aiming at attending to

the slice’s intents defined in the SLA requirements and providing radio resource guarantees for

more important slices. At the same time, this scenario offers a higher radio resource multiplex-

ing gain; it increases the complexity of RRS design since the resources of the slices are not

isolated, and a change in the allocation of resources for a specific slice may impact others.

Fig. 2.5 illustrates a simplified inter- and intra-slice RRS process with three slices and

five UEs connected to the network. The inter-slice scheduler allocates the RBs to the RAN

slices following the obtained network information. It specifies the number of RBs for each slice

to use. After the inter-slice scheduler defines the RB allocation for each slice, the intra-slice

scheduler distributes the assigned RBs between slice’s UEs following network information to

fulfill the slice’s intents defined in the SLA. There is an admission control module responsible

for accepting new incoming slices in case the network can provide sufficient resources to fulfill

the new slice’s requirements without harming the performance of other slices in the network.

An admission control module could also be used for the UEs of each slice, similarly to the one

presented previously in the RRS without RAN slicing.

1Radio Resource Control, Packet Data Convergence Protocol, Radio Link Control, Medium Access Control,

and Physical layer
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Figure 2.5: RRM process considering RAN slices.

2.3 Intent-based system

The mobile communications in B5G and 6G networks are leading to increased network

automation in which human interventions are changed to more efficient management using ar-

tificial intelligence. The introduction of automation refers to a system that can automatically

execute a process without human participation in every step and, ideally, without human in-

volvement at all [9]. When considering network automation, the policies are crucial since they

work as a rule or decision tree initiated when a defined precondition or event is triggered. It

delivers an action or action plan to be executed. The input to a policy-based decision is usually

the technical state of the system, including the specifications of what customers have ordered,

all data and system information available such as inventories, analytic insights, and network key

performance indicators (KPIs) [9].

Policy-based automation is similar to a pre-determined recipe in which developers write

policies to generate all the decisions at design time by analyzing the system’s situation and

developing an action plan for each situation. In this case, policy-driven systems automate the

execution at run-time, but the intelligent decisions are still primarily human-driven. Policy-

based automation has limitations regarding the capability to adapt to changes and situations

that were not explicitly defined at design time. New experienced situations can come from

external environment factors such as changing user behaviors leading to new system states or
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even new system functions typically introduced as new products or customization of existing

ones. Therefore, keeping the system capable of dealing with new situations would imply a

constant redesign of policies with partial human support [9].

Increasing the degrees of autonomy in a system would mean more automated tasks. The

system would gradually take over intelligent decision-making and determine and adapt its op-

erational solutions without human involvement. It is not limited by pre-designed recipes but

makes new recipes itself when needed. This requires the automated system to have access to

all relevant goals, requirements, and constraints. Furthermore, this knowledge must be pre-

sented to the system in a way that enables automated reasoning processes to translate them

into adapted system behavior, where the knowledge about expectations needs to be formally

expressed, communicated, and managed. In this context, [9] defines intents to specify and com-

municate knowledge about expectations to a system, allowing automated processes to reason

about it and derive appropriate decisions and actions. Intent enables communication of what

is preferable and what needs to be avoided. An intent-driven system cannot just blindly follow

human-determined solution recipes but modify them and make their own.

The recent concept of intent was first introduced in this context by internet engineering

task force (IETF) as goals that a network should meet and the outcomes that a network is sup-

posed to deliver, defined in a declarative manner without specifying how to achieve or imple-

ment them [34]. Policies are considered part of the system because they determine the actions

taken by the system. Specifically, it excludes any specification of how to achieve or implement

an operation goal and mandating policies. It also excludes the requirement of hard-coded logic

or artifacts, such as rules and workflows that define decision trees and decision-making pro-

cesses [9]. The intent is purely the specification of requirements and goals separated from all

implementation artifacts.

The formal definition of intents proposed by the Autonomous Networks Project in TM

Forum [9] and zero-touch network and service management (ZSM) [35] is: Intent is the for-

mal specification of all expectations, including requirements, goals, and constraints given to

a technical system. This definition is inspired and compatible with the IETF definition [34].

Furthermore, this definition excludes all imperative implementation and solution aspects from

the intent. In this context, the intent is purely an expression of what needs to be achieved or

avoided or what outcome is more or less preferable, rather than indicating how and by which

strategies and actions this can be realized [9]. Artifacts such as policies, rules, and decision trees
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are still very needed to realize an intent-driven autonomous system, but they are separated from

the intent expression. This thesis assumes the TM Forum [9] and ZSM [35] as the fundamental

intent definition due to the large number of available resources and the leading role in intent

standardization in the industry.

Intent is considered declarative because it specifies the desired outcomes and the out-

comes that need to be avoided. Still, it can include quantitative specifications, such as a goal

that can be set by defining target values or value ranges using KPI and metrics [9]. Depending

on the scope of the intent, the definition can be high-level and abstract or technical and de-

tailed. For example, a business-level intent can specify the need to make a financial gain from

autonomously managed SLAs. An example of a lower-level technical intent would be to guar-

antee a 10ms latency on a particular network link. Even with these different intent contents,

the intent is only useful if all aspects it specifies can be observed since it can only control what

it can measure. This means a system based on intent must be connected to data and knowledge

sources. This includes metrics and KPIs being measured, aggregated, and calculated or analytic

functions that provide information to the system [9].

Source: TM Forum [9].

Figure 2.6: Intent handling function description.

The TM Forum defines the intent handling function (also called the intent manager func-

tion) as an entity that operates an autonomous system using intent, as illustrated in Fig. 2.6.

The intent manager receives an intent generated by an external system (which could be another
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intent manager). It operates based on knowledge, which refers to the operational goals and

requirements specified in the intent and information about the system state or domain in which

the intent handling function operates. The intent specifies the desired state, while the measured

results determine the current state. The decision of the intent management function is mainly

about reducing the distance between the current and wanted states.

The intent manager decides which actions are needed to fulfill the requested intent. It is

important to note that an action plan can also include intent requests for other intent managers.

In this case, the intent handling function becomes an intent owner since it generates an intent to

be handled by another function. The intent function can act through conventional interfaces to

control external modules to invoke processes or change system configurations. It also reports the

intent fulfillment state to the intent handling function, which has requested the received intent

and other important information related to the intent. The implementation of the intent handling

function needs to implement all interfaces required to interact with the external functions of the

domain in which it is operating. Therefore, the intent manager is highly contextual and depends

on the domain.

Intent managers communicate with each other through intent reports to report on the status

and success of intent handling. The intent manager function can be an intent owner or an intent

handler. Intent owners generate intents for other intent managers and receive reports on the

generated intent status. Intent handlers are responsible for receiving intents and acting in the

system to fulfill the received intents. An intent manager can act as both an intent owner and a

handler simultaneously.

Fig. 2.7 shows four distinct intent managers with scope specifications and the related mod-

els they support. The intent manager responsible for service management receives and handles

intent from an intent manager assigned to business operations and is responsible for order man-

agement. Intents can contain requirements about service KPI and customer experience metrics.

Intent managers need to understand the same intent models to communicate with each other.

The intent manager in the service operations uses the subsequent intent to put requirements on

RAN and core network operation. This figure emphasizes the relationship between different

intent managers located in various domains. The intent manager in the servicer operation is

both an intent handler since it acts to fulfill the intents received from the business operation, and

an intent owner since it generates intents to the intent manager in the RAN and core network

domains. The intent manager in autonomous domain RAN can interact with different external
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Source: TM Forum [9].

Figure 2.7: Example of different domain-specific intent manager interactions.
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functions (outside the intent-based system) such as the RRS, modulation coding scheme (MCS)

selector, and other RAN functions. It is essential to build intent-based RAN functions for the

RRS in order to be able to ensure intents in the RAN and communicate with the intent manager

in the RAN domain.

Source: TM Forum [10].

Figure 2.8: Example of an intent requiring a certain latency, throughput, and availability for a service.

TM Forum’s definition of intents stands for the use of formally defined models, meaning

that intents would be expressed with formally defined and complete semantics and vocabulary,

avoiding ambiguities in the meaning of an intent (the sender and receiver of intent must be in

perfect agreement about its interpretation). TM Forum defines a common intent model [10]

that could be used to enable communication between different intent managers. Fig. 2.8 shows

an example of intent description for a service that specifies numerical requirements for latency,

throughput, and availability of a service.
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2.4 Reinforcement learning

Reinforcement learning is a machine learning technique to learn directly from interacting

with an environment. RL is learning how to map situations to actions and how to maximize

a numerical reward signal. The learner is not reached about which actions to take but must

discover which actions yield the most reward by trying them. Actions taken by an RL agent

may affect not only the immediate reward but also the following situations and, hence, all

subsequent rewards. These two characteristics (trial-and-error search and delayed reward) are

the two most important features of reinforcement learning [36]. Fig. 2.9 illustrates a usual

Markov decision process (MDP) process that represents the interaction between the RL agent

and the environment. The environment comprises everything outside the agent. The agent

decides on an action and applies it in the environment. Then, the environment generates a new

state due to the applied action and returns a reward signal to the agent. The reward signal defines

the goal of the RL problem since the agent’s objective is to maximize the total reward it receives

over the long run [36].

Source: Sutton and Barto [36].

Figure 2.9: The agent-environment interaction in a Markov decision process.

The RL scenario can be described with an MDP (S,A,RW, P, ρ0), where S is the set of

all valid states, A is the set of all valid actions, RW is the reward function, P is the transition

probability function, and ρ0 is the initial state distribution of the system [36]. In a time step

t, the agent in a state st takes action at and reaches the next state st+1 receiving the reward

RW(st, at). The RL agent has policy π(·|st) representing a function that maps states to actions.

Rewards are numerical values given to the agent’s actions to represent if the chosen action was
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good, and the agent aims to maximize the long-term cumulative reward [36]. This thesis uses

a subset of RL methods that utilize deep neural networks as approximators, usually called deep

reinforcement learning (DRL). This thesis will utilize these terms interchangeably.

This thesis utilizes actor-critic algorithms, which are a type of RL algorithm that combines

aspects of both policy-based methods in the actor and value-based methods in the critic [36].

The actor’s role is to make decisions (select actions) based on the current policy and explore

the action space to maximize the expected cumulative reward. When continually refining the

policy, the actor learns the dynamic nature of the environment. The critic’s role is to evaluate

the actors’ actions and estimate their value, providing feedback on their performance. The critic

is vital to driving the actor’s learning for actions that lead to higher expected returns. Usually,

in actor-critic RL methods, both the actor and the critic are implemented using deep neural

networks. Fig 2.10 illustrates the actor-critic method with both the actor and critic utilizing deep

neural networks as approximators. The actor has a policy π(a|st) representing the probability

of taking action a in the state s where this policy is implemented by a deep neural network with

parameters denoted as θ. The actor maximizes the expected return by optimizing its policy.

The critic network estimates the expected cumulative reward V (st) starting from a state s and

optimizes its neural network parameters W to improve its ability to predict the correct value.

This thesis focuses on PPO and SAC RL algorithms, which are actor-critic-based methods, and

explains these methods specifically in the following subsections.

2.4.1 Proximal Policy Optimization (PPO)

The PPO is an on-policy actor-critic algorithm that alternates between sampling data

through interactions with the environment and optimizing a surrogate objective function using

stochastic gradient ascent [37]. The PPO method has the benefits of data efficiency and reliable

performance of trust region policy optimization (TRPO) but with a much simpler implementa-

tion, more general, and has a better sample complexity [37]. It proposes a novel objective with

clipped probability ratios and a pessimistic estimation of the policy’s performance. This thesis

utilizes the PPO variation with the clipped probability ratios due to its best performance [37].

The PPO improves the update of the policy parameters in the actor network while using a critic

implementation similar to other standard actor-critic methods.

First, using their current network parameters, the PPO agent uses the actor and critic

networks to generate a batch of experiences (actions, state, and rewards). Then, the actor and
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Figure 2.10: Actor-critic general architecture with actor-network generating actions to the environment

while the critic network estimates the value function.

critic networks are updated using the obtained batches of experience. The critic (value function)

network with its parameters W minimizes the loss function

LVF
t (W ) = E

[
(VW (st)−Rt)

2
]
, (2.1)

where VW (st) represents the critic network output to the value function that represents the

expected return value when starting in the state st. At the same time, Rt is the actual return

obtained in the batch of experiences, which is the discounted sum of rewards over time from

time step t until the T samples in the batch

Rt = RW(st) + γRW(st+1) + γ2RW(st+2) + · · ·+ γTRW(sT ), (2.2)

where γ is the discount factor, which balances the weight between immediate and future re-

wards.
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The actor network concentrates the main contributions of the PPO method. The actor-

network maximizes the clipped objective function

Lclip
t (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (2.3)

where the probability ratio

rt(θ) =
πθ(at|st)
πθold(at|st)

(2.4)

represents the current policy πθ changes in relation to the old policy πθold. And, At is the

generalized advantage estimation which represents how much better a particular action was

compared to the average action at a given state st [38]

At =
T−1∑
l=0

(γλ)lδt+l, (2.5)

where λ represents the generalized advantage estimation parameter with values between 0 and

1, with 0 representing a one-step return being highly biased by the immediate returns and with

a low variance, while 1 represents the usage of long-term returns with a low bias but a high

variance. Finally, the temporal difference error δt measures the difference between the predicted

value of a state and the actual value. The temporal difference error is

δt = RW(st) + γV (st+1)− V (st), (2.6)

where a positive δt indicates that the critic predicted that the value function was too pessimistic

and that the value function should be updated for a higher value. Otherwise, the value function

was too optimistic and should be updated for a smaller value.

The first term rt(θ)Ât within the minimum function of Equation 2.3 represents the con-

servative policy iteration where the maximization of only this term would lead to an excessively

large policy update. Equation 2.3 takes the minimum between the clipped and unclipped prob-

ability ratio so that the final objective is a lower bound on the unclipped objective. Clipping

the objective between the defined interval improves stability and reliability when updating the

policy values [37].

Finally, the PPO total loss is

Ltotal(θ) = Et

[
−Lclip

t (θ) + c1L
VF
t (θ)

]
, (2.7)

which includes an coefficient c1 to balance the importance between the actor and critic loss

functions [37]. The total loss represents the overall objective the training process seeks to

minimize.
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2.4.2 Soft Actor-Critic (SAC)

The SAC RL method is an actor-critic approach that combines elements of value-based

and policy-based methods exploring the off-policy strategy and encouraging exploration through

entropy maximization [39]. SAC is an off-policy algorithm since it learns from experience

stored in a replay buffer instead of learning from the latest actions, which leads to better data

efficiency when compared to on-policy algorithms such as PPO [39]. Unlike the previously

explained actor-critic architecture, SAC uses three different networks, one being the actor and

two critics. The actor, similarly to the actor-critic approach, maps states to actions. The critics

estimate the action-value function (Q-values) instead of the value function since it expresses a

relation between each action option in a given state st and expected return instead of calculat-

ing the expected return independent of the action taken as done in the value function calcula-

tion [36]. Moreover, it utilizes two critic networks to reduce the bias that might occur if only

one critic were used.

SAC’s core idea is adding an entropy term to the reward function to maintain exploration

over training. The agent is incentivized to choose effective and diverse actions to prevent pre-

mature convergence to suboptimal policies [39]. The SAC objective is represented as

J(π) =
T∑
t=0

E[RW(st, at) + ϱH(·|st)], (2.8)

where RW(st, at) represents the reward for state st when choosing action at, H(·|st) is the

entropy term, and the temperature parameter ϱ controls the trade-off between exploration and

exploitation [39].

The critic networks are updated by minimizing the loss function

JQ(ϕi) = E
[(
Qϕi

(st, at)− y
)2] (2.9)

where

y = RW(st, at) + γmin(Qϕ1(st+1, at+1), Qϕ2(st+1, at+1))− ϱ log π(st+1|at+1). (2.10)

Qϕi
(s, a) is the Q-value predicted by the i-th critic network with parameters ϕi for the current

state-action pair (s, a). It considers the minimum between the Q-values predicted by the two

critics to avoid overly optimistic predictions. The entropy regularization term ϱ log π(st+1|at+1)

encourages the method to explore when the entropy value is high and leads to deterministic

actions otherwise.



28

The actor parameters are updated to maximize the expected return with an entropy bonus

by minimizing

Jπ(θ) = E
[
ϱ log π(st|at)−min(Qϕ1(st, at), Qϕ2(st, at))

]
, (2.11)

where a higher entropy term increases the actor loss, encouraging the policy to be more ex-

ploratory and select actions stochastically.

An important characteristic of SAC is its off-policy nature in which the agent utilizes a

replay buffer to store past experiences and then samples mini-batches of experiences from this

buffer to update its network, enabling a more efficient reuse of data compared to on-policy

algorithms such as PPO.

When comparing PPO and SAC methods, SAC has a more complex implementation,

usually requiring more fine-tuning in the hyperparameters while providing a better sampling

efficiency due to its off-policy nature using a replay buffer. The PPO method has a simpler

implementation, providing a more stable and higher processing throughput while requiring less

fine-tuning and being easier to use for general applications. Both PPO and SAC algorithms have

been used in different related works for RRS [12, 19, 40, 41] due to their excellent performance

in control problems.



Chapter 3

Intent-aware RRS using RL for fixed

network scenarios

This chapter presents the proposed intent-aware RRS for RAN slicing using RL with

slice prioritization for fixed network scenarios, using three different slice types and QoS intents

based on throughput, latency, and packet loss rate. This approach considers an RL agent for

inter-slice allocation, where the RRS provides the distribution of radio resources among slices

and utilizes a round-robin scheduler to perform the intra-slice allocation. It does not consider

the slice admission problem [5]. The RL agent learns to take RRS actions to fulfill the slices’

intents and give higher priorities to slice intents following pre-defined weights. An intent drift

reward calculation is proposed to deal with different QoS intents, enabling different slice speci-

fications. To test the effectiveness of the proposed data-driven RRS algorithm, a simulator with

a number of realistic features was developed to avoid oversimplifying the data. For example,

the proposed simulator uses the QuaDRiGa channel simulation framework to generate spatially

consistent millimeter wave multiple-input and multiple-output (MIMO) channels. It also de-

fines different traffic models and varies the traffic magnitude for each UE depending on its slice

type, assessing the RL agent capacity to generalize its decision for different network condi-

tions. The proposed software is publicly available to facilitate future work and comparisons.

The results to be presented in this chapter were published in [40].

The main contributions of this chapter are summarized as follows:

• An intent-aware RRS using RL with an intent drift reward calculation to prevent vio-

lations on the QoS intents and prioritize the most critical slices’ intents when the radio

resources available are not sufficient to fulfill all intents.
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• A closed loop to deal with intent drift caused by changes in the network scenario (without

human intervention) and intent updates provided by network operators.

• A method that supports different QoS requirements for each slice type, with the flexibility

to change its requirements in real-time, promoting the needed network adaptations to

fulfill the slices’ intents still.

• Evaluation of the proposed method using realistic millimeter wave MIMO channels gen-

erated using QuaDRiGa and variations in the UE’s traffic magnitude according to each

slice characteristic.

• The simulation code is publicly available to facilitate reproducibility and comparison with

other methods.1

This chapter is organized as follows: Section 3.1 describes the related works, emphasiz-

ing the data-driven methods using RL for RRS systems with RAN slicing. It also relates the

main contributions of this proposed method to previous work. Section 3.2 presents the adopted

communication system model and formulates the RRS problem in a scenario with RAN slicing.

Section 3.3 presents the proposed intent-aware RRS using a SAC RL agent to perform inter-

slice allocation and a round-robin scheduler for intra-slice scheduling. Section 3.4 presents the

results obtained using the proposed method and a comparison with baselines, focusing on slice

intent fulfillment.

3.1 Related work

Considering the need to design RRS solutions with support to RAN slicing, previous

work has proposed optimization techniques and machine learning methods using model-based

paradigms such as the Lyapunov optimization method [42], earliest deadline first (EDF) schedul-

ing adaptation [42], MDPs [43], and supervised machine learning methods [41]. The success

of the model-based paradigm depends on its accuracy in representing the behavior of mobile

networks. With the evolution of the cellular network, the underlying mathematical models

have become even more complex to exploit sophisticated technologies [11]. On the other hand,

the data-driven network’s approach provides network functions directly built on the data pro-

duced, presenting advantages such as better network information usage and the reduced need
1https://github.com/lasseufpa/rrm-slice-rl

https://github.com/lasseufpa/rrm-slice-rl
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for accurate models [11]. The data-driven RRS approach usually utilizes RL methods due to

its unsupervised learning characteristic and high efficiency in learning from large amounts of

data [36].

The data-driven paradigm using RL for RRS in scenarios with RAN slicing was tack-

led in [12–16], which is the main scope of this chapter. The prior work [12–14] focuses on

the maximization/minimization of specific network metrics, where [12] proposed an RL PPO

method that is O-RAN compliant and considers both inter-slice and intra-slice allocation. It

considers eMBB, machine-type communication (MTC), and URLLC slice types. The RL agent

is responsible for distributing resource block groups (RBGs) among slices (inter-slice alloca-

tion) and chooses an intra-slice scheduling between RR, PF, and water filling techniques. This

work [12] uses two utility/reward functions: the first focuses on maximizing the rate for eMBB

and transport blocks for MTC and minimizing the buffer size for URLLC. The second focuses

on maximizing the rate for eMBB and MTC and the RB ratio for URLLC. The RL agent uses

a reward function to maximize system metrics without providing guarantees to meet specific

slice requirements previously described in an SLA. Therefore, this method could not be con-

sidered in an intent-based system where the network goals are provided through specific QoS

values/objectives. For example, the system cannot serve a slice request to keep the throughput

rate above a specified value in the intent definition of TM Forum [10], even considering QoS

metrics in the reward calculation. Still, since the QoS goals are not defined, the agent is unable

to deal with intents.

The previous work [13] proposes a combined method utilizing long short-term memory

(LSTM) deep learning technique and asynchronous advantage actor-critic (A3C) RL method. It

considers that each slice contains an RL agent that defines the number of resources required to

meet its requirements. With this network environment, actions between slices are unobservable,

such that each slice makes decisions independently. An indicator vector designates if there are

sufficient resources to be shared among slices and guides the slices’ strategies towards decreas-

ing the required resources to make feasible resource allocation decisions. Using the approach

of decentralized decisions considered in [13], each slice has an RL agent that gives more flex-

ibility to learn different behaviors for each slice. However, the indicator vector for insufficient

resources would be a problem in a scenario where the available resources are insufficient to

provide all slice requirements, generating a great negative reward for all slices that would not

converge to an ideal solution.
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The authors in [14] propose a two-level radio resource and power allocation scheduler us-

ing RL for RAN slicing scenarios. The upper-level controller uses a deep deterministic policy

gradient (DDPG) RL method to set a guaranteed bit rate for all slices to ensure the QoS require-

ment of services and a maximum bit rate value to avoid too many radio resources occupied by

a unique slice. The lower-level controller, using a double deep Q-network (DQN), utilizes the

upper-level controller’s outputs as a constraint to allocate the RBs and transmit power for each

active UE in each slice. Each slice has a utility function related to the QoS performance, repre-

sented by the aim to minimize the average packet latency and packet drop rate and maximize the

SE. There are weights for each of the requirements of the utility function to create requirement

priorities that differentiate each slice, but without establishing priorities among slices. There-

fore, similarly to [12], [13, 14] cannot be implemented or adapted to work in an intent-based

system because their systems did not consider clear QoS values to fulfill the slice intents.

Otherwise, the prior work [15,16] focuses on the SLA satisfaction rate for each slice, with

work [15] proposing an LSTM network to improve the advantage actor critic (A2C) RL method

to set the bandwidth for each slice considering the SLA satisfaction. This work does not specify

the SLA satisfaction ratio functions for each slice type nor discuss slices or network metrics

prioritization as required for an intent-based system as defined by TM Forum [9]. In [16], a

DRL method using Ape-X for distributed learning is implemented to provide RB allocation for

slices. It considers a binary representation of the slice fulfillment, where 1 represents that the

slice requirements are fulfilled and 0 otherwise, which is insufficient to represent the intent drift

described by the IETF definition for intent-based systems [34]. It does not enable the RL agent

to realize a distance to fulfill the slice intents or even to perceive when the provided actions

are increasing the distance between the monitored metrics and network objectives. Moreover,

there is no discussion about slice and network metric prioritization to cope with more sensitive

slices in scenarios where the experienced channel capacity is insufficient to fulfill all served

slice intents.

The main problems related to the slice’s intent fulfillment in [12–16] are summarized

below:

• None of the related works [12–14] could be utilized in an intent-based system since in

the TM Forum specification, the intent should provide wanted outcomes and outcomes to

avoid, including quantitative specifications such as defining target values or value ranges

using KPIs. All these related works consider that the goal of each slice is to maximize or
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minimize specific network metrics. Still, it is insufficient for an intent description since

it is impossible to define when the intent is being fulfilled. For example, in work [12],

the eMBB slice goal is defined as maximizing the rate for UEs. Still, considering an

intent-based system, it is impossible to determine when the system is not maximizing the

throughput rate (fulfilling the intent).

• The designed reward/utility functions that drive the learning process do not enable the RL

agent to realize the intent drifts. Instead, they aim to maximize/minimize specific slice

metrics [12–14] that may cause over-provision of radio resources for slices in relation to

the requested intents or consider the intent-fulfillment as a binary variable in the reward

calculation [16].

• Despite the method [14] providing weights to define the importance of each of the three

requirements in the slice reward contribution, the prioritization among slices is not tack-

led. For instance, slices with greater priorities may compete for the same radio resources

with less important ones in scenarios with scarce radio resources due to high network

demands.

• The different slices in the network have distinct intents that are not always described by

the same metrics as considered in [12–14, 16]. Therefore, the network should support

slice types with different metrics to enable intent-based slices. For example, the prior

work [44, 45] considers the existence of minimum bit rate, constant bit rate, and BE slice

types, each of them considering different metrics for their requirements.

• In an intent-based sliced network, a change in the slice intents (promoted by the net-

work operator) or an intent drift should cause changes in the RRS operations to fulfill

the intents. In the prior work [12–16], there is no discussion of the effects of changes in

requirements in different network conditions to evaluate the capacity of the RL agent in

various scenarios.

Taking into account the above-highlighted problems, this chapter presents an intent-aware

RRS for RAN slicing using RL, with support for different types of slice and metrics focusing on

fulfilling the intent requirements. Unlike [12–14], it designs a reward function that incentivizes

the RRS agent to fulfill QoS intents described in a common intent model [10] and adapt to the

changes in intents during the simulation. Unlike [14], which defines the importance weights for
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each slice metric, it defines weights that prioritize metrics into specific slices and in relation to

other slice metrics. It also considers different metrics per slice, considering eMBB, URLLC,

and BE slice types.

3.2 Communication system model and problem formulation

The model assumes a massive millimeter wave MIMO system with c = 1, 2, . . . , C cells

with a target cell ctarget representing the cell being evaluated. The target cell ctarget has Nt trans-

mit antennas for a specific carrier frequency fc and contains υ = 1, 2, . . . ,Υ slices, where Υ

represents the total number of active RAN slices in the cell. The target cell has u = 1, 2, . . . , U

UEs, where each UE u is assigned to a specific slice υ and contains Nu antennas. It implements

a simulation of a MIMO system because of its high transmission capacity and vast advantages

in 5G and B5G networks. Still, other RF transmission schemes (such as SISO) could be adopted

without incurring any change in the proposed system.

The target cell has a bandwidth of B MHz, divided into RBs, and RBs are grouped into

R RBGs, which are the minimum radio resource allocation unit considered in the proposed

scheduling system. The minimum time unit considered in the scheduling process is a TTI t,

representing the time to process and allocate all RBGs in a specific step n. Therefore, each step

takes t ms with tn = t · n representing the time from step 1 to n. The inter-slice RRS allocates

each RBG for a specific slice υ, and in each slice, there is an intra-slice RRS responsible for dis-

tributing the inter-slice RRS assigned RBGs to the slice’s UEs. The model considers the uplink

RRS problem where the base station defines the RBGs each UE uses to send its information,

but the method could also be applied for downlink.

Fig. 3.1 represents a scheduling process in a RAN slice scenario with 3 slices and 2 UEs,

composed of inter- and intra-slice scheduling. In action 1, the inter-slice scheduling allocates

the R available RBGs among the slices, generating an association between RBGs and slices

depicted in action 2. It considers a contiguous allocation, so when inter-slice RRS allocates

3 RBGs to a specific slice, it should allocate 3 sequentially located RBGs. After the RBGs’

distribution into slices, intra-slice scheduling executes for each slice, assigning their RBGs

(action 3) to their UEs (action 4). This chapter focuses on inter-slice RRS and uses an RR

method for intra-slice scheduling.
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Figure 3.1: RRS scenario adopted in this work contains the inter- and intra-slice scheduling process. The

inter-slice scheduling distributes the available RBGs between the slices, and the intra-slice scheduling

distributes the assigned RBGs between the UEs

3.2.1 Massive MIMO system model

The modeled system uses a time division duplex (TDD) transmission protocol that re-

ceives pilots from UEs sent through the uplink to obtain the base station’s CSI. Each base

station obtains a perfect channel estimation for each UE. UEs have their spectral efficiency val-

ues varying with time, but the same UE’s spectral efficiency value for all RBGs is used, similar

to [12, 46, 47].

The modeled system uses a scenario with a hexagonal tessellation of cells with C = 7

cells, as illustrated in Fig. 3.2. The analysis occurs in the target cell and considers interference

from the six neighboring cells. Each cell has a base station that serves three independent sector

antennas formed by a controlled vertical uniform linear array (ULA), having a total of 3C = 21

serving cells. There is no cooperation among the base stations or sectors, with all interferences

(inter-cell/inter-sector) being treated as noise, allowing interference from antenna back lobes as

well as from other base stations. The hexagonal network layout is chosen for simplicity and

reproducibility. The simulation Subsection 3.2.2 uses a rich and expressive stochastic channel

generator that produces realistic channel variability even with a hexagonal base station layout.

The proposed algorithm works in the target cell and analyzes the performance of the target cell

as is typical in prior work, such as [48].
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Figure 3.2: There is a mobile network scenario with 7 base stations (each with 3 antenna sectors), and

10 UEs distributed in the target cell. The UEs are randomly placed within 150m in relation to the target

base station.

It is assumed that each sector has a set of independently controlled ULAs in horizontal

orientation at the base station. Using this configuration, the elevation beamforming is controlled

by the sector’s tilt control, while the combination of ULAs allows for azimuth beamforming.

This array structure balances the flexibility and full-dimensional beamforming gain with the

simplicity and efficiency of more traditional arrays. Operators have traditionally preferred sec-

torization and tilt control as a means of beamforming [49, 50].

The neighboring cells’ interference in the target cell is primarily defined by simulating the

interference cells’ channels and assuming they beamform in the same azimuth direction as the

UE. This represents the worst-case setting where the interfering base station is beamforming

toward a user in the same direction as the target UE, thereby assuming the UE receives the

upper bound on the interference. It is, therefore, a worst-case assumption on the amount of

imposed interference by a base station without changing the physical arrays. RBs and time
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slots in different cells are assumed to be time-aligned but without pilot contamination, since it

is largely inconsequential for the array structure due to limited pilots needed without elevation

beamforming.

3.2.2 Channel modeling and spectral efficiency

It uses the QuaDRiGa [51] software to consistently generate UE channels in space and fre-

quency. This widely used statistical channel simulator generates spatially and correlated MIMO

channels from statistical models, including experimentally validated channel models using the

3GPP 38.901 UMi [52, 53] statistical models based on dual-slope path loss with significant

inter-parameter correlations. The process of generating channel coefficients is meticulously

presented in [54]. However, it is essentially the combination of generating random values, cor-

responding to the per-ray paths with specified distributions, correlating the values, and applying

path loss and shadowing effects described in the simulation code2. According to the 3GPP UMi

scenario [52, 53], it generates channel coefficients and correlates them across UEs in space and

time.

Cellular systems use the reference signal received power (RSRP) information for UE

assignment and resource allocation, calculating for a set of A clusters and Z rays with a path

loss PL and shadow fading SF for a base station b and UE u pair [54, Section 8.1]. So, the

RSRP is defined as

RSRPb,u = pu,bPL SF

|α0|2 +
A∑

a=1

Z∑
z=1

∣∣αa,z

∣∣2 , (3.1)

where pu,b is the transmission power for UE u at base station b, α0 is the line-of-sight (LOS) path

contribution, and αa,z is non-line-of-sight (NLOS) paths for each ray z and cluster a [54, Section

8.1].

Finally, the RSRP is calculated for each sector-UE pair with the UE reporting only the

strongest cell (the nominal serving cell) and the top-6 strongest interfering cells during mea-

surement reports to the base station [55]. Because of the sectorization, the top-6 interfering

cells cover the majority of the interference since all other cells are not aligned in the UE’s direc-

tion. Despite the existence of back lobes on the sector antennas, the interference is limited due

to the large front-to-back ratio and the tilt mechanism, which causes back lobes to be projected

upwards.
2https://github.com/Ryandry1st/QuaDRiGA-Simulation-Extensions

https://github.com/Ryandry1st/QuaDRiGA-Simulation-Extensions
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The SE for massive MIMO systems have different well-established capacity-like formulas

that allow us to estimate the SE in bit/s/Hz [56]. The capacity bound SE is defined as

SEUP
b,u (n) = log2

(
1 +

RSRPb,u

I interb,u + σ2

)
, (3.2)

where σ2 is the noise power and I interb,u is the inter-cell interference defined by

I interb,u =
∑
i ̸=b

max (6)(RSRPi,u), (3.3)

where max (6) is the set of the 6 largest elements. These equations assume all base stations

are beamforming in the direction of each UE, including out-of-cell users, with uniform power

control. The vast majority of the interference is accounted for by the top 6 interfering cells due

to the significant NLOS path loss seen in millimeter wave channels.

3.2.3 RAN slicing and radio resource scheduling

In a scenario with RAN slicing, the RRS should distribute the RBGs among the slices in

such a manner that the described slice intents are fulfilled, reserving radio resources to more

important slices (with higher priority) and sharing resources with less important ones when

possible. Each slice υ contains a set of Uυ UEs with similar traffic behavior and the same QoS

intents. A vector

Rn(n) = [R1(n), R2(n), . . . , RΥ(n)] (3.4)

defines the number of RBGs allocated for each slice in the step n, where Rυ(n) represents the

number of RBGs allocated to slice υ at step n. The RRS process obeys to

Υ∑
υ=1

Rυ(n) = R, (3.5)

where the sum of all RBGs distributed along with the slices is always equal to the total amount

of RBGs available R. Therefore, the main function of the RRS in a RAN slicing scenario is to

define Rυ(n) for each slice υ in a step n according to the network conditions to fulfill the slice

intents.

Since there is a specified number of RBGs R available to distribute among the slices, the

number of possible combinations of RBGs is limited and represented by

Rcomb(n) = [R1
comb(n),R

2
comb(n), . . . ,R

|Rcomb(n)|
comb (n)], (3.6)
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where Roption
comb (n) represents one of the possible combinations of RBGs and

∣∣Rcomb(n)
∣∣ =

(R+Υ−1)!
R!(Υ−1)!

represents the number of possible RBGs combinations for Rn(n) in each step n.

It is important to define network metrics to evaluate the RRS performance and propose

slice intents. Therefore, the served throughput ru(n) is the maximum throughput given in

megabits per step (Mbps) that a UE u can obtain, considering the number of RBGs allocated

and the spectral efficiency available

ru(n) =

⌊
(Ru

υ(n)/R)BSEu(n)

106 PS

⌋
PS, (3.7)

where Ru
υ(n) represents the number of RBGs from slice υ allocated to the user u by intra-slice

scheduling at step n, SEu(n) the spectral efficiency to the user u at step n, and PS the packet

size that is the minimum network’s transfer unit in bits.

The effective throughput eu(n) represents the data throughput sent over the network con-

taining data that were available in the buffer. It is defined as

eu(n) = min(ru(n), bu(n)), (3.8)

where bu(n) represents the data available in the buffer of UE u at step n. Hence the effective

throughput is always eu(n) ≤ ru(n) with eu(n) = ru(n) when bu(n) ≥ ru(n).

The buffer occupancy rate boccu (n) is defined as

boccu (n) =
bu(n)

bmax
, (3.9)

where bmax is the maximum UE buffer capacity. Packets are discarded every time the buffer

is full or the packet latency exceeds the maximum latency allowed lmax, so these packets are

included in the dropped data du(n) that represents the summation of the size of the dropped

packets in step n. The packet loss rate pu(n) is calculated over a window interval of w steps,

being defined as

pu(n) =


∑n

i=(n−w) du(i)

bu(n−w)+
∑n

i=(n−w) ιu(i)
, if n ≥ w∑n

i=1 du(i)

bu(1)+
∑n

i=1 ιu(i)
, if n < w

, (3.10)

where ιu(n) is the requested throughput by UE u at step n. The requested throughput depends

on the slice υ that the UE is associated with since the traffic behavior of UEs of the same slice

is similar. The requested throughput will be later defined for each slice.

The average buffer latency ℓu(n) represents the average time that a packet waits in the

buffer of the UE u, and it is defined as

ℓu(n) =

∑lmax

i=0 il
u
n(i)∑lmax

i=0 l
u
n(i)

, (3.11)
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with lun = [l0, l1, . . . , llmax ] where lun is a vector with size lmax + 1 representing the packets’

latency (the total number of TTIs the packets waited) on buffer for user u at step n, and llmax

represents the number of packets that have waited for lmax TTIs in the buffer.

The long-term served throughput gu(n) represents the average served throughput obtained

over w steps, and it is defined as

gu(n) =


∑n

i=(n−w) ru(i)

w
, if n ≥ w∑n

i=1 ru(i)

n
, if n < w

, (3.12)

and the fifth-percentile served throughput is also calculated over a window with w steps:

fu(n) =


P5%(ru(n−m), . . . , ru(n)), if n ≥ w

P5%(ru(1), . . . , ru(n)), if n < w

, (3.13)

where P5%(·) represents the fifth-percentile calculation for all values in the function argument.

3.2.4 Slice types and intents

The network slice metrics are defined as an average of the UEs’ metrics associated with a

specific slice υ. So, a specific metric SMυ for slice υ is represented as

SMυ =

∑Uυ
u=1 SMu

Uυ

, (3.14)

where SMu can represent the spectral efficiency, served throughput, effective throughput, buffer

occupancy, packet loss rate, requested throughput, average buffer latency, long-term served

throughput, or the fifth-percentile served throughput of a specific UE u. And Uυ represents

the total number of UEs associated with the slice υ. Each slice type has different intents,

so different metrics are used as requirements. This work assumes three different slice types:

eMBB, URLLC, and BE. The mMTC applications are out of the scope of this work due to the

high connection density (about one million devices per km2) that would be unfeasible to the

channel generation process used in this work. Therefore, the RRS should be optimized to fulfill

the slice’s intents as described by each slice type below.

3.2.4.1 eMBB slice

The UEs assigned to the eMBB slice require high throughput, regardless of the channel

conditions, and they do not have stringent latency and packet loss requirements. Ultra-high-

quality video streaming is an example of an eMBB application. It defines three main QoS
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intents to the eMBB slice: the average served throughput rembb(n) should be equal to or above

a specified minimum served throughput rreqembb. The average latency ℓembb(n) and the packet

loss rate pembb(n) should be kept below the required average latency ℓreqembb and packet loss rate

preqembb. The requested throughput from UEs u associated with eMBB slice ιembb
u (n) is a Poisson

distribution with mean µembb [45].

3.2.4.2 URLLC slice

The UEs assigned to a URLLC slice require low latency and ultra-reliable communica-

tion, usually characterized by a low packet loss rate. The throughput requested in a URLLC is

usually less than that required by eMBB. Some examples of URLLC applications are to monitor

an automation process and its remote control, which does not require great throughput but in-

stead requires high communication reliability and low latency to work well. It defines the same

network intents from eMBB to URLLC, with rurllc(n), ℓurllc(n), and purllc(n) representing the

URLLC served throughput, average latency, and packet loss rate, respectively. With rrequrllc, ℓ
req
urllc,

and prequrllc representing the URLLC intents for served throughput, average latency, and packet

loss rate, respectively. The requested throughput ιurllcu (n) from URLLC UEs u is defined as a

Poisson distribution with mean µurllc.

3.2.4.3 BE slice

The BE slice represents a slice with less priority than eMBB and URLLC [5], with no

stringent requirements for throughput and latency. Social network multimedia with intermittent

traffic are examples of BE applications. BE considers two main intents: the long-term served

throughput gbe(n) should be equal to or above the specified minimum throughput greqbe . Fur-

thermore, the fifth-percentile served throughput fbe(n) should be equal to or above a specified

minimum throughput f req
be . The BE UEs are activated or deactivated in each nbe steps with half

probability for each of them. The requested throughput for UE u from BE slice ιbeu (n) is defined

as a Poisson distribution with mean µbe if the UE is activated or zero otherwise.

The proposed method differs from related works [12–14] by defining intents with spe-

cific QoS requirements/goals as described in the TM Forum intent common model for parame-

ters [10]. Besides, it also differs from [15,16] by supporting other slice types with different QoS

intents associated with them (using a different combination of network metrics, for example)

due to the usage of the intent drift reward calculation (explained after in the Subsection 3.3.4)
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that defines the reward design to accomplish QoS intent goals to the RL agent.

3.3 Proposed intent-aware RRS using reinforcement learn-

ing

This work proposes an intent-aware RRS for a RAN slicing scenario using RL based on

the TM Forum IG1253 [9] and IETF request for comments (RFC) 9315 [34]. IETF and TM Fo-

rum have compatible intent definitions. The former defines intent as a set of operational goals

and outcomes provided in a declarative manner without specifying how to achieve or implement

them. TM Forum defines intent as the formal specification of all expectations, including require-

ments, goals, and constraints given to a technical system. Moreover, TM Forum also stands for

the use of formally defined models, meaning that intents would be expressed with formally de-

fined and complete semantics and vocabulary, avoiding ambiguities in the meaning of an intent

(the sender and receiver of intent must be in perfect agreement about its interpretation). There-

fore, even using declarative statements provided by human operators, these statements should

be translated for a common intent model as specified by the TM Forum in [10]. Both IETF

and TM Forum do not specify the translation mechanisms from declarative statements to QoS

intents or a common intent model. This proposal considers that intentions follow a common

intent model defined by the TM Forum [10], and property parameters are extracted, generating

the QoS intents described in Subsection 3.2.4.

Fig. 3.3 shows the proposed intent-aware system life cycle based on the IETF RFC [34]

applied to the RRS problem. The two main horizontal planes represent the difference between

functions related to fulfillment and assurance of intents. Intent fulfillment provides functions

and interfaces that allow network operators to communicate network intents and perform the

necessary action to ensure that intent is achieved. These include algorithms to determine proper

courses of action and optimize outcomes over time [34]. The intent assurance provides func-

tions and interfaces to validate and monitor if the network complies with intent, assessing the

effectiveness of actions taken as part of fulfillment.

Functions are also divided into three spaces: user, translation, and network operations

spaces. The user space involves functions that interface the network and the intent system with

the human user (network operator). The translation or intent-based system (IBS) space converts

the intent into a course of actions to be applied in the network operations infrastructure and the
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Figure 3.3: Proposed intent-aware RRS life cycle based on IETF intent-based system definition using

an RL agent. The system is composed of two closed loops: the inner intent control loop is responsible

for fulfilling the QoS intents for RAN slices obtained from the translate/refine function (without human

intervention). The outer intent control loop is responsible for updating the QoS intents based on new

interactions provided by the network operator.

translation from network metrics to the operator. Finally, the network operations space involves

the orchestration, configuration, and monitoring functions to effectuate actions in the network

and observe their effects. The whole process starts with the recognize/generate intent function,

which is responsible for obtaining intent from network operators. An example of an intent ex-

pressed in a natural language could be “a 4K video streaming service for a group of 10 users.”

The translate/refine function transforms the received declarative intent into a common intent

model [10] wherefrom slice type and QoS intents could be extracted, as specified in Subsec-

tion 3.2.4. This work does not implement the recognize/generate intent and the translate/refine

functions. Instead, it is assumed that intents are provided in a common intent model, wherefrom

QoS intents are extracted.

An RL agent performs the learn/plan, configure/provision, monitor/observe, and validate

functions in the proposed intent-aware RRS system. The RRS agent receives the QoS intents

and the network status in the learn/plan function, generating an inter- and intra-slice scheduling

action with the RBGs distribution among slices and UEs. In the configure/provision function,

the network applies the scheduler decision, updating the network status and metrics from slices

and UEs in the system following Section 3.2. In the assurance functions, the monitor/observe

function monitors the network, calculating the metrics described in Subsection 3.2.3. It gen-

erates an observation space used as a basis for the next set of functions to assess whether the

observed behavior complies with the expected behavior based on the intent.
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The validate function evaluates the effectiveness of intent fulfillment actions. It calculates

the intent drift over time. Intent drift occurs when a system originally meets the intent but,

over time, gradually allows its behavior to change or be affected until it no longer does or

does so in a less effective manner [34]. Therefore, based on QoS requirements, an intent drift

reward calculates how distant the system is from fulfilling its goals. Thus, every time an intent

drift occurs due to a network change (such as different traffic behaviors, channel variations,

or even ineffective actions made by the agent), the RL agent can automatically learn from its

designed intent drift reward to perform actions that will improve the intent fulfillment status.

The learn/plan, configure/provision, monitor/observe, and validate functions compose the inner

intent control loop that does not involve any human in the loop and is responsible for ensuring

that the RRS actions will guarantee the defined intents.

The outer intent control loop includes the analyze/aggregate function that aggregates the

network metrics, organizes the information by time, and enables analysis such as the QoS in-

tent fulfillment along time. The abstract function filters the most important metrics for each

slice and its QoS intents, e.g., the BE slice prefers long-term served throughput and the fifth-

percentile served throughput. Finally, the report function organizes the metrics per QoS intent

and generates informative graphs for the network operator.

3.3.1 Reinforcement learning agent

This work proposes an RL agent to perform inter-slice RRS operations jointly with a

round-robin scheduler performing intra-slice RRS operations illustrated in Fig. 3.1. It imple-

ments the learn/plan, configure/provision, monitor/observe and validate functions from Fig. 3.3.

The RL agent obtains an observation space with information about the network state (including

QoS intents), and interacts with the network environment using actions that define the number

of RBGs per slice and UEs. In an RL environment, the scenario can be described with an MDP

(S,A,RW, P, ρ0), where S is the set of all valid states, A is the set of all valid actions, RW

is the reward function, P is the transition probability function and ρ0 is the initial state distri-

bution of the system [36]. In a time step t, the agent in a state st takes action at and reaches

the next state st+1 receiving the reward RW(st, at). Rewards are numerical values given to the

agent’s actions to represent if the chosen action was good, and the agent aims to maximize the

long-term cumulative reward [36]. In this case, the reward represents the fulfillment of slices’

intents described in the common intent model.
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The agent follows a policy π(·|st) defined as a distribution of actions given the current

state st. When dealing with a great number of states and actions, the use of classical tabular

methods becomes prohibitively inefficient, with function approximators and model-free RL be-

ing implemented to deal with these problems [36]. Two major problems that emerge from these

techniques are the high sample complexity and sensitivity to hyperparameters, with off-policy

learning being used to improve sample efficiency. Off-policy methods can experience stability

and convergence issues when using continuous states and action spaces.

This work adopts the SAC RL method defined in [39], which optimizes a stochastic pol-

icy using an off-policy technique for continuous actions, forming a bridge between stochastic

policy optimization and DDPG approaches [57]. The SAC method improves exploration and

solves the stability issues presented by off-policy methods. Standard RL methods maximize the

expected sum of rewards. However, the SAC technique considers a more general maximum en-

tropy objective which favors stochastic policies by augmenting the objective with the expected

entropy:

J(π) =
T∑
t=0

E[RW(st, at) + ϱH(·|st)], (3.15)

where T is the horizon and ϱ indicates the relative importance of the entropy term to the reward.

The addition of the entropy term encourages exploration by assigning equal probabilities to

actions that have near the same values, avoiding repeatedly selecting a particular action (causing

high increases in their probabilities), allowing an improved exploration phase and better stability

for the SAC method in relation to other RL methods such as DDPG and A3C [39].

In addition to the aforementioned reasons for using the SAC RL method, the RRS problem

was defined with a continuous action space to deal with the different numbers of RBG available.

Therefore, the RL agent output range is the same, even changing the number of RBGs available

in the system. The SAC method is known for its stability and convergence when dealing with

continuous action spaces [39].

3.3.2 Observation space

Due to the limited information of the system at the base station, the observation space

On in a given step n is defined as a representation of the state st containing knowledgeable

information to be used in (3.15). The observation space is defined as

On = [r1, . . . , rΥ , s1, . . . , sΥ ,u1, . . . ,uU ], (3.16)
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being a vector composed of RAN slice intents vectors rυ defined in the SLA for each slice υ

describing the QoS requirements that each slice needs to fulfill, the slice metrics vector sυ, and

the UEs metrics vector uu. The slice intents vector rυ value depends on the slice type, with

rembb = [rreqembb, ℓ
req
embb, p

req
embb], rurllc = [rrequrllc, ℓ

req
urllc, p

req
urllc] and rbe = [greqbe , f

req
be ]. Slice metrics

vectors sυ and UEs metrics vectors uu are composed of the nine metrics defined for each slice

and UE: spectral efficiency, served throughput, effective throughput, buffer occupancy, packet

loss rate, requested throughput, average buffer latency, long-term served throughput, and the

fifth-percentile served throughput. As an example, the observation space size|On| for a scenario

with three slices, one of each slice type, and ten UEs is|On| = |rembb|+|rurllc|+|rbe|+3|sυ|+

10|uu| = 3 + 3 + 2 + 3 · 9 + 10 · 9 = 125.

An observation space with a high dimension size increases the time and complexity of

training the RL model, affecting the agents’ performance. Besides the observation space On,

a limited observation space Olim
n = [r1, . . . , rΥ , s1, . . . , sΥ ] is defined, without UEs metrics

since slices metrics are calculated as an average of their UEs metrics. Considering a limited

observation space for the same example used before, the observation space size is
∣∣Olim

n

∣∣ = 35.

Using a limited observation space, the state does not scale with the number of UEs connected

to the network at the cost of decreasing the network description used by the RL agent.

Both observation space and reward calculation (presented later in Subsection 3.3.4) use

batch normalization to reduce the dependence of gradients on the parameters’ scale or of their

initial values, facilitating the choice of hyperparameters, such as the learning rate, without risk

of divergence [58]. Therefore, handling inputs with different range values is more effortless and

speeds up the learning process.

3.3.3 Action space

The proposed method defines an action as a vector An in a given step n, which is defined

as An = [a1, a2, . . . , aΥ ], where aυ represents an action factor for slice υ with value in a range

[−1, 1] to match the output of the Gaussian distribution for continuous actions used, improving

the learning process [39]. After that, the agent’s chosen action An is mapped to one of the

Rn(n) options using the following

index(n) = argmin
option

d

Roption
comb (n),

(
R

An + 1∑Υ
i=1(ai + 1)

)
 (3.17)
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where d calculates the Euclidean distance between the options available at Rcomb(n) and RL

agent output An. Finally, the scheduling decision applied in the RL environment (network

system) is Rindex
comb(n).

3.3.4 Intent drift reward calculation and slice prioritization

The reward function RW(n) considers the slice QoS intents as a basis to define how close

the slice metrics are to fulfilling their intents, avoiding intent drifts in the validate function from

Fig. 3.3. So, the reward has one component for each slice type as defined in

RW(n) =
∑

i∈Υembb

RWembb,i(n) +
∑

i∈Υurllc

RWurllc,i(n) +
∑
i∈Υbe

RWbe,i(n), (3.18)

where the RWembb,i(n), RWurllc,i(n) and RWbe,i(n) represent the reward for eMBB, URLLC,

and BE slices with index i at step n. The objective of the SAC RL agent is to maximize

the reward function values, maximizing the fulfillment of slice intents. Therefore, the slices’

rewards are defined with zero values every time the network fulfills the intents. And negative

values when the network perceives intent drifts that, in this case, are characterized as a non-zero

distance between the obtained network metric and its QoS intent.

3.3.4.1 eMBB reward contribution

The served throughput RWr
embb(n), average buffer latency RW

ℓ
embb(n), and the packet loss

rate RW
p
embb(n) rewards compose the eMBB slice reward contribution

RWembb(n) = −(RW
r
embb(n) + RW

ℓ
embb(n) + RW

p
embb(n)), (3.19)

where the served throughput reward contribution is defined as

RW
r
embb(n) =


w

r
embb

rreqembb−rembb(n)

rreqembb
, if rembb(n) < rreqembb

0, if rembb(n) ≥ rreqembb

, (3.20)

with w
r
embb being a weight that defines the intent importance in relation to the other ones. The

average buffer latency reward contribution is

RW
ℓ
embb(n) =


w

ℓ
embb

ℓembb(n)−ℓreqembb

lmax−ℓreqembb
, if ℓembb(n) > ℓreqembb

0, if ℓembb(n) ≤ ℓreqembb

, (3.21)
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with w
ℓ
embb working as a weight for average buffer latency intent. The packet loss rate reward

contribution is

RW
p
embb(n) =


w

p
embb

pembb(n)−preqembb

1−preqembb
, if pembb(n) > preqembb

0, if pembb(n) ≤ preqembb

, (3.22)

with w
p
embb being a weight for packet loss rate intent.

3.3.4.2 URLLC reward contribution

The served throughput RWr
urllc(n), average buffer latency RW

ℓ
urllc(n), and packet loss rate

RW
p
urllc(n) rewards compose the URLLC slice reward contribution

RWurllc(n) = −(RW
r
urllc(n) + RW

ℓ
urllc(n) + RW

p
urllc(n)), (3.23)

where these contributions are defined in the same manner as eMBB reward contributions, having

its own weights wr
urllc, w

ℓ
urllc and w

p
urllc.

3.3.4.3 BE reward contribution

The long-term throughput RW
g
be(n) and fifth-percentile throughput RW

f
be(n) rewards

compose the BE slice reward contribution

RWbe(n) = −(RW
g
be(n) + RW

f
be(n)), (3.24)

where the long-term throughput is defined as

RW
g
be(n) =


w

g
be

greqbe −gbe(n)

greqbe
, if gbe(n) < greqbe

0, if gbe(n) ≥ greqbe

, (3.25)

with w
g
be being the long-term throughput intent weight. The fifth-percentile throughput is

RW
f
be(n) =


w

f
be

f req
be −fbe(n)

f req
be

, if fbe(n) < f req
be

0, if fbe(n) ≥ f req
be

, (3.26)

with w
f
be being the fifth-percentile throughput intent weight.

Due to the channel and requested traffic variation, the proposed system may not meet the

requirements defined in the QoS intents, even with the RL agent performing the best possible
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actions. Therefore, slice prioritization is implemented using weights. Each weight for a specific

QoS intent in a slice type defines the importance of its requirement for the other intents (includ-

ing all slices). The eMBB and URLLC receive higher weight values because they have higher

priority over the BE slice; hence, when the network cannot fulfill all intents, it should prioritize

the eMBB and URLLC intents. It is a good practice to keep the summation of all weights as

the value of one since it would keep a limited reward with the maximum reward value RW(n)

possible as 0 and the minimum as −1, facilitating the interpretation of a QoS fulfillment.

3.3.5 Baselines

Two RRS baselines were adapted for RAN slicing using RL from [12,14]. It is important

to emphasize that the related works contain different simulated/emulated scenarios assumptions,

and they do not provide their RRS implementation codes. Therefore, the reward calculation

from these baselines [12,14] was implemented, focusing on the inter-slice RRS for comparison

with the proposed solution. Moreover, an adaptation of the PF algorithm [22] for RAN slicing

that considers each slice as a UE is implemented.

3.3.5.1 PF scheduling

It keeps a balance between trying to maximize the total network throughput and pro-

viding all slices with a minimal level of service. The PF action can be defined as Apf
n =

[a1, a2, . . . , aΥ ], where action aυ is

aυ =
min(SEυ(n)B, boccυ (n)bmax)

eυ(n)
(3.27)

and eυ(n) represents the average effective throughput obtained by UEs in the slice υ. Finally,

the action factors are mapped to one of the Rn(n) options using (3.17), generating an action

Rindex
n (n).

3.3.5.2 Sched-slicing scheduling

Adapted from [12], utilizing a PPO RL agent to perform inter-slice scheduling and RR

algorithm for intra-slice scheduling. It utilizes the same action and observation as the proposed

agent but uses the reward function from [12]

RWss(n) = rembb(n) + fbe(n)− boccurllc(n)b
maxPS, (3.28)
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that maximizes the served throughput rembb(n) for eMBB and the fifth-percentile served through-

put fbe(n) for BE, and minimizes the buffer occupancy boccurllc(n) for URLLC.

3.3.5.3 Lower-level scheduling

Adapted from [14] lower-level control policy, utilizing a DDPG RL agent to perform

inter-slice scheduling and RR for intra-slice scheduling. The DDPG agent uses the same action

and observation space as the proposed agent, but the reward function is the same from [14],

which is

RWlls(n) =
∑
υ∈Υ

wℓ
υ exp(−ℓυ(n)) + wp

υ exp(−pυ(n)) + wr
υrυ(n), (3.29)

where weight values w were defined in [14] as w
ℓ
embb = 1, wp

embb = 0.5, wr
embb = 2 × 10−4,

w
ℓ
urllc = 2, wp

urllc = 1, wr
urllc = 4× 10−4, wℓ

be = 0.2, wp
be = 0.1 and w

r
be = 0.25× 10−4.

3.4 Simulation results

The simulations use the Python programming language, with the Stable Baselines3 li-

brary [59] implementing the RL algorithm and normalization and the Optuna library [60] im-

plementing hyperparameter optimization. The communication network parameters used in the

simulations are presented in Table 3.1.

3.4.1 Hyperparameter optimization, training, and testing

There are epmax = 50 episodes available that contain nep = 2000 steps each, where each

step is equivalent to 1ms, with eptrain = 45 episodes used for training and eptest = 5 episodes

used for testing the RL agent’s performance. The number of epochs ec = 10 defines how many

times the RL agent should train over the entire set of training episodes. Therefore, the total num-

ber of steps in the training process is defined as ntrain = eptrainnepec = 45 · 2000 · 10 = 900000

steps. The hyperparameter optimization process uses the same episodes from training but with

a different number of epochs, totalizing 500 thousand steps per hyperparameter combinations

trial (when the trial is not pruned), totalizing 100 trials. Table 3.2 shows the optimized hyper-

parameters obtained using the full and limited observation space after the optimization process.

During the training, in every 10000 steps, the RL model is evaluated over 5 episodes,

collecting the average normalized reward obtained over these episodes. This evaluation process
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Table 3.1: Simulation parameters from network communication scenario.

Parameter: Value:

# eMBB slices 1

# URLLC slices 1

# BE slices 1

# eMBB UEs (Uembb) 4

# URLLC UEs (Uurllc) 3

# BE UEs (Ube) 3

RBGs available (R) 17

Window interval (w) 10

Bandwidth (B) 100MHz

Carrier frequency (fc) 28GHz

# transmission antennas (Nt) 64

# receive antennas (Nu) 1

Maximum buffer size (bmax) 8.38Mbytes (1024 packets)

Packet size (PS) 8192 bytes

BE Steps (nbe) 200

Table 3.2: Optimized hyperparameters obtained from optimization process for full and limited observa-

tion space.

Hyperparameter Full obs. Space Limited obs. Space

Discount factor 0.9 0.9

Learning rate 0.00281 0.00228

Batch size 128 128

Buffer size 105 105

Learning starts 0 0

Training Frequency 1 32

Polyak coefficient 0.05 0.08

Network architecture Medium (256x256) Small (64x64)
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helps assess the RL model performance during the training and choose the best model, which

is the model with the biggest average normalized reward obtained during the evaluation. The

test process uses the best model obtained during the training process with a total of ntest =

eptestnep = 5 · 2000 = 10000 steps. Training and tests are executed with both full and limited

observation space.

The simulation follows the 3GPP specifications, including {12, 19} clusters and {20, 20}

rays per cluster for LOS and NLOS cases, respectively [54]. It obtains channel realizations

every Ts = 1ms, which is the same value for TTI, with simulation episodes that last Te = 2 s.

The UEs are randomly placed within 150m in relation to the target base station in the target

cell, moving in a random direction with a speed
∣∣N (10, 3)

∣∣ms−1. The UE can turn its direction

with a probability Pturn = 0.2 in each second.

Each UE has the requested throughput behavior defined by its slice type. However, the

intensity of traffic is defined according to moderate and heavy traffic. With moderate traffic

parameters defined as µembb = 15Mbps, µurllc = 1Mbps, and µbe = 15Mbps. And heavy

traffic parameters as µembb = 25Mbps, µurllc = 5Mbps, and µbe = 25Mbps. The simulation

always starts using moderate traffic parameters. In every 200 steps, the traffic switches between

moderate and heavy traffic with half probability for each one. Table 3.3 defines the slice intents

for each slice and traffic type, so every time the traffic switches between moderate and heavy

traffic, the slice intents also switch. As defined previously in the description of BE UEs, the BE

slice intents are all zero when their UEs are deactivated.

Table 3.4 establishes the reward weights for each slice’s intent used in the reward calcu-

lation of Equation (3.18). These weight values were manually defined according to the slice

intents’ importance concerning other intents (similarly to [14]). For instance, the URLLC slice

intents for the packet loss rate and buffer latency received the highest values because URLLC

applications could be associated with critical applications, such as autonomous driving and fac-

tory automation [61]. The served throughput intent is more important than the latency and

packet loss rate in the eMBB intents. Moreover, both eMBB and URLLC applications received

higher weight values in relation to the BE, which has a low priority concerning the other slice

types. These weight values could change according to the network operators’ policies.
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Table 3.3: Slice intents for moderate and heavy network traffic.

Slice type Intents Moderate traffic Heavy traffic

eMBB:

Served throughput (rreqembb) 10Mbps 20Mbps

Avg buffer latency (ℓreqembb) 20ms 20ms

Packet loss rate (preqembb) 0.2 0.2

URLLC:

Served throughput (rrequrllc) 1Mbps 5Mbps

Avg buffer latency (ℓrequrllc) 1ms 1ms

Packet loss rate (prequrllc) 1× 10−5 1× 10−5

BE:
Long-term thr. (greqbe ) 5Mbps 10Mbps

Fifth-perc. Thr. (f req
urllc) 2Mbps 5Mbps

Table 3.4: Slice intent weights used in the reward calculation.

Intent weight Weight values

eMBB served throughput
(
w

r
embb

)
0.2

eMBB latency
(
w

ℓ
embb

)
0.05

eMBB packet loss rate
(
w

p
embb

)
0.05

URLLC served throughput
(
w

r
urllc

)
0.1

URLLC latency
(
w

ℓ
urllc

)
0.25

URLLC packet loss rate
(
w

p
urllc

)
0.25

BE long-term thr.
(
w

g
be

)
0.05

BE fifth-perc. Thr.
(
w

f
be

)
0.05
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3.4.2 Results

The simulation generates results using the test episodes with full and limited observation

space. For conciseness, the network metric results show only the limited observation space. It

also presents a reward comparison with the baselines and SAC RL agents using full and limited

observation space. Fig. 3.4 shows the average requested throughput for each of the slices for

episode 46, where each slice type defines the network traffic generated following its defined

characteristics in Subsection 3.2.4.
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Figure 3.4: Average requested throughput for each slice in the test episode number 46 alternating be-

tween heavy and moderate traffic. In every 200 steps, the BE UEs can be activated or deactivated with

half probability.

The two main QoS intents described in Table 3.3 for BE slice are long-term and fifth

percentile throughput, and Fig. 3.5 and 3.6 show the respective results for these metrics. The

long-term throughput result in Fig. 3.5 shows that the SAC RL agent learned to adapt its al-

location behavior following QoS intents defined in Table 3.3, avoiding the allocation of radio

resources when there is no requested traffic to the BE UEs (in accordance with Fig. 3.4). There

are periods in which SAC agent is below the intent of 10Mbps. However, intent unfulfillment

cannot be analyzed alone since the main SAC agents’ goal is to maximize the reward so that it

can sacrifice some QoS intent fulfillment in favor of the most important ones. Fig. 3.6 shows

the result for the fifth-percentile throughput to the UEs BE, which presents similar results to

the long-term throughput with the SAC RL agent being near the intents of 2 and 5Mbps for
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Figure 3.5: BE results for long-term throughput in the test episode number 46. QoS intents for long-term

throughput are 5Mbps and 10Mbps for moderate and heavy traffic.
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Figure 3.6: BE results for fifth-percentile throughput in the test episode number 46. QoS intent for

fifth-percentile throughput are 2Mbps and 5Mbps for moderate and heavy traffic.
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moderate and heavy traffic, respectively.

Fig. 3.7 shows the cumulative distribution function (CDF) of the served throughput for

UEs from eMBB and URLLC slices. The eMBB intents to the served throughput are 10 and

20Mbps for moderate and heavy traffic, and the URLLC intents are 1 and 5Mbps for moderate

and heavy traffic. Fig. 3.7 indicates that almost all values obtained using the proposed SAC RL

for the eMBB served throughput are above the QoS intents since the throughput for eMBB is

one of the intents with higher priorities. Analyzing the URLLC, the SAC also keeps most traffic

above the minimum intents. The Lower-level baseline prioritized the URLLC and BE, providing

much more throughput than needed (as shown in Fig. 3.5 for BE) and keeping the eMBB slice

with almost zero served throughput even with the definition of higher weight values for eMBB

than for BE in Subsection 3.3.5. The small weight value for throughput compared to packet loss

and latency weights justifies this behavior and better network conditions for BE UEs in the test

set. In contrast, the Sched-slicing baseline prioritized the eMBB and URLLC slices, providing

high served throughput values in relation to their QoS intents.
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Figure 3.7: CDF of the served throughput for eMBB and URLLC slices in the test episode number 46.

URLLC and eMBB slices’ intents define a served throughput of 1Mbps and 10Mbps, for moderate

traffic. For heavy traffic, URLLC is 5Mbps, and eMBB is 20Mbps. The proposed RL agent provided

the served throughput defined in the intents for both URLLC and eMBB.

Fig. 3.8 shows the average buffer latency result for both eMBB and URLLC slices with

an intent of 20ms to the former and 1ms to URLLC. The Lower-level baseline results were
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removed for eMBB due to the high latency value obtained (about the maximum latency allowed

of 100ms) due to the small served throughput (Fig. 3.7) and the high packet loss rate that will

be presented later. For the URLLC, the Lower-level scheduling, PF, and RL SAC methods

keep the latency lower than required over the simulation, with only the Sched-slicing baseline

obtaining latency results above 1ms in the period from 0ms to 800ms. When analyzing the

results for the eMBB slice, all baselines fulfill the intent of 20ms with the exception of the

Lower-level baseline.

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

0

1

2

3

4

5

6

La
te

nc
y 

(m
s)

eMBB, PF
eMBB, SAC
eMBB, Sched-slicing [9]
URLLC, PF
URLLC, SAC
URLLC, Lower-level [11]
URLLC, Sched-slicing [9]

Figure 3.8: Average buffer latency for eMBB and URLLC slices in the test episode number 46. URLLC

and eMBB slices’ intents define an average buffer latency of 1ms and 20ms, respectively, for moderate

and heavy traffic. The RR did not fulfill the latency intent to URLLC, and the RL agent fulfilled both

URLLC and eMBB latencies with the smallest latencies obtained in relation to other baselines.

The packet loss rate is presented in Fig. 3.9. All baselines and the SAC agent keep a

zero packet loss rate, fulfilling the QoS intent to URLLC UEs. When evaluating eMBB slice

that has higher requested traffic by UEs, both the baselines and the SAC agent cannot keep the

packet loss rate below 0.2 (specified in the intents for eMBB) most of the time. Moreover, the

SAC RL agent presents better performance among the baselines with the lowest packet loss

rate for eMBB. The Lower-level baseline presented a high packet loss rate that corroborates

the preference for the URLLC and BE slices, as previously stated in the served throughput and

latency analysis.

Equation (3.18) defines the intent drift reward value as a distance to fulfill the QoS intents
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Figure 3.9: The average packet loss rate for eMBB and URLLC slices in the test episode number 46.

All baselines fulfilled the URLLC intent. URLLC and eMBB slices’ intents define a packet loss rate of

1× 10−5 and 0.2, respectively, for moderate and heavy traffic. When considering the eMBB slice, none

of the agents could fulfill the packet loss intent during all the simulation time, but the RL agent provided

the best performance.

weighted by their importance/priorities defined in Table 3.4. It is challenging to assess the SAC

RL and the baseline agents’ performance in a multi-objective scenario with many intents to

fulfill, so the defined reward is an important metric to evaluate the distance to satisfy the QoS

intents specified by the operator. Fig. 3.10 shows the cumulative reward obtained for the five

test episodes using the baselines and the proposed SAC RL agent. The Lower-level baseline

obtained the worst result due to its inability to prioritize the eMBB slice. The Lower-level

and Sched-slicing agents obtained a lower reward than the proposed SAC RL and PF agents

due to the designed reward aiming to maximize specific network metrics instead of learning to

fulfill the slice intents. The SAC RL agent outperformed the baselines over all the test episodes,

fulfilling the slices’ intents or being near to fulfilling them compared to the baselines. However,

in the slice intent result, the proposed agent performed worse in specific moments and metrics.

However, considering all the intents, the agent balanced which intents to fulfill when more radio

resources were needed to meet all slices.

Fig. 3.10 also makes a comparison of the proposed agent using full and limited observa-

tion space. It shows that even using less information, the limited observation space obtained
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Figure 3.10: The cumulative reward for the five test episodes using SAC RL and other baseline agents,

considering limited and full observation space. The proposed RL agent outperformed the baselines using

full and limited observation space.

about the same performance as the full observation space. With a limited observation space,

the number of variables in the observation space becomes independent of the number of UEs in

the system, making the system scalable to support a greater and variable number of UEs in the

scenario. With a reduced number of variables in the observation space, the hyperparameters’

optimization process uses a four times smaller neural network architecture than the architecture

used in the full observation space (as shown in Table 3.2), decreasing the computational costs

and increasing the processing speed.

In case the number of slices increases to 5 (2 eMBB, 2 URLLC, and 1 BE), the number of

variables using the limited observation space would be|On| = 2|rembb|+2|rurllc|+|rbe|+5|sυ| =

2 · 3 + 2 · 3 + 2 + 5 · 9 = 59 that is still less than half the number of variables in the full

observation space, as discussed in Subsection 3.3.2. Another aspect to consider is that even

with a high number of slices in the whole network, the number of RAN slices supported per

base station tends to be limited by its available channel capacity. For instance, in the presented

simulation scenario, the requested QoS intents are not fulfilled throughout the simulation period,

as presented in Fig. 3.10 (when the reward is not zero), indicating that it is not recommended

adding another RAN slicing in this base station to compete with the slices that already exist to

avoid intent drifts.



Chapter 4

Intent-based RRS using MARL for

various network scenarios

In the previous chapter, an intent-aware RRS was proposed to deal only with fixed net-

work scenarios containing eMBB, URLLC, and BE slice types. Here, this chapter presents an

enhanced intent-based RRS using MARL to perform inter- and intra-slice scheduling in RAN

slicing for various network scenarios. Unlike the proposed method in the previous chapter,

here, the proposed method considers network scenarios that comprehend combinations of 10

slice types, channel trajectories, number of active slices and UEs, and UE characteristics. The

proposed method utilizes an RL agent for inter-slice scheduling, distributing radio resources

among slices. It uses a MARL with shared parameters to the intra-slice schedulers, where each

slice has its intra-slice scheduler with an RL agent, selecting a scheduling algorithm among

round-robin, proportional-fair, and maximum throughput to distribute the assigned radio re-

sources among the slice UEs. First, the intent-based RRS learns to fulfill the slice intents of

the high-priority slices and then learns to meet other regular slices. Prioritizing high-priority

slices is implemented in the reward mechanism without needing weight optimization for each

network scenario in opposition to the method presented in the previous chapter, eliminating the

need for weight optimization when dealing with different network scenarios. In this chapter,

the method described in Chapter 3 will be cited as [40].

A realistic simulator was developed to assess the effectiveness of the proposed method

under varying conditions and network configurations. For channel generation, this simulator

uses QuaDRiGa, which creates spatially consistent channels. The developed simulator also

supports various traffic models and UEs characteristics according to the types of slices. The
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proposed method and baselines are tested in different network scenarios to assess their capacity

to deal with various applications and intents. There are three different evaluation scenarios: (i)

Training several agents, each one specialized in handling a specific network scenario; (ii) Train-

ing a single agent on all network scenarios; and (iii) Using transfer learning when dealing with

unseen network conditions. The first approach evaluates whether specialized RRSs can handle

unseen channel conditions. The second approach determines the generalization capabilities of

RRSs trained on a large set of network scenarios. Finally, the third approach understands if

the RRS can use experiences gathered from different network scenarios to learn how to handle

unseen network scenarios. The developed software is publicly available to facilitate future work

and comparisons.

The main contributions in this chapter are summarized as follows:

• Design and development of an intent-based RRS using an RL agent handling inter-slice

scheduling, and MARL with shared parameters to implement intra-slice schedulers. The

proposed method prioritizes high-priority slices without optimizing predefined weights

for each network scenario.

• The proposed method handles various network scenarios, fulfilling their intents and pri-

oritizing the high-priority slices when needed.

• Improvement of the intent-drift reward method proposed in [40] to observe intent drift

variations when intents are fulfilled and avoid future intent violations.

• Explore generalization for diverse network scenarios and the use of previous network

scenario experiences in training for unseen network scenarios.

• Evaluate the proposed method against baselines using various network scenarios with

multiple slice types, number of active slices and UEs, UEs characteristics, and channel

trajectories.

• The simulation code is publicly available to facilitate reproducibility and comparison with

other methods1.

This chapter is organized as follows: Section 4.1 describes the related works, emphasizing

the RL RRS methods for RAN slicing. It also compares the main contributions of this proposed

1https://github.com/lasseufpa/intent_radio_sched_multi_slice

https://github.com/lasseufpa/intent_radio_sched_multi_slice
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method concerning previous work. Section 4.2 presents the adopted communication system

model and RRS system in a scenario with RAN slicing. Section 4.3 presents the proposed

intent-based RRS using a MARL agent to perform inter- and intra-slice allocation. Section 4.4

presents the results obtained in three different evaluation scenarios that assess the capacity of

the proposed method to deal with varying network scenarios.

4.1 Related work

The ability of data-driven approaches to learn models directly from the data produced by

the network is extremely valuable when considering RAN functions. The RAN is a data-rich

environment that collects data through radio measurements as well as user devices and core

network [11]. Data-driven RRS methods usually utilize RL techniques that can learn from large

amounts of data efficiently and represent an unsupervised learning method that does not require

correct pre-computed labels [6].

The employment of RRS using RL techniques for RAN slicing was approached in re-

lated works [12–19, 40]. The solutions proposed in [12–15] focus on maximizing/minimizing

network metrics, such as maximizing the achieved throughput of eMBB slices and minimizing

buffer occupancy or latency of URLLC slices. For example, work [12] proposes an O-RAN

compliant RL PPO method for both inter- and intra-slice schedulers. Considering the types

of slices of eMBB, URLLC, and mMTC. The inter-slice scheduler using RL is responsible

for selecting the number of RBGs for each slice while it also selects the intra-slice schedul-

ing algorithm for each slice among the options round-robin, proportional-fair, and maximum-

throughput. The implemented reward function, responsible for guiding the RL agent learning

process, focuses on maximizing the throughput rate to the eMBB slice and the transport blocks

to the mMTC slice while minimizing the buffer size to the URLLC slice.

The problem with RRS methods focusing on the minimization/maximization of network

metrics is the unclear slice objectives. There is no specification of slice intents through network

requirements that enables verifying whether the intents have been fulfilled. For example, when

the RRS method in [12] maximizes the throughput rate to the eMBB slice, it is impossible to

verify if the technique is reaching its maximization objective because there is no specification

of a minimum throughput rate to serve the eMBB slices. Therefore, the throughput rate value

obtained by the method varies according to the network conditions. It is difficult to verify
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whether the maximization objective is met since there is no optimum method for comparison.

Moreover, when considering intent-based systems based on TM Forum [9], these minimiza-

tion/maximization objectives are incompatible with the intent’s definition of clearly specifying

the requirements the intent-based system should fulfill.

The prior work [16–19] consider RL RRSs with reward functions based on the SLA sat-

isfaction rate. These methods specify the slice objectives using QoS metrics in a SLA. The

work [18] considers the maximization of spectral efficiency while meeting throughput and la-

tency requirements in a scenario with voice over LTE (VoLTE), Video, and URLLC slices.

In [19], the presented method considers the latency requirements for two slices with different la-

tency requirement values specified in the SLA while minimizing the number of allocated RBGs,

reducing energy consumption. In [17], it considers the eMBB and mMTC slices. the eMBB

requirements are the maximum average queue per guaranteed bit rate (GBR) and non-GBR, the

authorized and compliant capacity for GBR in RBs per subframe. The mMTC slice consid-

ers the maximum delay per user. The results are assessed in four different network scenarios

that comprehend a maximum of five slices with different combinations of the same eMBB and

mMTC slice types. In [16], it defines the throughput and latency requirements for each slice

in a network scenario with five slices representing five different applications: messaging, app,

audio, video, and best effort.

Although the related works [16–19] provide mechanisms for dealing with the slice re-

quirements defined in a SLA, they are still insufficient to provide support for slice intents when

considering an intent-based system. In [16–18], the SLA violations are represented as a binary

value indicating the fulfillment or not of a requested QoS requirement. However, there is no

indication of how far the RRS agent is from fulfilling their requirements, which is an essential

point of intent-based systems [9, 34], usually represented by an intent drift [40], since it gives

the RRS agent the possibility to assess whether a given action improves/deteriorates the current

slice condition. In addition, it enables the report of a more accurate status to the intent owners

interested in the slice intent fulfillment. Another critical aspect left out is the slice intent priori-

tization to cope with high-priority slices in scenarios where the experienced channel capacity is

insufficient to fulfill all the requested slice intents.

The previous work [40] (presented in Chapter 3) proposes the first intent-aware RRS

using RL for RAN slicing with support for eMBB, URLLC, and BE slice types. It focuses on

fulfilling the slice intents defined in a common intent model [10] and allows for changing the
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slice intents without retraining the RRS agent. The proposed intent-drift reward offers the RL

agent a distance to fulfill the intents, which allows learning to minimize the distance even when

the available radio resources are insufficient to fulfill all the requested intents. It also provides

a weight-based prioritization for slice intents to protect high-priority intents in scenarios with

high concurrency for radio resources.

Despite the support introduced for slice intents in [40], it does not investigate the gener-

alization capabilities of the proposed method to different network scenarios. The UEs charac-

teristics and mobility pattern do not change in the episodes, and the trained RL policy can only

deal with variations in the slice intents of the same slice types predefined in the simulation. In

addition, using weights to define intent priorities requires joint training and optimization to find

the best weight combinations for each network scenario. Therefore, whenever the method is

implemented in a different network scenario, the predefined weights must change to reflect the

new intent priorities. The proposed intent-drift reward accounts only for the distance to fulfill

requirements when slice intents are not fulfilled. However, there is no indication of degrad-

ing performance in fulfilled slice intents (helping to prevent future slice violations). Finally,

the presented solution uses a fixed round-robin algorithm in the intra-slice scheduler instead of

exploring different strategies that could enhance the RRS performance.

The main problems related to the support of slice intents in [12–19, 40] are summarized

below:

• The methods focusing on maximizing/minimizing specific network metrics [12–15] do

not provide sufficient mechanisms to deal with slice intents since it is impossible to de-

fine when a given slice intent is fulfilled. Moreover, these maximization/minimization

objectives do not comply with the TM forum definition of intents [9].

• Although related works [16–19] provide RRS methods based on the SLA satisfaction

rate with QoS requirements, these mechanisms offer incomplete support to slice intents

since they do not provide a metric to observe intent performance and visualize improve-

ment/degradation over time. In addition, they also do not provide prioritization mecha-

nisms to protect high-priority slice intents when the amount of radio resources at a given

moment of the network conditions is insufficient to fulfill all the slice intents.

• The previous work [40] defines an intent-aware RRS using RL for RAN slicing. Besides

its support to slice intents through the intent-drift reward and weight-based priorities, it
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lacks support for different network scenarios since it requires redefining the weight values

for each intent in each network scenario, and there is no clear direction of how adapting

these methods for different combinations of slice types other than the predefined ones.

• None of the related works [12–19, 40] discuss the usage of the proposed methods in

different network scenarios in which the slice types, number of active slices, number

of UEs in the slices, UEs characteristics, and channel generation varies. There is no

investigation about the generalizability of the presented methods to different network

scenarios or even the use of previously learned experiences in network scenarios that

were not seen during the training.

Concerning the highlighted issues above, it is proposed an intent-based RRS for RAN

slicing utilizing MARL. It improves the calculation of intent-drift reward from [40] to refine vi-

olation prevention and design a RRS with homogeneous entries and outputs to support different

network scenarios. It investigates the generalizability of the proposed method and baselines in

network scenarios not seen in the training. It also explores the transfer learning from different

network scenario experiences to fine-tune the agent to deal with unseen network scenarios.

4.2 Communication system model and problem formulation

To simplify notation, in the following, a single-input and single-output (SISO) system is

assumed with a single base station operating at carrier frequency fc and providing service to

υ = 1, 2, 3, . . . ,Υ RAN slices. The base station has u = 1, 2, 3, . . . , U UEs connected at the

same time, where each UE u has a single antenna and is assigned to a specific slice υ. Each

slice υ contains a set of Uυ UEs. Despite the SISO assumption, the proposed model is general

and applies to other RF transmission schemes, such as MIMO, without changes in the proposed

system.

The base station has a B MHz bandwidth, divided into G RBs, and RBs are grouped

into R RBGs that is considered the minimum radio resource allocation unit in the scheduling

system. The TTI t is measured in ms and represents the minimum time unit considered in the

scheduling process. In each TTI, the scheduler allocates all RBGs in a specific simulation step

n. Each step n takes t ms with tn = t · n representing the time from step 1 to n.

The RRS system with RAN slicing performs inter- and intra-slice scheduling. The inter-

slice scheduler distributes the available R RBGs to the active slices Υact, and the intra-slice
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scheduler is responsible for distributing the RBGs assigned by the inter-slice to the slice UEs.

A MARL system is proposed to perform the inter- and intra-slice scheduling in a system with

RAN slicing. It assumes an uplink RRS formulation where the base station defines the RBGs

each UE uses, but it also applies for downlink.

4.2.1 Channel modeling

A TDD transmission protocol is used that receives pilots from UEs sent through the uplink

to obtain the base station’s CSI. Each base station obtains a perfect channel estimation for each

UE. UEs have their spectral efficiency values varying with time and frequency, hence different

from [12, 40, 46, 47] where the same UE’s spectral efficiency value is assumed for all RBGs.

The channel simulation utilizes QuaDRiGa software [51] to consistently generate UE

channels in space and frequency. It generates spatially and correlated channels from statisti-

cal models, including experimentally validated channel models using 3GPP 38.901 UMa [53]

statistical models based on dual-slope path loss with significant inter-parameter correlations.

Furthermore, given that the base station allocates the g-th RB to the u-th UE, the signal-to-

noise ratio (SNR) perceived by the UE can be expressed as follows

γu,g =
αu pu,g |hu,g|2

σ2
u

, (4.1)

where pu,g is the allocated transmit power to the UE u in the g-th RB, αu is the effect of path

gain and shadowing experienced by the u-th UE, hu,g is the effective channel for UE u in the

g-th RB, and σu is the noise power experienced by the u-th UE. This way, the spectral efficiency

SEu,g(n) to RB g and UE u is defined as

SEu,g(n) = log2(1 + γu,g). (4.2)

This work employs the LOS and NLOS using the QuaDRiGa channel model, as documented

in [62].

4.2.2 Radio resource scheduling with RAN slicing

The main objective of a RRS in a RAN slicing scenario is to distribute the RBGs among

the slices and UEs to fulfill the SLA defined through a group of slice intents, giving high priority

to the most important slices through resource reservation and avoiding, or ideally eliminating,
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any slice intent violation. The number of RBGs allocated by the inter-slice scheduler for each

slice in a simulation step n is represented in the vector

Rinter(n) = [R1(n), R2(n), . . . , RΥ(n)], (4.3)

with Rυ(n) representing the number of RBGs allocated to slice υ at step n.

For simplicity, it is assumed that all RBGs are allocated during the scheduling process.

Therefore, the RRS obeys to
Υ∑

υ=1

Rυ(n) = R. (4.4)

In case the slice υ does not have sufficient data to use all the allocated RBGs, the extra RBGs

are reserved for the slice but not used. These allocation decisions can be easily converted to the

3GPP specification to the radio resource management (RRM) policy ratio [63].

The inter-slice scheduler defines the number of RBGs Rυ(n) to the slice υ at step n, and

then the intra-slice scheduler allocates this Rυ(n) RBGs available among the Uυ slice UEs in

the vector

Rintra
υ (n) = [R1

υ(n), R
2
υ(n), . . . , R

Uυ
υ (n)], (4.5)

where Ru
υ(n) represents the number of RBGs allocated to the UE u in the slice υ at step n. The

intra-slice scheduler also obeys to

Uυ∑
u=1

Ru
υ(n) = Rυ(n). (4.6)

The RRS performance is evaluated considering the network metrics defined in the pro-

posed slice intents. The served throughput is defined as the maximum throughput in megabits

per step (Mbps) that could be achieved by a UE u in the slice υ taking into account the number

of RBGs Ru
υ(n) allocated and its spectral efficiency values SEu(n)

ruυ(n) =

⌊
B
∑

g∈Gu SEu,g(n)

PSυ G 106

⌋
PSυ, (4.7)

where Gu represents the RBs allocated to a UE u, PSυ is the packet size in bits for UEs in the

slice υ. It does not consider the MCS from each RB in the throughput calculation for clearness.

The data available to send in the UE buffer limits the served throughput. Therefore, the

effective throughput euυ(n) represents the data throughput sent over the network

euυ(n) = min(ruυ(n), bu(n)), (4.8)
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with bu(n) representing the data available of UE u at step n in Mbit. As a consequence, the

effective throughput is always euυ(n) ≤ ruυ(n) with euυ(n) = ruυ(n) when bu(n) ≥ ruυ(n).

The buffer occupancy rate boccu (n) is defined as

boccu (n) =
bu(n)

bmax
υ

, (4.9)

where bmax
υ is the maximum UE buffer capacity in slice υ. Packets are discarded whenever the

buffer is full or the packet latency exceeds the maximum allowed latency lmax
υ . For this reason,

these packets are accounted for in the dropped data du(n) that represents the size of the packets

dropped in step n. The packet loss rate pu(n) is calculated over a window interval of w steps

puυ(n) =


∑n

i=(n−w) du(i)

bu(n−w)+
∑n

i=(n−w) ι
u
υ(i)

, if n ≥ w∑n
i=1 du(i)

bu(1)+
∑n

i=1 ι
u
υ(i)

, Otherwise
, (4.10)

where ιuυ(n) is the requested throughput by UE u in slice υ at step n. The requested throughput

depends on the slice υ that the UE is associated with since the traffic behavior of UEs of the

same slice is similar.

The average time that packets have waited in the buffer of UE u is represented as

ℓυu(n) =

∑lmax
υ
i=0 il

u
n(i)∑lmax

υ
i=0 l

u
n(i)

, (4.11)

where lun = [l0, l1, . . . , llmax
υ

] is a vector with size lmax
υ + 1 representing the packets’ latency on

buffer for user u at step n, and llmax
υ

represents the number of packets that have waited for lmax
υ

TTIs in the buffer.

Slice metrics average the UEs metrics associated with the target slice. For example, the

effective throughput eυ(n) for slice υ is the average effective throughput from slice υ UEs Uυ.

4.2.3 Slice intents and requirements

Related works [12–19,40] usually define three different slice types based on 5G use cases:

eMBB, URLLC, and mMTC. This definition hides the diversity of the application inside each

of these use cases. For example, the eMBB use-case can contain applications such as video

streaming and cloud gaming, where their network requirements are very distinct. An application

running a 4K video streaming on Netflix has a throughput requirement of 15Mbps [64]. At the

same time, a Nvidia cloud gaming application has a throughput requirement of 45Mbps and

also a latency requirement of 40ms latency for the best experience [65]. The adopted RRS
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needs to deal with these applications differently to fulfill their intents instead of grouping them

in the same slice and fitting them with identical objectives.

This work proposes a definition of the slice type coupled with end-user applications, and

then the RRS needs to deal with different network slice intents. The main goal is to handle these

slice intents independently of the network’s combination of active slice types. To accomplish

that, each type of slice has to define its intents based on three main network metrics: effective

throughput, buffer latency, and packet loss rate. Each slice type must have one or more intent

definitions, but the intent requirements do not need to consider the same metrics since each ap-

plication has its characteristics. The diversity of applications is essential to ensure the proposed

RRS scheme can deal with different types of slices and combinations of active slices.

Each slice υ can have up to three different slice intents in each simulation step n: the

effective throughput intent requirement ereqυ in Mbps, the buffer latency ℓreqυ in ms, and the

packet loss rate preqυ . Each slice υ has a binary active intent indicator for effective throughput

m
e
υ, buffer latency m

ℓ
υ, and packet loss rate m

p
υ, which indicates if the slice considers the target

network metric in its intents. Therefore, the slice υ intents are fulfilled every time the following

conditions are achieved:

∑Uυ
u=1 e

u
υ(n)

Uυ

≥ ereqυ , if me
υ = 1∑Uυ

u=1 ℓ
u
υ(n)

Uυ

≤ ℓreqυ , if mℓ
υ = 1∑Uυ

u=1 p
u
υ(n)

Uυ

≤ preqυ , if mp
υ = 1

(4.12)

Whenever one or more slice intents are not fulfilled, the slice SLA accounts for a violation.

The RRS function in an intent-based system with RAN slicing is to prevent/minimize the intent

violations.

4.3 Proposed Intent-based RRS agent using MARL

This work proposes an intent-based RRS for a scenario with RAN slicing using MARL

based on TM Forum IG1253 [9] definitions for an intent-based network. TM Forum defines

intent as the formal specification of all expectations, including requirements, goals, and con-

straints given to a technical system. Furthermore, intents should be expressed with formality

and complete semantics and vocabulary, avoiding ambiguities in the meaning of an intent (the
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Figure 4.1: An intent-based system with an RRS intent handler responsible for receiving slice intents

and network information to generate schedule actions to fulfill the provided intents. The RRS intent

handler is based on MARL.

sender and receiver of intent must be in perfect agreement about its interpretation).

Fig. 4.1 shows an intent-based system focusing on the RRS for RAN slicing. The intent

manager in business operations receives a high-level intent that can contain the slice type de-

scription and generates an intent for service operation containing requirements about service

KPIs and customer experience metrics. The intent manager in the service operation receives

the previous intent and creates intents to the RAN and core network intent managers so that the

generated intents could satisfy the intent for the service operation. Finally, in the RAN domain,

the intent manager receives the RAN intents and coordinates their different functions, such as

the RRS, to fulfill the intent for RAN requirements. Communication between intent managers

is possible through a common intent model [10] that specifies the intent description and reports

using common vocabulary and semantics.

This work proposes an RRS intent handler that receives the intent for RRS (following the

common intent model [10]) specifying the intents for each slice to be fulfilled by the RRS op-

erations. The RRS intent handler is responsible for receiving the intent for RRS and generating

radio scheduler decisions to fulfill the intents or minimize the number of violations in scenarios

where the radio resources available are insufficient to meet all the slice’s intents. The intent

translation and observation format function is responsible for translating the received slice in-

tents to the intent information represented in the effective throughput intent requirement ereqυ ,

the buffer latency ℓreqυ , and the packet loss rate preqυ described in Subsection 4.2.3. In addition, it

also creates a vector containing network metrics and intent fulfillment information to the MARL

scheduler.

The proposed MARL scheduler utilizes the intent information and network metrics to
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generate a scheduler decision indicating the RBGs to allocate for each slice’s UE aiming at

fulfilling the slice intents. The RRS intent handler applies the scheduler decision in the network

scenario, providing updated network information due to the scheduler action. Finally, the report

metrics function is responsible for calculating network metrics to report to the RAN intent

manager, provide information about the slice’s intent fulfillment, and also provide network

metrics to the observation format used as input in the MARL scheduler.

4.3.1 Intent-based RRS using MARL

This work proposes a MARL method to perform inter- and intra-slice scheduling in a

RAN slicing scenario similar to [40]. The inter-slice scheduler provides an action representing

the number of RBGs for each slice, and the intra-slice scheduler selects an algorithm method

among round-robin, maximum-throughput, and proportional-fair [22]. The proposed MARL

agent aims to fulfill the intents of active slices in the network, considering different scenario

combinations, including variations in the number of slices, type of slices, and number of UEs

associated with each slice.

The proposed method for RRS implements an inter-slice scheduler utilizing a PPO RL

method with a dedicated policy. In contrast, intra-slice schedulers utilize a MARL PPO with

parameter sharing (shared policy) [66] as depicted in Fig. 4.2. Concerning the RL inter-slice

scheduler, it formulates the system as an MDP using a tuple (S,Ainter,RWinter, P, ρ0), where

S is the set of all valid states, Ainter is the set of all valid actions for the inter-slice scheduler,

RWinter is the reward function, P is the transition probability function, and ρ0 is the initial

state distribution of the system [36]. In a time step t, the agent in a state st takes action at

and reaches the next state st+1 receiving the reward RWinter(t). Rewards are numerical values

given to the agent’s actions to represent if the chosen action was effective, and the agent aims to

maximize the long-term cumulative reward [36]. In the inter-slice case, the reward represents

the fulfillment of the slices’ intents. The inter-slice agent follows a policy π(·|st) defined as a

distribution over actions given the current state st.

A PPO RL method is adopted for being a well-established method to deal with continuous

control tasks and the stability and reliability of trust-region methods with simpler implemen-

tation [37]. More specifically, it adopts the PPO implementation using a clipped surrogate

objective

Lclip
t (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (4.13)
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where the probability ratio

rt(θ) =
πθ(at|st)
πθold(at|st)

(4.14)

represents the current policy πθ changes in relation to the old policy πθold. The estimated ad-

vantage function At utilizes generalized advantage estimation [37], measuring how much better

or worse a particular action is compared to the agent’s average performance. It clips the rt(θ)

value outside the interval [1 − ϵ, 1 + ϵ], where ϵ is an hyper-parameter. It takes the minimum

between the clipped and unclipped objective, so the final objective is a lower bound on the un-

clipped objective. Clipping the objective between the defined interval improves the stability and

reliability when updating the policy values.

Finally, the PPO total loss is

Ltotal(θ) = Et

[
−Lclip

t (θ) + c1L
VF
t (θ)

]
, (4.15)

which includes the value function loss LVF
t (θ) and its coefficient c1 [37]. The total loss repre-

sents the overall objective that the training process seeks to minimize.

The method proposed for the intra-slice scheduler utilizes MARL in which there is one RL

agent for each slice υ totaling Υ intra-slice agents. The MARL is formulated using a partially
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observable Markov decision process (POMDP) defined by a tuple [67]

(Υ, S, {Aintra
υ }, {Ointra

υ }, {RWintra
υ }, T, O), (4.16)

where Υ represents the total number of slices in the system, which is equal to the number of

intra-slice agents, {Aintra
υ } is a set of actions for each agent from slice υ, {Ointra

υ } is a set of

observations for each agent from slice υ, {RWintra
υ } is a set of reward signals for each agent

from slice υ, T and O are the joint transition and observation models. The parameter-sharing

approach is used since the intra-slice scheduler agents are homogeneous, allowing them to share

the parameters of a single policy [67]. This allows the policy to obtain the experiences of all

agents simultaneously, but it is still different agents since they receive different observations.

The PPO clipped surrogate objective when using shared parameters to the intra-slice scheduler

is

Lclip
t (θ) =

1

Υ

Υ∑
υ=1

Êt

[
Âυ

t min(rt(θ), clip(rt(θ), 1−ϵ, 1+ϵ))
]
. (4.17)

A network scenario is defined as a specific combination of active slices, slice types, num-

ber of UEs assigned for each slice, UE characteristics, and the different UEs channel trajec-

tories. Fig. 4.3 illustrates all the possible combinations of network scenario definition. The

variation in the number of UEs per slice was omitted to simplify the visualization. Related

works [12–19, 40] usually consider a unique network scenario to train and test the designed

methods. Considering these training/testing conditions, these methods can deal with any chan-

nel episode if they keep the same network scenario characteristics intended for. Due to the high

diversity of slice types (applications), training and testing the RRS methods under different net-

work scenarios is essential to evaluate their ability to deal with various applications and fulfill

slice intents.

When using an RL method to deal with different network scenarios, the observation space,

the action space, and the reward function of the RL agent need to be able to deal with this

variation since the number of entries in the neural network is fixed [68]. Related works [12–19,

40] usually consider a set of different variables per slice type, making it impossible to use these

methods for different combinations of network scenarios, since a different number of active

slices and slice types would lead to a variable number of entries in the RL agent, requiring a

change in the number of entries in the inputs of the neural network or the reward calculation.

When based on state-of-art RL techniques such as [37, 39], using the same RL RRS

method for different network scenarios requires a homogeneous input per slice type where each
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slice type should be represented by the same set of variables, keeping the same position in the

entries of the neural network. Therefore, the same neural network structures from RL agents

could be used for different network scenarios. Moreover, the contribution of the slice to the

reward function must be calculated similarly to enable the RL agent to understand the differ-

ent goals needed for each network scenario without changing the RL structure. The proposed

method obeys these characteristics, enabling its use in various network scenarios.

4.3.2 Intent-drift calculation

An intent drift occurs when a system initially meets the defined intent but gradually, over

time, allows its behavior to change or be affected until it no longer does or does so in a less

effective manner [34]. Related work [40] represents the intent drift as a value between −1 and

0 with 0 representing the fulfilled intention and −1 representing the worst performance (most

considerable distance from the current metric value and the requirement). These intent drift

values show how distant the RL agent policy is from fulfilling the requirements. However, it

also lacks information on performance degradation when intents are still fulfilled. For example,

a slice with an effective throughput intent of ereqυ = 10 Mbps might receive 11Mbps in a given

moment. However, changes in network conditions can slightly decrease effective throughput,

leading to an unfulfilled intent in the future. The representation of intent drift in [40] does not
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account for this performance degradation that could give the RL agent important information

about avoiding future intent violations.

This work represents the intent drift as a distance to fulfill the intent requirements (sim-

ilarly as [40]) and as a representation of degrading metrics even if the slice intents are still

fulfilled. In addition to the distance to fulfill the intent requirements, it also accounts for the dis-

tance between the requirement and an overfulfillment state, represented as a percentage above

the requirement. Fig 4.4 shows an example of the intent drift values for an effective through-

put intent with a requirement of 100Mbps and an overfulfillment rate of 10%. Every time the

effective throughput is under the specified requirement of 100Mbps, the intent drift accounts

for a value between −1 and 0. If effective throughput is a value between 100Mbps and 110

(over-fulfilled throughput), a value between 0 and 1 is taken into account. In case the effective

throughput is greater than 110Mbps, the intent drift is 1. In step n, the intent drift is 1 since it is

receiving an effective throughput equal to or greater than 110Mbps. However, in step n+1, the

effective throughput decreased in value but still met the intent requirements of 100Mbps. The

intent drift can provide information about performance degradation even in fulfilled intents so

the RL agent can avoid unsafe fulfillment zones that can lead to unfulfilled intents in the future.

0 100 110 MbpsMetric value:

Step n

Intent-drift value: -1 0 1

Step n + 1

Figure 4.4: Intent-drift example for an effective throughput intent with a requirement of 100 Mbps and

an overfulfillment rate of 10%. In step n, the served throughput is equal to or greater than the requested

intent requirement. In step n+ 1 the served throughput decreases but the intent still fulfilled.

The intent drift is calculated for three intent requirements: effective throughput, buffer
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latency, and packet loss rate. The intent drift for effective throughput ieu in a simulation step n

for UE u is

ieu(n) =


eu(n)−erequ

erequ q
e
u(n)

, if eu(n) < erequ (1 + q
e
u(n))

and boccu (n) > 0

1, Otherwise

, (4.18)

where the over-fulfilled requirement indicator qeu(n) is

qeu(n) =


ζ, if eu(n) ≥ erequ

1, Otherwise
. (4.19)

The overfulfillment rate ζ is a constant between 0 and 1, representing the maximum over-

fulfillment value considered for network metrics. Therefore, there are three different cases to

be covered. The first represents a scenario where the effective throughput requirement is not

met. The q
e
u(n) assumes the value one and i

e
u(n) becomes a negative value between −1 and

0 representing the distance to fulfill the requirement. The second case occurs when the intent

requirement is satisfied and below the over-fulfilled value erequ (1 + q
e
u(n)), then q

e
u(n) assumes

the value ζ , and i
e
u(n) computes a positive value between 0 and 1. The last case occurs when

the effective throughput exceeds the overfulfillment value or the buffer of the UE u is empty

(indicating that the throughput requirement could not be fulfilled since there is not enough data

available in the buffer to be sent).

The intent drift for buffer latency i
ℓ
u in a simulation step n for UE u is calculated as

iℓu(n) =


ℓrequ −ℓu(n)

lmax
u −ℓrequ −q

ℓ
u(n)

, if ℓu(n) > ℓrequ (1− q
ℓ
u(n))

1, Otherwise
, (4.20)

where the over-fulfilled requirement indicator qℓu(n) is

qℓu(n) =


lmax
u − ℓrequ (1 + ζ), if ℓu(n) ≤ ℓrequ

0, Otherwise
. (4.21)

Equations 4.18 and 4.20 are similar since they represent distances to fulfill the intent

requirement or a distance between the fulfillment and overfulfillment cases. However, the intent

drift for buffer latency considers that the buffer latency needs to be smaller than the requirements

rather than greater than the effective throughput.



77

Finally, the intent drift for packet loss rate ipu in a simulation step n for UE u is calculated

similarly to the intent drift for the buffer latency since it also requires to have a packet loss rate

below a given requirement:

ipu(n) =


prequ −pu(n)

1−prequ −q
p
u(n)

, if pu(n) > prequ (1− q
p
u(n))

1, Otherwise
, (4.22)

where the over-fulfilled requirement indicator qpu(n) is

qpu(n) =


1− prequ (1 + ζ), if pu(n) ≤ prequ

0, Otherwise
. (4.23)

The slice intent drift for the effective throughput ieυ, buffer latency i
ℓ
υ and packet loss rate

i
p
υ are defined as the average of the intent drift of the UEs assigned to the slice υ

ixυ(n) =

∑Uυ
u=1 i

x
u(n)

Uυ

, for x = e, ℓ or p. (4.24)

4.3.3 Observation space

4.3.3.1 Inter-slice scheduler

The assumption of dealing with different network scenarios becomes a challenge to the

RL design since the observation space needs to represent different network slice-type combi-

nations and their intents, as depicted in Fig. 4.3. The proposed MARL agent utilizes a fully

connected neural network for each RL agent with a fixed input size, and to deal with different

network scenarios, it represents each type of slice by the same set of variables. The interchange-

ability of the observation space is ensured by representing the different types of slices with the

same number of variables. Therefore, the number of required inputs in the RL agent is always

the same, even when changing the number of active slices or slice types in the network. It also

considers the same metric position for each slice in the observation space, ensuring that each

input of the RL agent is always connected to the same metric. Therefore, the meaning of each

input is kept the same even when changing the network scenario.

The RL observation space is defined as

Ointer = [sinter1 , sinter2 , . . . , sinterΥ ] (4.25)



78

where each sinterυ represents the metrics for slice υ as a vector with common slice metrics rep-

resented by:

sinterυ = [me
υi

e
υ,m

ℓ
υi

ℓ
υ,m

p
υi

p
υ,m

e
υ,m

ℓ
υ,m

p
υ, pυ,

ereqυ

ereqmax
,
Uυ

Umax

,
SEυ

SEmax

], (4.26)

with active intent indications me, ℓ or p
υ representing a binary value which indicates if the intent

requirement is active for slice υ. For example, in case me
υ = 1, mℓ

υ = 0, and m
p
υ = 1, slice υ has

intents for effective throughput and packet loss rate, but not buffer latency. The high-priority

indication pυ is a binary value that indicates if the slice has a high priority (value 1), usually

associated with critical applications.

The number of variables in the observation space depends on the maximum number of

slices Υ allowed in the system. The proposed method assumes a fixed maximum number of

slices and, hence, a fixed number of entries in the observation space. So, it is possible to handle

a variable number of active slices from 2 to Υ. It fills the vector sinterυ with zero values every

time a slice s is not active. The intent drift values iυ(n) give information about which slice

intents are unfulfilled, fulfilled, and over-fulfilled to the RL agent, enabling a better distribution

of the RBs. The active intent indicator mυ(n) shows which intents are enabled for each slice

if the slice does not consider all of them. The iυ(n) is a normalized value between −1 and 1

independent of the magnitude values of the effective throughput, buffer latency, and packet loss

rate, but it still has to provide these magnitude indications so the RL agent can differentiate slice

types. Therefore, the normalized effective throughput requirement, the number of active UEs,

and the average spectral efficiency value are included in the observation space.

Considering a fully connected neural network with multilayer perceptron used in the

RL algorithms, each entry in the observation space has a group of parameters whose values

are changed during the RL training according to the location of the entries in the observa-

tion space [68]. Therefore, if an RL agent is trained with an observation space Ointer =

[sinter1 , sinter2 , sinter3 ] with 3 slices, it may not be able to handle an observation space Ointer =

[sinter3 , sinter2 , sinter1 ] during the test phase even if the same group of slice information is fed to the

neural network due to changes in the location of the entries, therefore representing a different

state.

When dealing with multiple network scenarios in which the maximum number of slices

and entries in the neural network is fixed, the entry of each slice sinterυ in the observation space

Ointer can be associated with different types of slices. Consequently, the RL agent needs to

be trained not only in the group of slice types but also in a different combination of the same
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group to increase the chances of performing well during the test phase. Taking into account the

maximum number Υtype of types of slices and the maximum number of slices Υ in the network,

the total number of combinations is (Υtype + 1)Υ . The slice entries sinterυ are ordered in the

observation space Ointer according to the requested throughput. Therefore, the total number of

combinations becomes
(
Υ+Υtype−1

Υ

)
, representing a reduction of 100 ×

(
1−

(Υ+Υtype−1

Υ )
(Υtype+1)Υ

)
. If

considering, for example, a maximum number of slices Υ = 5 and slice types Υtype = 10, the

reduction using ordered entries is 98.757%.

4.3.3.2 Intra-slice scheduler

The observation space to the intra-slice scheduler is

Ointra
υ = [me

υi
e
υ,m

ℓ
υi

ℓ
υ,m

p
υi

p
υ,m

e
υ,m

ℓ
υ,m

p
υ,
Rυ(n)

R
,
ereqυ

ereqmax
,
Uυ

Umax

, boccυ (n),
SEυ

SEmax

], (4.27)

where boccυ (n) = [bocc1 (n), bocc2 (n), . . . , boccUυ
(n)] and SEυ = [SE1, SE2, . . . , SEUυ

]. The observa-

tion space includes the inter-slice scheduler decision on the number of allocated RBs to the slice

Rυ(n). The intra-slice scheduler’s performance depends on the inter-slice scheduler’s decisions

since the number of RBs to distribute among the slice’s UEs is limited by the inter-slice sched-

uler. Therefore, using the inter-slice scheduler decisions in the intra-slice observation space is

important so the intra-slice scheduler can compute the best action given the RBs constraints.

4.3.4 Action space

4.3.4.1 Inter-slice scheduler

The action space of the inter-slice scheduler Ainter has one output per slice

Ainter = [ainter1 , ainter2 , . . . , ainterΥ ], (4.28)

where ainterυ represents an action factor for slice υ with value in a range [−1, 1] to match the

output of the Gaussian distribution for continuous actions used [39].

The proposed agent uses a mask for invalid actions [69] to avoid selecting invalid actions

since the number of active slices in a given step n varies over time. Using the PPO RL method

with a continuous action space, the output of the policy network is a probability distribution

over the values of the action factor [37]. Taking into account the maximum number of slices Υ

in the system, there are Υ mean and standard deviation values. Every time a slice υ is inactive,
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its associated mean and standard deviation values are set to −1 and 0. Hence, its action factor

ainterυ will receive a value of −1, and as a consequence, the number of allocated RBs to the slice

υ will be zero.

The number of allocated RBs is

R(n) = χ

(
(Ainter + 1)R∑Υ

υ=1 a
inter
υ + 1

)
, (4.29)

with χ representing a function that rounds fraction numbers to integers and checks if all RBGs

were allocated. If the summation of RBGs for all slices is larger/smaller than the number of

available RBGs R, it adds/removes one RBG for each slice starting from the slice with the

highest number of assigned RBGs to the slice with the smallest number until the number of

allocated RBGs is equal to R. In case
∑Υ

υ=1 a
inter
υ + 1 = 0, the available RBGs R are equally

distributed among the active slices.

4.3.4.2 Intra-slice scheduler

The action space of the intra-slice scheduler Aintra
υ for slice υ has a unique output

Aintra
υ = [aintraυ ], (4.30)

where aintraυ represents an action factor for slice υ with an integer value from 0 to 2, which is

mapped for round-robin, proportional-fair or maximum throughput algorithms. Therefore, the

agent proposed for the intra-slice scheduler is responsible for selecting a scheduler algorithm to

allocate the RBs assigned by the inter-slice scheduler to their UEs.

4.3.5 Reward function

4.3.5.1 Intra-slice scheduler

The reward calculation to the intra-slice scheduler from slice υ is

RWintra
υ (n) = min(ieυ(n), i

ℓ
υ(n), i

p
υ(n)). (4.31)

The proposed intra-slice scheduler minimizes the distance to fulfill its intents in each step n

when one of the slice intents is not fulfilled. If all the slice intents are fulfilled, the RL maximizes

the intent-drift values. The intra-slice scheduler only has information about the associated target

slice υ. Therefore, it tries to maximize its reward value independently of other slice statuses.
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4.3.5.2 Inter-slice scheduler

The main objective of the RL agent to the inter-slice scheduler is to avoid/minimize slice

intent violations by fulfilling the slice requirements defined in Equation 4.12. Keeping the intent

drift values i
e
υ(n), i

ℓ
υ(n) and i

p
υ(n) between 0 and 1. In opposition to the intra-slice scheduler

(Equation 4.31), the inter-slice scheduler has a global view of all slices and coordinates the

RBGs allocation to avoid/minimize intent violations. The inter-slice reward RWinter(n) function

is

RWinter(n) =



∑
s∈Υact

RWintra
υ (n)∑

s∈Υact
1

, if cvact = 0∑
s∈Υ

hpu
RWintra

υ (n)∑
s∈Υ

hpu
1

− 1, if cvhp < 0∑
s∈Υactu

RWintra
υ (n)∑

s∈Υactu
1

, Otherwise

, (4.32)

where cvgr =
∑

s∈Υgr
min(min(i

e
υ, i

ℓ
υ, i

p
υ), 0) with gr representing the active act or high-priority

hp slice group. The Υactu and Υhpu represent the active and high-priority slices with unful-

filled intents. The high-priority slices receive an indication pυ = 1 in the observation space as

explained in 4.3.3.1.

When all network slice intents are met, the reward function considers the average of all

active slices, resulting in a positive value between 0 and 1. Suppose that there are one or more

high-priority slices with unfulfilled intents. In that case, the reward assumes the average reward

value of the unfulfilled high-priority slices minus one, resulting in a negative value between

−1 and −2. If there are no high-priority slice violations, the reward accounts for the average

reward among the slices with unfulfilled intents (it does not include high-priority slice intents),

obtaining a value between 0 and −1. Every time a high-priority slice intent is not fulfilled, the

proposed reward calculation accounts for only the high-priority intent values. Therefore, the

proposed agent learns to fulfill the high-priority slices first and only after trying to reduce the

distance to meet the requirements of the regular slices.

4.3.6 Baselines

Two RRS baselines for RAN slicing using RL from [12,40] were adapted. It is important

to emphasize that the related works contain different simulated/emulated scenario assumptions.

Therefore, this work implemented the reward calculation from these baselines [12,14] RRS for

comparison with the proposed solution. Moreover, it also implements an adaptation of the PF

and RR algorithms [22] using multi-agent for RAN slicing that considers each slice as a UE.
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4.3.6.1 Multi-agent round-robin

The multi-agent round-robin (MARR) allocates the same number of RBGs to all the slices

in the inter-slice scheduler. Each intra-slice scheduler equally distributes their available RBGs

among the slice UEs.

4.3.6.2 Multi-agent proportional-fair

The multi-agent proportional fair (MAPF) balances maximizing the total network and

provides all slices with minimal service. In the inter-slice scheduler, the PF action is

Ainter
mapf = [ainter1 , ainter2 , . . . , ainterΥ ], (4.33)

where the action factor ainterυ is

ainterυ =
boccυ (n)bmax

eυ(n)
(4.34)

and eυ(n) represents the average effective throughput obtained by UEs in the slice υ. Finally,

the action factors are mapped to the number of RBGs using Equation 4.29. The intra-slice

schedulers use the same process to allocate the RBGs to the slice UEs but consider the UE

metrics instead of the slice metrics.

4.3.6.3 Intent-aware RRS

Utilize an adaptation from [40] (presented in Chapter 3) that was originally designed to

deal with eMBB, URLLC and BE slices with pre-specified intents. Since it considers a varying

number of slices and intents in different network scenarios, the observation space, action space,

and reward calculation were adapted to support until Υ slices in the system, utilizing intents for

effective throughput ereqυ , buffer latency ℓreqυ and packet loss rate preqυ instead of the pre-specified

intents for eMBB, URLLC and BE. The observation space is

Ointer
ia = [sinter1 , sinter2 , . . . , sinterΥ ] (4.35)

where each sinterυ represents the metrics for slice υ as a vector with common slice metrics rep-

resented by:

sinterυ = [ereqυ , ℓreqυ , preqυ , SEυ(n), rυ(n), eυ(n), b
occ
υ (n), ℓυ(n), pυ(n), ιυ(n)]. (4.36)
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It utilizes the same action space as the proposed method described in Subsection 4.3.4.1.

The reward function of the inter-slice scheduler is

RWinter
ia (n) =

∑
s∈Υact

∑
x∈[e,ℓ,p] wυ min(ixυ(n), 0)∑

s∈Υact
wυ

, (4.37)

with wυ being a weight that defines the importance of intents from slice υ concerning other

slices. It defines wυ = 2 for high-priority slices and wυ = 1 for regular slices. These weights

were manually assigned in [40], but it is unclear how to define them when considering more

than one network scenario. The high-priority slice intent weights were defined as double the

regular slice intent values.

4.3.6.4 Sched-slicing RRS

Utilize the adaptation from the original method [12] presented in [40], utilizing a PPO

RL agent to perform inter-slice scheduling and RR algorithm for intra-slice scheduling. This

method was designed to deal with eMBB and URLLC slices through the minimization and max-

imization of network metrics. Since this work considers varying slices and intents, each slice

is classified as eMBB or URLLC to apply the specified method. Therefore, it considers slices

with a buffer latency requirement smaller than 20ms as URLLC and slices with throughput

requirements bigger than 20Mbps as eMBB. All slices that meet both conditions are classified

as eMBB and URLLC.

The same observation (Subsection 4.3.3.1 and action space (Subsection 4.3.4.1) were

utilized as the proposed RRS but using the reward function

RWinter
sched(n) =

∑
υ∈Υembb

(rυ(n))−
∑

υ∈Υurllc

(boccυ (n)bmax
υ PSυ), (4.38)

that maximizes the served throughput rυ(n) for eMBB slices and minimizes the buffer occu-

pancy boccυ (n) for URLLC.

4.4 Simulation results and analysis

The proposed MARL agent was implemented with shared parameters using Ray Rllib [70]

and RL baselines using the Stable Baselines3 library [59]. The RRS simulation was imple-

mented using Python [71] and the simulation of the wireless channel using the QuaDRiGa sim-

ulator [62]. Table 4.1 shows the default hyperparameter values used for the proposed MARL

method and RL baselines using PPO RL method.
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Table 4.1: PPO RL hyperparameter values.

Hyperparameter Value

SGD minibatch size 64

Learning rate 3 · 10−4

Batch size 2048

Gamma 0.99

Number SDG iterations 10

Lambda 0.95

Clip parameter ϵ 0.2

Entropy coefficient 0.01

Value function loss coefficient 0.5

Gradient clip 0.5

Network architecture [64, 64]

4.4.1 Network scenario generation

A network scenario is defined as a combination of a specific number of active slices and

slice types. The number of active slices for a network scenario Υsce is a random value between

Υmin = 3 and Υ = 5. The network scenario generator randomly selects the slice indexes

to use. For example, given a network scenario with Υsce = 4 active slices, the slice indexes

used could be 1, 3, 4, and 5 while the slice index 2 is inactive. In addition, Υhp
sce represents the

number of high-priority slices in the scenario. Each active slice has a unique slice type randomly

selected from the options in Table 4.2. Each slice type has a high-priority indication and at least

one associated intent for served throughput, latency, and reliability. The simulation parameters

indicate the characteristics of the slice type UEs: buffer size, maximum buffer latency, message

size, mobility, and requested traffic. The requested traffic for each UE of a specific slice type is

a Poisson distribution with a mean equal to µυ. Finally, the number of UEs assigned for each

slice type is randomly selected between the minimum and maximum number of UEs defined in

Table 4.2.

The channel simulator QuaDRiGa [62] is used for channel episode generation for each

network scenario (as depicted in Fig 4.3). It considers a single-input, single-output transmission
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Table 4.2: Intents and simulation parameter characteristics for each slice type. The values were adapted

from the indicated references.

Slice type High-priority
Intents Simulation parameters

Served throughput ereqυ Latency ℓreqυ Reliability preqυ UE’s buffer size UE’s max buffer latency Packet size Mobility Requested Traffic µυ Min. number UEs Max. number UEs Ref

Control case 2 Yes - 50 ms 99.999999% 10240 packets 100 ms 8192 bits 0 Km/h 5 Mbps 4 5 [72]

Monitoring case 1 No 10 Mbps - - 10240 packets 100 ms 8192 bits 72 Km/h 10 Mbps 4 5 [72]

Robotic surgery case 1 Yes 20 Mbps 20 ms 99.9999% 1024000 packets 40 ms 16000 bits 0 Km/h 30 Mbps 4 5 [72]

Robotic diagnosis No 15 Mbps 20 ms 99.999% 1024000 packets 40 ms 640 bits 0 Km/h 15 Mbps 4 5 [72]

Medical monitoring No 10 Mbps 100 ms 99.9999% 10240 packets 200 ms 8000 bits 0 Km/h 10 Mbps 4 5 [72]

UAV app case 1 Yes 100 Mbps 200 ms - 1024000 packets 400 ms 65536 bits 30 Km/h 100 Mbps 2 4 [73]

UAV control non-VLOS Yes 20 Mbps 140 ms 99.99% 10240 packets 300 ms 65536 bits 30 Km/h 20 Mbps 4 5 [73]

VR gaming No 100 Mbps 10 ms 99.99% 1024000 packets 20 ms 65536 bits 0 Km/h 100 Mbps 2 4 [72]

Cloud gaming No 50 Mbps 80 ms - 10240 packets 160 ms 65536 bits 0 Km/h 50 Mbps 2 5 [65]

Video streaming 4K No 30 Mbps - - 10240 packets 100 ms 65536 bits 0 Km/h 30 Mbps 2 5 [64]

Table 4.3: Network and channel generation parameters used in the simulation.

Parameters Range

Carrier frequency (fc) 2.6GHz

Bandwidth (B) 100MHz

Transmission power 100Watts

Window interval (w) 10

RBs available (G) 135

RBGs available (R) 27

3GPP scenario 38.901 Urban Macro-cell

Max. # of slices (Υ) 5

Max. # of UEs (U ) 25

Overfulfillment rate (ζ) 0.1

system with a unique omnidirectional antenna to the base station and UEs. A channel realization

is obtained in every Ts = 1ms, which is the same value considered to the TTI, with simulation

episodes that last Te = 1 s. The UE position is randomly defined in a range from 35 to 250m

from the base station, moving in a random direction with speed defined according to the UE’s

slice type, but always respecting the minimum and maximum distance from the base station.

The UEs can turn their direction with a probability Pturn = 0.5 in each 2ms or in case they

reach the maximum distance from the base station to avoid off-limit movements. Table 4.3

shows the simulation parameters considered in the RRS system and the channel generation.

There are 200 randomly generated network scenarios. The first 10 network scenarios

contain 100 different channel episodes each. The other 190 network scenarios have one channel

episode each. Therefore, the simulation contains 10 ∗ 100 + 190 = 1190 RL episodes available
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for training and testing. There are three simulation scenarios to evaluate the proposed method:

Training for a single network scenario, generalizing for multiple network scenarios, and transfer

learning for unseen network scenarios.

4.4.2 Training for a single network scenario

The proposed RL agent and baselines are trained and tested in the same network scenario.

It uses the first 10 network scenarios that each contains 100 different channels. Therefore, for

each network scenario containing epmax = 100 episodes, the agents train over eptrain = 60 and

utilize epval = 20 for validation and eptest = 20 for testing. In the training phase, it utilizes

ec = 10 epochs, representing the number of times the RL agent trains throughout the training

dataset. Each episode contains nep = 1000 steps. Therefore, the training phase for the proposed

agent and the baselines contains ntrain = eptrainnepec = 60 · 1000 · 10 = 600000 steps.

For each ten trained episodes, the agent is validated over the epval = 20 episodes to eval-

uate the agent’s capacity to generalize to different channel episodes. Each episode differs in

only the UEs channel trajectories in the same network scenario. The agent parameters were se-

lected from the best validation iteration since the agent needs to provide a good generalization

capacity for different channel episodes. This simulation scenario assesses the capacity of RRS

methods to be utilized for different network scenarios when trained and tested specifically for

each of them. In the related works [12, 40], the presented methods were designed for specific

network scenarios. Still, here, the simulation considers ten different network scenarios to eval-

uate whether the same technique could be applied to other network scenarios without changing

the employed method.

From the 10 different network scenarios, Fig. 4.5 shows the lowest, median, and highest

demanding network scenarios based on the number of RBs needed to satisfy the requested traffic

µυ. In each step n, it accounts for the minimum, average, and maximum spectral efficiency

in the slice UEs RBs and calculates how many RBs would be needed to reach the requested

traffic considering these values. Fig. 4.5 shows the number of required RBs to satisfy the traffic

requested in each step n from the first episode of the selected network scenario.

The lowest demanding network scenario is the number 2 that needs an average number of

RBs about to 53 out of R = 135 available. The median demanding scenario is the number 1,

which needs an average number of RBs about to 85 with maximum values that get near from

100 RBs. The highest demanding network scenario, scenario 3, requires an average number of
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RBs about to 190, which surpasses the available number of RBs R = 135, indicating that there

are not sufficient resources for all slices. Therefore, the RRS will need to prioritize the slices

with higher priority. There is a low variation in the number of required RBs for scenarios 0

and 1 due to the low mobility in the selected slice types of these network scenarios. The RRS

allocates RBGs, therefore RBs are allocated in groups of G
R

= 5 RBs as defined in Table 4.3.

Table 4.4 shows the slice types for each selected network scenario.
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Figure 4.5: Lowest, median, and highest demanding network scenarios based on the number of RBs

needed to satisfy the requested traffic µυ.

Table 4.4: Slice types and number of UEs for the network scenarios 1, 2, and 3

Slice Index Scenario 1 (21 UEs) Scenario 2 (13 UEs) Scenario 3 (23 UEs)

1 Robotic Diagnosis (4 UEs) Robotic surgery case 1 (5 UEs) Monitoring case 1 (5 UEs)

2 UAV control non-VLOS (5 UEs) Medical monitoring (4 UEs) UAV app case 1 (4 UEs)

3 Cloud gaming (5 UEs) - Robotic surgery case 1 (5 UEs)

4 Monitoring case 1 (5 UEs) - VR gaming (4 UEs)

5 VR gaming (2 UEs) Cloud gaming (4 UEs) Medical monitoring (5 UEs)

Fig 4.6 shows the inter-slice reward during training and validation to the highest demand-

ing network scenario 3. The inter-slice reward is considered since it contains the contributions
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of all slices in the network. The training accounts for the summation of inter-slice rewards

RWinter in each episode, while the validation accounts for the average summation of reward

values RWinter in the validation episodes in every 10 training episodes. The proposed method

improves its ability to generalize to different channel episodes over time, as depicted in the

validation performance. The training performance also improves over time but has a more un-

stable behavior concerning the evaluation value because their values are calculated in a single

episode instead of an average in a group of episodes as made in the validation. Fig 4.7 shows

the total loss to the inter-slice PPO RL agent. Similarly to the inter-slice rewards, the total loss

also improves over training steps. The total loss still has variations over time since the proposed

method trains with different channel episodes. Therefore, the policy parameters are adapted for

each channel episode. The important aspect is finding a balance between the various channel

episodes to reach a policy that can deal with all of them.
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Figure 4.6: Inter-slice reward for training and validation during the ntrain = 600000 training steps in

the network scenario 3.

Fig. 4.8 shows the normalized distance to fulfill the slice intents of the network scenario

and the normalized number of slice violations for each test episode considering the lowest, me-

dian, and highest demanding network scenarios. The number of active slices Υsce normalizes

the results of the scenario when considering all active slices (total) and Υhp
sce when considering

high-priority slices. This normalization facilitates the comparison between scenarios with dif-
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Figure 4.7: Inter-slice RRS total loss during the ntrain = 600000 training steps in the network scenario

3.

ferent numbers of active slices. Each network scenario has results for the eptest = 20 episodes

tested. The first 20 episodes represent the result for the lowest demanding scenario, the median

demanding scenario from episode 20 to 39, and the highest demanding scenario from episodes

40 to 59.

The normalized distance to fulfill is the inter-slice reward (Equation 4.32) but considering

zero values when all the slices are fulfilled. Therefore, zero is the maximum value obtained

in a simulation step n. The interpretation is how far the worst intent metric is from fulfilling

its requirement. In the lowest-demand scenario, the proposed method and the baselines kept a

zero distance, indicating the fulfillment of all slice intents. In the median scenario (episodes

20 to 39), the methods start to account for values different from zero, indicating that not all the

intents are fulfilled at every step of the episodes. Still, the proposed method registers the smaller

distance to fulfill the high-priority and total slices.

In the scenario with the highest demand (episodes 40 to 59), the number of available RBs

R = 135 is insufficient to meet all the intent requirements. In this case, the RRS methods should

first satisfy the high-priority slices and then the others. The proposed method presented more

robust results when considering high-priority slice protection with a smaller cumulative distance

to fulfill the requirements. Due to the high priority preference, the regular slices increased their
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Figure 4.8: Normalized distance to fulfill intents and number of violations to the lowest, median, and

highest demanding network scenarios. The proposed method and RL baselines train over eptrain = 60

episodes and utilize epval = 20 for validation and eptest = 20 in each network scenario.

distance, as the number of RBs available is insufficient to fulfill all intents. The boolean indica-

tion of high priority incorporated in the observation and reward calculation (Subsection 4.3.3.1

and 4.3.5.2) of the proposed method provides better performance in protecting high-priority

slices even in different network scenarios compared to the weight-based method used in the

Intent-aware RRS [40]. Still, the proposed method obtained the second-best performance when

considering all slices with a performance close to the Intent-aware baseline.

Fig 4.8 also shows the normalized number of violations, where a slice violation occurs

every time one or more slice intents are not fulfilled. Slice violation indicates a break in the SLA

while the distance to achieve intents indicates how close the unfulfilled slices are to fulfilling

their requirements when there is a slice violation. The proposed method obtained the best

performance for high-priority slices and total slices. The distance to fulfill intents accounts

for the distance of unfulfilled slices; still, the number of fulfilled slices is higher when using

the proposed method while minimizing the high-priority slice violations. This explains why it

obtained the best violation results concerning all slices, although it was the second-best in the

normalized distance.

Fig. 4.9 shows the normalized distance to fulfill the slice intents and the normalized num-

ber of slice violations, but now concerning the ten different network scenarios. Each network

scenario has eptest = 20 test episodes, totaling 200 episodes. Again, the proposed method
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obtained the best performance for high-priority slices in the normalized distance to fulfill and

the number of violations. In addition, it also obtained the best performance in the normalized

distance and number of violations for all slices.
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Figure 4.9: Normalized distance to fulfill intents and number of violations considering ten different

network scenarios. The proposed method and RL baselines train over eptrain = 60 episodes and utilize

epval = 20 for validation and eptest = 20 in each network scenario.

The Sched-slicing RRS baseline was omitted from the previous results due to its poor re-

sults in the tested network scenarios. The cumulative normalized number of violations obtained

in the same simulation of Fig. 4.9 was −16 and −30 for the high-priority and total slices, which

represents the highest number of violations compared to the other methods. In [40], the simula-

tion results were limited to one network scenario with one eMBB, one URLLC, and one mMTC

slices. The result of the Sched-slicing RRS baseline was worse than the proposed method due

to its inability to deal with the network intents since it was designed to maximize and mini-

mize metrics and not fulfill intents. The Sched-slicing RRS baseline was adapted to deal with

different network scenarios, making this approach even more difficult. When considering an

intent-based network, the RRS to be adopted must be specifically designed to deal with slice

intents.

When trained for each network scenario, the proposed method performed best both in

protecting high-priority and regular slices and minimizing the total number of violations in

different network scenarios. It is suitable for future mobile networks because of its ability to

deal with many network scenarios, simplifying the need for specific algorithms for each network
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scenario. In addition, the intent-based approach enables the use of the proposed method in an

intent-based network to deal with high-level intents and provide the intent manager in the RAN

domain a capability of fulfilling local RAN objectives. Still, training a RL RRS from scratch

for each network scenario can be time-consuming, and general performance could be improved

by using previously learned experiences from other network scenarios. Therefore, alternatives

to speed up the training of the proposed method are vital to reduce the time to deploy a new

RRS policy.

4.4.3 Generalizing for multiple network scenarios

The proposed MARL agent and baselines are trained and tested in different network sce-

narios to evaluate their generalizability. It generates 200 different network scenarios where each

network scenario contains unique UE trajectories totaling epmax = 200 episodes in the simu-

lation. The RL agents train over eptrain = 180 episodes and utilize epval = 10 for validation

and eptest = 10 for testing. In the training phase, it utilizes ec = 5 epochs. Each episode con-

tains nep = 1000 steps. Therefore, the training phase for the proposed agent and the baselines

contains ntrain = eptrainnepec = 180 · 1000 · 5 = 900000 steps.

For each ten trained episodes, the agent is validated over the epval = 10 to evaluate the

agent’s capacity to generalize to different network scenarios. Therefore, each episode differs

in both the UEs channel trajectories and the network scenario. The agent parameters utilized

in the test phase are selected from the best validation iteration since it gives the agent the best

performance to generalize to different network scenarios. This simulation scenario assesses

the capacity of RRS methods to generalize to different and unseen network scenarios without

retraining for each specific network scenario. Using an agent that does not require retraining is

very convenient since there is no further action to deal with new/unseen network scenarios.

Fig 4.10 shows the inter-slice reward during training and validation. Unlike the behavior

depicted in Fig 4.6, here the proposed method can hardly improve its capacity of generalizing to

different network scenarios over time as shown in the validation performance, reaching its best

performance in the first validation after 10 k trained steps. Training performance has a higher

value variation that expresses instability when learning to deal with different network scenarios.

Fig 4.11 shows the total loss to the inter-slice RL agent. The total loss still has high values even

when the number of steps increases. The training process should contain ntrain = 900000 steps,

but due to the instability in the training with high loss values, the simulation stops before the
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Figure 4.10: Inter-slice reward for training and validation during the ntrain = 900000 training steps.
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Figure 4.11: Inter-slice RRS total loss during the ntrain = 900000 training steps.
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total steps.

Fig. 4.12 shows the normalized distance to fulfill the slice intents and the normalized num-

ber of slice violations for eptest = 10 test episodes considering ten different and unseen network

scenarios. When evaluating the normalized distance, the proposed method obtained the worst

performance for the high-priority slices and the second-worst performance when considering

all slices. When considering the RL baselines, they performed poorly compared to the MAPF

method. The normalized number of violations shows results similar to those of the proposed

method, obtaining poor performance among the baselines.
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Figure 4.12: Normalized distance to fulfill intents and number of violations considering 160 different

network scenarios in the training, 10 in the validation, and 10 in the test.

The same ten network scenarios for testing from the results generated were utilized in

Figure 4.9. It is possible to compare the results of the proposed method with those trained for

each specific scenario. The proposed method trained for each scenario, named "Prop. method

(prev.)", shows the best performance among all the options, and not only the proposed method

but all the baselines could not reach a similar performance level. These results show that the

proposed method and RL baselines cannot generalize to unseen scenarios and perform poorly

compared to agents trained for each network scenario.

Since the RL-based methods could not generalize to unseen network scenarios, another

experiment is proposed in which the RL models are trained, evaluated, and tested in the same
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episodes in a reduced dataset. The objective is to evaluate if the RL-based methods can overfit

in the training dataset to deal with different seen network scenarios. It uses 10 different network

scenarios totaling epmax = eptrain = epval = eptest = 10 episodes in the simulation. The

same episodes used for training are also used for validation and testing. In the training phase, it

utilizes ec = 100 epochs, totaling ntrain = eptrainnepec = 10 · 1000 · 100 = 1000000 training

steps. The objective is to overfit the proposed method and RL baselines to evaluate whether

dealing with multiple seen network scenarios is possible. The best agent weights are selected

on the basis of the validation performance; in this case, the validation set is the same as the test

set.

Fig 4.13 shows the inter-slice reward during training and validation. Using a smaller

training set and the same set for validation and testing, the validation and training results were

slightly better when compared to 4.10. However, the proposed method cannot achieve perfor-

mance similar to that demonstrated in Fig. 4.6 when it trains the agent for each specific network

scenario. The total loss depicted in Fig. 4.14 obtained high values even when the training steps

were increased. Again, due to the training instability, it was not able to complete the defined

ntrain = 1000000 training steps.
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Figure 4.13: Inter-slice reward for training and validation during the ntrain = 1000000 training steps.

Fig. 4.15 shows the normalized distance to fulfill the slice intents and the normalized

number of slice violations for the eptest = 10 test episodes, considering that all network scenar-
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Figure 4.14: Inter-slice RRS total loss during the ntrain = 1000000 training steps.

ios were seen during the training and validation phase. Even reducing the number of network

scenarios from 200 to 10 and using the same dataset for training, validation, and testing, the

proposed agent and RL baselines presented poor performance compared to the proposed agent

trained for each specific network scenario. The policies for each network scenario are very dif-

ferent, which justifies the high variation in total loss since the MARL agent still receives large

policy updates even after a considerable number of training steps. Therefore, the proposed

agent cannot generalize to different network scenarios without retraining, indicating that the

proposed method and baselines cannot overcome these challenges using a unique pre-trained

agent to deal with all the possible network scenarios.

4.4.4 Using transfer learning for unseen network scenarios

The proposed method and the baselines cannot generalize to different unseen network

scenarios and do not have the capacity to handle a reduced number of trained scenarios as

demonstrated in the previous Subsection 4.4.3. Therefore, the proposed method must be trained

specifically for each network scenario. Retraining the proposed MARL from scratch for each

network scenario can take a significant amount of training steps, and the retraining frequency

depends entirely on the network scenario variations faced during tests and actual deployments.

Therefore, reducing the training time to achieve satisfactory performance with the proposed
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Figure 4.15: Normalized distance to fulfill intents and number of violations considering 10 different

network scenarios in the training and the same network scenarios for validation and test.

agent and minimizing the deployment duration in realistic environments is essential.

Due to the homogeneous observation and action space described in Subsections 4.3.3.1

and 4.3.4.1, the proposed agent can use the same neural network structures of the MARL for

different combinations of slice types and intents that characterize a network scenario. Using

transfer learning was proposed to accelerate the training process in the requested new network

scenarios and improve the performance of the proposed method. Transfer learning uses previ-

ously learned experiences while fine-tuning the RL agent on new scenarios [74]. It is usually

more efficient than learning from scratch and requires less time to perform satisfactorily.

The first 10 network scenarios were used containing 100 different channel episodes each

(the same as in Section 4.4.2). For each network scenario that contains epmax = 100 episodes,

agents train in eptrain = 80 and utilize the same epval = eptest = 20 episodes for evaluation

and testing. The same episodes are set for testing and evaluation to assess how many training

steps agents can take to reach their best performance. In the training phase, it utilizes ec = 10

epochs, totaling ntrain = eptrainnepec = 80 · 1000 · 10 = 800000 trained steps. The trained RL

model on Subsection 4.4.3 utilizing 200 network scenarios in the simulation is considered as a

base model for fine-tuning whose parameters are used as initial parameters for the model to be

fine-tuned.
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Fig. 4.16 shows the average inter-slice scheduler reward (Equation 4.32) obtained in the

evaluation over epval = 20 episodes for the network scenario 1. This compares the performance

of the proposed method trained from scratch with the fine-tuned agent. The proposed fine-

tuned agent obtained the best performance in the evaluation considering all the trained episodes,

reaching its best performance around 389 k trained steps. There is no practical method to define

how many steps the proposed agent could take to converge to its best performance, and this

number of required trained steps varies according to the evaluated network scenario. To reduce

the required time to deploy the method, and since there is no general number of trained steps it

can ensure the convergence of the proposed method, it considers a reduction of 8 times in the

trained steps, totaling 100 k trained steps for analysis.

When considering the best performance obtained by the proposed fine-tuned method and

the proposed method trained from scratch in the first 100 k trained steps, the proposed fine-tuned

agent obtained an average reward of 246.5 with about 92 k trained steps while the proposed

method trained from scratch obtained an average reward value of 217.1 with 51 k steps. The

fine-tuned agent obtained its best average reward value (in all training episodes) of 270.4 with

389 k trained steps. Therefore, the best average reward took near 4 times more trained steps to

obtain an increase of only 8.8% in the average reward.
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Figure 4.16: Inter-slice reward obtained in the evaluation over 20 episodes in the network scenario 1

considering a proposed agent trained from scratch with a fine-tuned agent.
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Table 4.5: Comparison between the proposed method trained from scratch and the fine-tuned agent in

ten network scenarios over the first 100 and all trained episodes.

Scenario index

First 100 episodes All episodes

Scratch Fine-tuned Scratch Fine-tuned

Avg. Reward Steps Avg. Reward Steps Avg. Reward Steps Improve. (%) Avg. Reward Steps Improve. (%)

1 217.1 51k 246.5 92k 225.4 430k 3.7 270.4 389k 8.8

2 388.8 10k 389.5 30k 388.8 10k 0 389.9 296k 0.1

3 -813.3 92k -693.7 92k -638.1 727k 27.4 -648 409k 7

4 -12.6 40k -10.1 71k 17.3 727k 173.1 6.1 747k 266.1

5 37.2 40k 11.6 51k 179.3 307k 79.2 187.15 358k 93.7

6 190.7 81k 198.7 92k 197 266k 3.1 198.7 92k 0

7 573 30k 572.1 61k 575.4 225k 0.4 572.6 163k 0

8 161.1 40k 159.7 40k 172.3 706k 6.5 161.23 194k 0.9

9 361.9 40k 369.8 30k 361.9 40k 0 369.8 30k 0

10 -1097.8 92k -1037.1 92k -14.2 634k 7594.6 -46.8 757k 2112.8

Evaluating the results in a unique network scenario is insufficient to assess the transfer

learning capacity of reducing the required steps to obtain satisfactory performance and improve

overall method performance. Therefore, Table 4.5 summarizes the results for the ten differ-

ent network scenarios. It presents the best average inter-slice reward value and the number of

trained steps to accomplish it when considering the first 100 episodes and all episodes. In the

first 100 episodes, the fine-tuned agent obtained the best performance compared to the agent

trained from scratch in 7 network scenarios. The unique significant difference in network sce-

narios that the fine-tuned agent obtained a smaller average reward occurs in the network scenario

5. However, in the network scenarios 7 and 8, the fine-tuned and scratch agents showed a slight

difference in performance.

When comparing performance in all trained episodes, the fine-tuned and scratch methods

obtained the best performance in each of the 5 network scenarios, and the average rewards ob-

tained had similar values, indicating that both the agent trained from scratch and the fine-tuned

agent can obtain good results when trained in a large number of steps. Table 4.5 also shows the

percentage of improvement in the average inter-slice reward obtained when comparing the best

result obtained in the first 100 episodes and all episodes for the fine-tuned and scratch agents.

The fine-tuned agent obtained an improvement of less than 10% in 7 out of the 10 network sce-

narios. Indicating that in some network scenarios, training with a large number of steps may not

lead to a substantial increase in the average reward obtained. However, in the network scenarios

4, 5 and 6, the percentage of improvement is higher than 90%, obtaining 2112% in the network
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scenario 10.

The policy obtained in the generalization for multiple network scenarios (Subsection 4.4.3)

represents a group of common neural network parameters trained to deal with different network

scenarios. Although the poor performance presented in Fig. 4.12, it is possible to interpret

that the obtained policy represents an average policy to handle different network scenarios.

Therefore, for most network scenarios, the parameters provided by this trained policy are far

from satisfactory performance. However, it is still closer to the desired policy than the method

trained from scratch. This justifies the better performance obtained in the first 100 trained

episodes. However, it does not lead to a faster trajectory to the best parameters as presented in

the comparison of steps to obtain the scratch and fine-tuned best performances in all episodes.

The proposed fine-tuned method performs best in the first 100 episodes and can achieve

the best or near optimum performance compared to an agent trained from scratch for all episodes.

Therefore, to reduce the time required to implement the RRS for a new network scenario, the

proposed method could be trained in 100 episodes and begin to use the agent in production.

However, training in all episodes should still run in parallel, so it can substitute production RRS

for the proposed method trained in all episodes when it finishes to guarantee the best perfor-

mance in a higher number of network scenarios.



Chapter 5

Conclusion

This thesis proposed the use of an intent-based RRS using RL for RAN slicing scenarios.

The RRS is divided into inter and intra-slice schedulers responsible for allocating the radio

resources among slices and slice UEs, respectively. The investigation of the proposed intent-

based RRS was split into two different problems: The first investigates the usage of an intent-

based RRS in a RAN slicing scenario with a fixed number of slices containing eMBB, URLLC

and BE slice types. There is variation in the UEs trajectories and intents over the simulations.

The second problem investigates the proposed method’s ability to deal with different network

scenarios in which there is variation in the number of active slices, slice types, number of UEs,

UEs trajectories, and device characteristics.

In the network scenario with a fixed number of slices, which is a typical scenario explored

in the related work literature, the RRS using RL has an architecture specifically designed for the

network scenario containing eMBB, URLLC, and BE slice types. The proposed intent-aware

method utilizes the RL SAC technique in the inter-slice scheduler and adopts a round-robin

technique in the intra-slice scheduler. The RRS orchestrated the radio resources among the

slices to fulfill the slice intents defined in the SLA. The proposed SAC RL agent outperformed

the baselines with a greater cumulative reward during the test episodes, fulfilling the slice re-

quirements most of the time with respect to the baselines. It also prioritizes the most important

slices’ intents. Moreover, a limited observation space was presented using only slice informa-

tion based on UEs’ average metrics, which favors the algorithm concerning scaling with the

number of UEs. The proposed limited observation space presented a similar performance to the

full observation space, even using a small neural network to perform RRS operations.

The results demonstrated the importance of designing intent-based RRS methods to en-
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able intent-based systems in the RAN domain. All baselines not intended for intent could not

perform satisfactorily in the proposed scenarios. Some aspects, such as using RL in the in-

traslice scheduler, assigning intent weight values for different network scenarios, varying spec-

tral efficiency values, and evaluating scenarios with a variable number of slices and UEs, are

not approached in this problem.

The second problem investigated in this thesis is the proposed method’s capacity to deal

with multiple network scenarios. The proposed intent-based RRS used MARL for inter- and

intra-slice scheduling in scenarios with RAN slicing. The RL agent used in the inter-slice

scheduler allocates the available RBGs among the slices, while the intra-slice scheduler utilizes

a MARL scheme with one RL agent per slice, which allocates the slice RBGs to the UEs. The

proposed method improved the intent-drift reward from the previous problem investigation and

removed the need for weight optimization for each network scenario. It implemented the spec-

tral efficiency variation on the frequency and multiple network scenarios with different numbers

of active slices, slice types, number of UEs, UEs trajectories, and device characteristics.

The proposed method outperformed the baselines in protecting the slices with higher

priority and considering all the slices when training for each specific network scenario in ten

different network scenarios. The results of training and testing in different network scenarios

showed that the proposed method and baselines cannot generalize to unseen network scenarios

or even create policies to handle different trained network scenarios. The proposed method used

transfer learning to reduce the training steps required in each network scenario. The results

show that the required number of steps could be reduced by 8 times by using transfer learning.

The proposed method first used the fine-tuned agent trained in 100 episodes while completing

the whole training in all episodes in parallel. When the fine-tuning process is completed, the

proposed method deploys the final fine-tuned agent in the production to increase the method’s

performance. Aspects such as improving generalizability for unseen network scenarios and

utilizing better-refined transfer learning methods still need further investigation.

5.1 Future work

Besides the proposed method’s contributions, some topics still need to be investigated in

future works, and the following subsections give a brief idea about them.
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5.1.1 Attention mechanisms to deal with variation in the observation space

Even with the reduction in the number of combinations of slices in the observation space

by ordering slice inputs, the position of the slice inputs still influences and generates different

states for the same group of slices. A possible alternative is implementing a self-attention-based

mechanism to deal with variations by transforming the slice entries to an intermediate domain

(attention domain). An example of the usage of self-attention is presented in [75] where a

permutation-invariant neural network for reinforcement learning is proposed, and results show

that the RL agent can perform their assigned tasks even when changing the input position.

5.1.2 Improving critical slice protection using Safe-RL

The utilization of a safe-RL approach [76] could improve the protection of high-priority

slices in the system by a risk-sensitive criterion to avoid parameter updates that may lead to

higher rewards but also increase the risk of violations.

5.1.3 RAN slicing with multiple base stations

Investigate network scenarios in which slice intents must be ensured at multiple base

stations. A cooperative distributed MARL method [77] could be implemented where different

agents (base stations) learn to cooperate to fulfill the intents.

5.1.4 Digital twin of the RRS system

The proposed method trains and tests its performance directly in the target network sce-

nario (in this case, a simulation), which may lead to unexpected results when the RL agent

training steps are insufficient to achieve satisfactory performance in the network scenario. De-

signing a digital twin of the proposed simulated RRS system is essential to assess the proposed

method’s performance without deploying it in the target environment. Generative AI techniques

could be explored to generate this digital twin [78].
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