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Abstract

This work explores the application of machine learning to enhance beam tracking in 6G MIMO

Vehicle-to-Infrastructure (V2I) communications. Beam tracking, essential for sustaining reli-

able mmWave connections, remains challenging due to the high mobility of vehicular envi-

ronments and the significant overhead associated with millimeter wave MIMO beamforming.

While beam selection has been extensively studied, ML-based beam tracking is relatively un-

derexplored, largely due to the scarcity of comprehensive datasets. To bridge this gap, this study

introduces a novel public multimodal dataset, designed in accordance with 3GPP requirements,

which combines wireless channel data with multimodal sensor information. This dataset sup-

ports the evaluation of advanced data fusion algorithms specifically tailored to V2I scenarios.

Furthermore, a custom recurrent neural network (RNN) architecture is proposed as a robust

solution for effective beam tracking, leveraging temporal and multimodal data to address the

challenges of dynamic vehicular communications.

Keywords — Beam Tracking, mmWave, deep learning, 6G, V2I.



Resumo

Este trabalho explora a aplicação de aprendizado de máquina para aprimorar o rastreamento de

feixes em comunicações 6G MIMO Vehicle-to-Infrastructure (V2I). O rastreamento de feixes,

essencial para sustentar conexões mmWave confiáveis, continua desafiador devido à alta mo-

bilidade dos ambientes veiculares e à sobrecarga significativa associada à formação de feixes

MIMO de ondas milimétricas. Embora a seleção de feixes tenha sido amplamente estudada,

o rastreamento de feixes baseado em ML é relativamente pouco explorado, em grande parte

devido à escassez de conjuntos de dados abrangentes. Para preencher essa lacuna, este estudo

apresenta um novo conjunto de dados multimodais públicos, projetado de acordo com os requi-

sitos do 3GPP, que combina dados de canal sem fio com informações de sensores multimodais.

Este conjunto de dados oferece suporte à avaliação de algoritmos avançados de fusão de dados

especificamente adaptados para cenários V2I. Além disso, uma arquitetura de rede neural recor-

rente (RNN) personalizada é proposta como uma solução robusta para rastreamento de feixes

eficaz, aproveitando dados temporais e multimodais para abordar os desafios das comunicações

veiculares dinâmicas.

Palavras-chave — Beam Tracking, mmWave, deep learning, 6G, V2I.



Chapter 1

Introduction

The 5th Generation (5G) wireless networks is already a reality, the rapid advancement

of communication technologies toward 6th Generation (6G) networks aim to meet increasingly

demanding requirements, such as ultra-high data rates and low latency [1]. Achieving these

goals necessitates the use of wider bandwidths, which are challenging to allocate in the already

congested sub-6 GHz spectrum. To address this, Millimeter Wave (mmWave) frequencies, such

as 28 GHz and 60 GHz, have been reserved as key bands for mobile communications [2].

The abundant spectrum at mmWave enables reduced symbol time, lower latency, and increased

throughput, making it a critical enabler for advanced wireless systems. However, mmWave

bands also exhibit higher path attenuation compared to sub-6 GHz frequencies, posing signifi-

cant challenges for reliable communication.

To overcome the increased attenuation at mmWave frequencies, Multiple-Input Multiple-

Output (MIMO) technology has become a cornerstone of 5G and 6G networks [3]. Beamform-

ing, a critical component of massive MIMO, enhances the directionality of electromagnetic

waves, mitigating the effects of high path loss [4]. Despite its benefits, beamforming introduces

its own challenges, particularly the need for precise alignment between narrow beams at the

transmitter and receiver. This requirement for accurate beam tracking underpins many of the

ongoing research efforts in mmWave communications [5].

These requirements are especially critical in scenarios such as Vehicle-to-Infrastructure

(V2I) communication, where precise beam alignment is essential to maintain robust links under

dynamic conditions. In order to provide seamless high-quality services, beam management,

which collectively encompasses initial beam training/alignment, monitoring and tracking, as
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well as recovery from beam failures, is crucial for 6G mmWave and Terahertz (THz) com-

munications [6]. Recent Third Generation Partnership Project (3GPP) initiatives have focused

on exploring advanced methods, including machine learning, to enhance beam management

processes, aiming to address the challenges posed by dynamic wireless environments and the

stringent requirements of 6G networks [7].

Beam tracking is the process of continuously aligning the transmission and reception

beams to maximize signal quality, is a fundamental challenge in this context. This dissertation

is motivated by the challenge of explore the potential of deep learning techniques to improve

the efficiency and reliability of beam tracking in mmWave MIMO systems in dynamic V2I

scenarios. The proposed solution aims to strike a balance between computational efficiency and

prediction accuracy

1.1 State of the Art Review

Beam tracking in mmWave communication has emerged as a critical area of research,

addressing the challenges posed by wireless communications in high mobility and dynamic

environments. This section reviews notable advancements, highlighting key contributions and

methodologies from recent studies.

Beam management encompasses beam alignment, selection, tracking, and failure recov-

ery, all of which are essential for robust mmWave communication. Challenges such as high path

loss, narrow beamwidth [6]. Traditional exhaustive beam search methods, while accurate, im-

pose significant overhead in the communications networks, motivating the exploration of varied

algorithms solutions [8, 9], including machine learning-based solutions [10, 11, 12, 13].

Prior works have investigated non-machine learning algorithms for beam tracking, focus-

ing on leveraging mathematical optimization and filtering techniques to address the challenges

of mmWave communication. Shaham et al. [9] proposed a Extended Kalman filter-based ap-

proach for beam tracking in V2I scenarios, using position, velocity, and channel coefficient

as state variables. Their method aims to reduce computational cost, similar to the approach

proposed in this work. However, unlike this work, Shaham et al.’s approach relies on the as-

sumption of constant velocity, which simplifies the mobility model. In contrast, the datasets

used in this research incorporate more realistic and dynamic mobility patterns.
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Asi et al. [8] compare the performance of Least Mean Squares (LMS) algorithm and

Normalized Least Mean Squares (NLMS) for tracking the channel and designing the beam.

However, their analysis does not include a benchmark with other advanced tracking algorithms,

which limits the scope of the evaluation. Their results show that the the LMS implementation

required a larger step size to achieve faster system convergence and stability. In contrast, the

NLMS algorithm achieved faster convergence with a more stable learning process. While the

paper acknowledges this and presents results for various step sizes, it does not propose a sys-

tematic method for optimal step size selection, which remains a challenge in adaptive filtering.

Yi et al. [5] proposed a multi-resolution codebook approach aimed at minimizing the

search space by leveraging spatial and temporal dependencies. Their method employs a recur-

sive strategy that begins with an exhaustive beam search to identify the sector in which the User

Equipment (UE) is located. Using this information, distance and location are estimated, allow-

ing beams to be generated around the predicted direction. The recursion is repeated, effectively

using multiple codebook levels to identify a more precise direction.

Machine learning has emerged as a powerful tool for addressing the challenges of beam

tracking in mmWave communication, with several studies proposing innovative models that

leverage the predictive capabilities of deep learning. Zhao et al. [14] proposed an Long Short-

Term Memory (LSTM)-based model that utilizes sub-6 GHz Channel State Information (CSI)

to control multiple mmWave Base Station (BS), and predict the wide beam measurements. The

work employs a standard LSTM approach to co-located sites, and use heterogeneous networks

for BS’s separated in different places. while the work was able to achieve relevant results with

the standard LSTM model, the heterogeneous networks scenario proved to be a challenge for

the proposed method. However, to the LSTM had a good performance, was necessary to utilize

16 time steps of input sequence, which is 4 times more than our work propose. Similarly, Lim

et al. [10] developed a LSTM-based model combined with a sequential Bayesian filter to model

the temporal evolution of Angle of Arrival (AoA) and Angle of Departure (AoD). The mode use

as input a sequence of the previous estimated channels acquired before the transmission period

begins. However, the reliance on sequential Bayesian estimation can increases computational

complexity depending on the context.

Zhong et al. [15] proposed an Image-Based Coding (IBC) method that incorporates in-

formation such as vehicle locations and sizes into a Convolutional Neural Network (CNN). By
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utilizing environmental images, their approach is suitable in highly dynamic vehicular commu-

nication scenarios. However, the method is a site-specific application, as the trained model de-

pends on the specific spatial structure of the scenario where it was trained. This raises concerns

about the model’s generalization capacity when deployed in unseen environments, highlighting

a potential limitation of the method.

Oliveira et al. [16] extended this concept by demonstrating the effectiveness of multi-

modal data fusion, combining inputs from LIDAR data, GNSS positioning, and historical beam

selections. This fusion strategy significantly enhanced prediction accuracy and showcased the

potential of integrating diverse data sources for robust beam tracking in V2I scenarios. However

this approach demands a large volume of data, and also require further studies on the general-

ization of the model.

These studies highlight the versatility and effectiveness of machine learning and tradi-

tional algorithms for beam tracking, particularly in adapting to complex and dynamic envi-

ronments. However, challenges remain in balancing computational efficiency with prediction

accuracy, as well as ensuring generalization across diverse scenarios and datasets. These gaps

highlight the potential for further research about the subject.

1.2 Research Contributions

This thesis concentrates on presents contributions to the field of beam tracking in 5G/6G

MIMO V2I communications, addressing key challenges in dynamic vehicular environments.

The main contributions are outlined as follows:

1. Proposed Deep Learning Model for Beam Tracking: The research introduces a cus-

tom Recurrent Neural Network (RNN) architecture, specifically utilizing LSTM layers,

tailored for sequential beam tracking in dynamic vehicular environments. The model

is designed to process historical beam data, leveraging temporal patterns to predict fu-

ture beam behavior. By addressing challenges such as fluctuating channel conditions

and limited historical data, the proposed model achieves a balance between accuracy and

computational efficiency, making it suitable for real-time beam tracking in V2I scenarios.

2. Development of a Public Multimodal Dataset: A novel dataset is introduced, adhering

to 3GPP requirements, which integrates wireless channel data with multimodal sensor
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information such as LiDAR and GNSS positioning. This dataset is specifically designed

for evaluating V2I beam tracking scenarios.

3. Evaluation of Beam Tracking Strategies: Extensive experiments are conducted across

two V2I scenarios, including urban canyon and residential settings, to evaluate the pro-

posed beam tracking model. The results are compared against a CNN baseline model,and

benchmarks the proposed approach against state-of-the-art methods from the literature,

highlighting its ability to achieve higher accuracy and reduced latency in beam predic-

tions. These evaluations not only underscore the robustness of the proposed method but

also provide critical insights into its adaptability to varying environmental dynamics and

communication constraints.

4. Insights into Communication Dynamics: The study emphasizes the importance of com-

munication dynamics, such as beam sweeping intervals, coherence time, and hierarchical

beamforming, in optimizing beam tracking strategies. These insights provide a founda-

tion for reducing measurement overhead without compromising link reliability.

These contributions collectively advance the state of the art in ML-based beam tracking

for mmWave MIMO systems, offering valuable tools and methodologies for future research and

development in V2I communications.

1.3 Dissertation Outline

The following summarizes the organization of this work and its main contributions

Chapter 2: Fundamentals of Beam-Tracking and MIMO Processing This chapter

covers the theoretical foundations of beam tracking and MIMO processing, including antenna

arrays, beamforming techniques (analog, digital, hybrid), and MIMO channel propagation with

multi-path components and RSRP metric. It also introduces the functioning of the LSTM layers,

that will be a core tool in the proposed beam tracking.

Chapter 3: V2I Datasets Generation and Their 3GPP Aspects This chapter focuses

on the generation of V2I datasets, specifically through Raymobtime methodology, and their

alignment with 3GPP standards. It also covers the simulator configuration, wireless channel

setup, and post-processing of simulation results.

Chapter 4: System and Architecture Overview This chapter presents the proposed
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beam tracking approach, detailing the time series structure modeling and the RNN architecture.

Chapter 5: Simulation and Results The chapter evaluates the proposed beam tracking

method through simulations. It analyzes wireless channel dynamics, beam index variations,

and system performance under different conditions, including Line of Sight (LOS)/Non Line

of Sight (NLOS), and discusses the impact of reducing the number of measurements on the

system’s accuracy and efficiency.

Chapter 6: Conclusion The final chapter summarizes the key findings of this dissertation

and discusses the implications of the research. It also outlines possible directions for future

work in beam tracking and MIMO processing, as well as related topics for further investigation.

The chapter concludes with a list of the published articles that resulted from this research.



Chapter 2

Fundamentals of Beam-Tracking and

MIMO Processing

MIMO in wireless communication systems allows leverage multipath scattering between

Transmitter (Tx) and Receiver (Rx) to substantially increase the spectral efficiency [17] through

the use of multiple antennas arrange in a antenna array at both the transmitting and receiving

ends. The use of MIMO also can increase data rates through multiplexing or exploiting chan-

nel diversity. MIMO systems have already been standardized in both Wireless Local Area

Network (WLAN), under IEEE 802.11ax [18], and in mobile communications through IEEE

802.16e/m [19] and 3GPP standards for LTE and LTE-Advanced. These implementations oper-

ate primarily in sub-6 GHz frequencies and typically support a limited number of antennas [20].

Beamforming is a technique to modify the radiation pattern of an antenna array, making

it more directive, forming one or multiples beams that could be changes in direction [21]. To

maximize the Signal-to-Noise Ratio (SNR), beamforming technology modifies the beam by

controlling the power and phase of each element of the antenna array to control the direction of

the wave-front.

Since the physical layer technology has already approached the Shannon capacity limits,

further improvements in wireless communication systems as MIMO technology and beamform-

ing have become critical enablers of high-capacity and reliable data transmission, particularly

in the context of 5G and the upcoming 6G networks [22]. These technologies significantly

enhance the spectral efficiency and coverage by exploiting spatial diversity and directionality.



8

Beam management is the process responsible for ensuring optimal communication be-

tween the Tx and Rx by dynamically adjusting the directionality of beams. This process can

be divided into two key methods: beam selection and beam tracking [23]. Beam selection in-

volves identifying the best beam pair between the transmitter and receiver to maximize signal

quality. As the environment changes, especially in mobile scenarios, beam tracking consist of

continuously monitoring and updating the beam pair, maintaining a robust connection despite

user movement, obstacles, or other interference.

2.1 Antenna array

Antenna arrays consist of multiple antennas working together to improve performance in

terms of gain, directivity, and beamforming capabilities. By carefully configuring the place-

ment and excitation of these antennas, array configurations can be designed to optimize signal

reception and transmission in various scenarios. The following are three most common types

of antenna arrays [24], along with their characteristics:

• Uniform Linear Array (ULA): A ULA comprises multiple antenna elements arranged in

a straight line, spaced uniformly apart. The performance of a ULA is characterized by its

ability to steer beams in the azimuth plane by adjusting the phase differences between the

signals fed to the individual elements. Figure 2.1a shows the schematic representation of

a ULA.

• Uniform Planar Array (UPA): Uniform Planar Array (UPA): A UPA consists of antenna

elements arranged in a two-dimensional grid pattern. This configuration allows for con-

trol over both azimuth and elevation angles, facilitating three-dimensional beamforming

capabilities. By manipulating the excitation of the elements in both dimensions, a UPA

can create highly directive beams and improve spatial coverage. Figure 2.1b illustrates

the layout of a UPA.

• Uniform Circular Array (UCA): A UCA features antenna elements arranged in a circu-

lar configuration, enabling omnidirectional radiation patterns in the azimuth plane while

allowing for control over elevation. The UCA can provide improved spatial resolution

and diversity compared to linear arrays. This configuration is particularly useful in ap-

plications such as direction of arrival (DoA) estimation and mobile communications. See

Figure 2.1c for a visual representation of a UCA.
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(a) (b) (c)

Figure 2.1: Schematics of uniform antenna arrays: (a) Uniform Linear Array (ULA), (b) Uniform Planar

Array (UPA), and (c) Uniform Circular Array (UCA).

In the following section, all equations are derived under the assumption of a Uniform

Linear Array (ULA), to simplify the analysis and improve conceptual clarity.

2.1.1 Phased Array

Phased array antennas are a type of antenna array that can electronically steer the direction

of their radiation pattern without physically moving the antenna. This capability is achieved by

adjusting the phase of the signals fed to each individual antenna element, allowing for dynamic

control of the beam direction and shape. The ability to rapidly change the beam direction makes

phased array antennas particularly useful in applications such as radar, telecommunications, and

satellite communications [24].

The key to the operation of phased array antennas lies in the concept of phase shifts. By

varying the phase of the signals transmitted or received by each antenna element, the resulting

array factor can be manipulated to form a desired radiation pattern. By applying these phase

shifts to the individual elements, the antenna can constructively and destructively interfere to

form a main lobe in the desired direction while suppressing side-lobes.

Phased array antennas offer several advantages over traditional antennas, including:

• Electronic Beam Steering: The ability to change the direction of the beam electronically

allows for rapid adjustments to the antenna’s coverage area without mechanical move-

ment.

• Multi-Functionality: Phased arrays can support multiple simultaneous beams, enabling
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multiple users or services to be accommodated at the same time.

• Adaptive Beamforming: These antennas can dynamically adjust their patterns in response

to changing conditions, such as interference or user movement.

• Compact Design: Phased array antennas can be designed to be smaller and more compact

compared to conventional antennas with similar performance characteristics.

Overall, phased array antennas represent a significant advancement in antenna technology,

enabling more flexible, efficient, and high-performance communication systems.

2.2 MIMO and Beamforming

The beamforming is performed through the interaction of the signals radiated by each an-

tenna element of the antenna array to modify, through constructive and destructive interference,

the radiation pattern. Changing the gain and phase of the signals transmitted in each element

of the antenna array makes it possible to change the direction and shape of the array’s radiation

pattern. the beam widths can be manipulated through a pre-designed codebook, to direct the

magnitude and phase of individual antenna signals in an array [25].

In phased antenna arrays, the performance of beamforming is determined by the collec-

tive behavior of individual antenna elements, which are arranged in a specific geometry. To

understand how beamforming works, it is essential to define some core concepts:

2.2.1 Steering Vector

The steering vector is a mathematical representation of how signals from each antenna

element are combined to steer the beam in a specific direction. By adjusting the steering vector,

the system can steer the beam dynamically, ensuring the signal is directed toward the intended

user or target area [26]. For an array of N antenna elements, the steering vector defines the

phase shift applied to each element to ensure constructive interference of the transmitted or

received signals in the target direction. Mathematically, the steering vector v(ϕ) for a given

angle ϕ (desired angle of arrival or departure) can be written as:

v(ϕ) =
[
ejk·r1 , ejk·r2 , . . . , ejk·rN

]
, (2.1)
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where rn is the position of the n-th antenna element, and k is the phase-shift corresponding to

the direction of propagation, that can be defined by:

k = 2π · d
λ
· cos(ϕ), (2.2)

wheres d is the distance between adjacent antennas elements, λ is the wavelength of the signal,

- d is the distance between adjacent antenna elements, and d
λ

is the factor to scale the the phase

shift between antennas by the normalized antenna spacing.

2.2.2 Array Factor

The array factor describes the overall radiation pattern of the antenna array, considering

the combined effect of individual antenna elements. The steering vector, which applies phase

shifts to each element, helps direct the beam in a specific direction, and the array factor re-

flects how effectively the array forms the beam in that desired direction [27]. In simple terms,

the array factor defines how the signals from multiple antenna elements combine in different

directions.

For an N -element uniform linear array ULA, the array factor AF (θ) is expressed as:

AF (θ) =
N∑

n=1

ej(n−1)k, (2.3)

where θ is the direction of the signal (either incoming or outgoing) relative to the array’s nor-

mal. It’s used to evaluate how signals from different elements of the array interfere, either

constructively or destructively, depending on the direction of observation. k is the same defined

in equation 2.2, but with ϕ replaced by θ.

The array factor provides insights into the beam’s directivity and gain, as well as how the

beams are shaped based on the geometry of the antenna array.

2.2.3 Array Pattern

The array pattern, is the spatial distribution of the radiated power from the antenna array.

It combines the array factor with the individual antenna element pattern, illustrating the direc-

tional properties of the antenna system [27]. The array pattern describes how energy is radiated
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in different directions, showing the main lobe (the primary direction of energy transmission) as

well as side lobes and nulls (regions of reduced or zero radiation).

Mathematically, the total array pattern P (θ) is given by:

P (θ) = AF (θ) · E(θ), (2.4)

where E(θ) is the radiation pattern of a single antenna element, describing how an individual

element radiates energy in space.

2.2.4 Analog Beamforming

Analog beamforming utilizes phase shifters to control the signal phase of each antenna

element, allowing the system to direct the beam toward a specific direction [28]. This approach

typically uses the same signal to each antenna using a Radio Frequency (RF) chain, to mak-

ing it more energy-efficient and cost-effective, especially in high-frequency applications like

mmWave communications. However, the main limitation of analog beamforming is its inability

to handle multiple beams simultaneously, restricting the system to single-stream transmission,

which reduces its flexibility in complex multi-user environments.

2.2.5 Digital Beamforming

Digital beamforming, on the other hand, offers greater flexibility by using separate RF

chains for each antenna element, enabling the system to form and process multiple beams con-

currently [29]. This technique allows for precise control over both amplitude and phase at each

antenna, supporting advanced functions like spatial multiplexing and beam steering. While

digital beamforming can significantly enhance system capacity and performance, especially in

multi-user scenarios, it requires higher computational power and energy consumption due to the

multiple RF chains and signal processing demands.

2.2.6 Hybrid Beamforming

Hybrid beamforming combines the advantages of both analog and digital approaches to

strike a balance between performance and cost. It uses a reduced number of RF chains while

still leveraging phase shifters for analog beamforming, enabling partial digital control over
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the beams. This allows hybrid beamforming to support multiple beams and spatial multiplex-

ing while keeping power consumption and hardware complexity lower than fully digital sys-

tems. Hybrid beamforming is particularly suited for millimeter-wave communications, where

the trade-off between performance and efficiency is crucial.

2.3 MIMO propagation characteristics with MPC

MIMO systems rely on the transmission and reception of multiple signals across different

paths between the transmitter and receiver, where the transmitted signal reflects, diffracts, or

scatters off obstacles in the environment, resulting into Multipath Components (MPC) reaching

the receiver [30]. This phenomenon is represented in ray-tracing models, which accurately

simulate the paths a signal might take through the environment, considering various physical

characteristics [31].

Multipath propagation enables spatial diversity, which is one of the key advantages of

MIMO systems. Figure 2.2 illustrates a typical scenario where signals traverse multiple paths

due to obstacles in the environment, leading to a combination of delayed, phase-shifted, and

attenuated signals at the receiver.

Figure 2.2: Multipath propagation in a MIMO system, where signals take multiple paths to reach the

receiver.

Each MPC has its own set of parameters, including amplitude, phase, and delay, con-
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tributing to the composite signal that the receiver processes. This spatial diversity is leveraged

by MIMO to improve overall system capacity and reliability. Some relevant parameters are:

• Gain: The relative amplitude of the received signal, influenced by factors like path loss,

shadowing, and distance from the transmitter. Gain can vary significantly across different

MPCs due to differences in propagation distance and interaction with obstacles.

• Phase: Each MPC arrives at the receiver with a unique phase shift, caused by the dif-

ference in travel distance. The constructive or destructive interference between these

multipath signals can significantly affect the signal strength.

• Time of Arrival (ToA): The delay with which each MPC arrives at the receiver is a

key parameter in determining the temporal spread of the signal. Longer paths result in

greater delays, and the spread of arrival times can cause inter-symbol interference (ISI)

in high-data-rate systems.

• Angle of Arrival (AoA) and Angle of Departure (AoD): These parameters describe the

direction from which the signal arrives at the receiver and the direction in which it was

transmitted, respectively. These angular characteristics enable MIMO systems to exploit

spatial diversity, providing better coverage and increased data rates through beamforming

and directional transmission techniques.

Together, these small-scale parameters form the basis for modeling the propagation char-

acteristics of MIMO systems in realistic environments, enabling techniques such as beamform-

ing and CSI acquisition to optimize system performance.

2.4 MIMO Channel Model

A MIMO channel with Ntx antenna elements at the transmitter and Nrx elements at the

receiver can be described by its time-domain response, represented as a matrix H(τ, t). This

matrix encapsulates the impulse responses between each pair of transmit and receive antennas,

accounting for the multipath components that arrive with different delays. The time-varying

channel matrix is given by:
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H(τ, t) =


h1,1(τ, t) h1,2(τ, t) . . . h1,Ntx(τ, t)

h2,1(τ, t) h2,2(τ, t) . . . h2,Ntx(τ, t)
...

... . . . ...

hNrx,1(τ, t) hNrx,2(τ, t) . . . hNrx,Ntx(τ, t)

 , (2.5)

where hi,j(τ, t) is the time-varying channel impulse response between the i-th receive antenna

and the j-th transmit antenna. This response represents the effect of the channel on an impulse

transmitted at time t− τ and received at time t [32].

In a MIMO system, considering a transmitted signal xj(t) from the j-th element of the

transmit array, the signal received at the i-th element of the receiver array (with Nrx elements)

can be expressed as:

yi(t) =
Ntx∑
j=1

hi,j(τ, t) ∗ xj(t) + ni(t), i = 1, 2, . . . , Nrx, (2.6)

where ni(t) represents the Gaussian noise at the i-th receiver. This summation captures the

combined effect of signals arriving from different transmit antennas, each modulated by its

corresponding channel response.

2.4.1 Geometric Channel Model with MPC

For the analysis in this work, we consider the channel as narrowband, meaning the band-

width is small enough that the channel’s frequency response can be treated as constant over the

band. To model the propagation characteristics, we employ a geometric channel model based

on MPC [20]. In this model, the received signal is composed of L multipath components, each

with a specific angle of arrival (AoA) and angle of departure (AoD), along with a complex gain

αℓ.

The narrowband MIMO channel matrix can be described as:

H =
√
NtxNrx

L∑
ℓ=1

αℓar(ϕ
A
ℓ , θ

A
ℓ )a

∗
t (ϕ

D
ℓ , θ

D
ℓ ), (2.7)

where L is the number of MPCs, αℓ is the complex gain for the ℓ-th path, at(ϕ
D
ℓ , θ

D
ℓ ) is the

transmit array response vector, which depends on the azimuth ϕD
ℓ and elevation θDℓ angles of

departure, and ar(ϕ
A
ℓ , θ

A
ℓ ) is the receive array response vector, which depends on the azimuth

ϕA
ℓ and elevation θAℓ angles of arrival.
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2.5 Beam Tracking

Beam tracking, an extension of beamforming, is an essential procedure in mmWave and

massive MIMO systems in dynamic environments, such as vehicular networks, where the opti-

mal signal path constantly changes due to the mobility of the transmitter, receiver, or surround-

ing objects [23], as illustrated in Figure 2.3. Effective beam-tracking techniques ensure that

reliable communication links remain robust by continuously adjusting the beam direction in

real time.

Figure 2.3: Schematic of Beam Tracking in a Vehicular Network.

Beam tracking algorithms typically aim to minimize the overhead the beam search process

while ensuring the beam is aligned with the strongest propagation path. Beam tracking tech-

niques in general involves continuously updating the selected beam using the historical data of

the previous selected beams, to maintain the alignment as the user moves or as the environment

changes. This requires periodic measurements and adjustments to the beam index î to adapt to

the dynamic nature of the wireless channel. One common approach is to use hierarchical search

strategies [33], which reduce the number of beam pairs that need to be evaluated, especially in

large antenna arrays.

In this work we assume the beamforming used in the proposed beam tracking is defined

by:

yi = w∗
rHft, (2.8)

where wr and ft are respectively the precoding and combiner vectors used at the BS and UE

to perform the beamforming. The vectors wr and ft are chosen from the codebooks Ct =
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{w1, ..., w|Ct|} and Cr = {f1, ..., f|Cr|}, where |Ct| and |Cr| are drawn from the Discrete Fourier

Transform (DFT) 2.9, The size of the codebooks, |Cr| and |Ct|, corresponds to the number of

antenna elements at the receiver (r) and transmitter (t), respectively [34]:

F(n) =
1√
M

e−
j2π(n−1)

M , (2.9)

where M is the number of antenna elements in the ULA and n = 1, ..., N , with N denoting

the number of codewords. In this work, we assume N = M .

Thus, the optimal beam index î is given by

î = arg max
i∈{1,··· ,M}

|yi|. (2.10)

2.5.1 Evaluation Metrics

The use of RSRP as an essential metric for beam tracking has been proposed in 3GPP

discussions regarding AI/ML for beam management for next-generation networks[35]. RSRP

measures the received signal strength of the reference signal at the physical layer, providing an

indication of the signal quality for a given beam. In beam tracking, RSRP is commonly em-

ployed to evaluate the performance of different beams and select the optimal one that maximizes

the signal power received at the UE.

The RSRP for a given beam i can be expressed as:

RSRPi =
1

NRS

NRS∑
n=1

P
(n)
RS,i, (2.11)

where NRS is the number of reference signal (RS) resources, and P
(n)
RS,i is the power of the n-th

reference signal for beam i.

By periodically computing RSRP across multiple beam pairs, the system can identify the

beam with the highest signal strength and dynamically switch to it, ensuring a stable and effi-

cient communication link, even in scenarios involving user mobility or varying environments.

The Throughput Ratio (TR) is a metric used to evaluate the efficiency of beam-tracking

algorithms in selecting optimal beams for data transmission. It quantifies the ratio between the

achievable throughput when using the predicted beam and the maximum possible throughput

obtained by selecting the best beam. Mathematically, it is defined as:
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TR =

∑N
i=1 log2(1 + y

(̂i)
)∑N

i=1 log2(1 + yî)
, (2.12)

where N is the number of test examples and î is the best beam index, and (̂i) is the

predicted beam index.

2.6 Fundamentals of LSTM Layers

LSTM layers are a type of RNN architecture designed to model sequential data effec-

tively by overcoming the limitations of traditional RNNs. First introduced by Hochreiter and

Schmidhuber in 1997 [36], LSTMs are particularly well-suited for tasks involving temporal

dependencies, such as time series forecasting, natural language processing.

2.6.1 Structure of an LSTM Cell

An LSTM cell consists of three primary components known as gates: the forget gate, input

gate, and output gate. These gates work together to regulate the flow of information through the

cell and maintain a stable memory over long sequences:

• Forget Gate: Determines which information from the previous cell state should be dis-

carded. It uses a sigmoid activation function to produce a value between 0 and 1, where

0 means "forget completely" and 1 means "retain completely."

ft = σ(Wf · [ht−1, xt] + bf )

• Input Gate: Controls how much new information from the current input should be added

to the cell state. It involves a sigmoid function for weighting and a tanh function to create

candidate values.

it = σ(Wi · [ht−1, xt] + bi), C̃t = tanh(Wc · [ht−1, xt] + bc)

• Output Gate: Decides what part of the cell state should be output as the hidden state for

the current timestep. This gate uses a sigmoid function to weight the state.

ot = σ(Wo · [ht−1, xt] + bo), ht = ot ⊙ tanh(Ct)

The cell state Ct is updated as follows:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t
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2.6.2 Advantages of LSTM Layers

The ability to selectively retain and update information gives LSTMs a significant advan-

tage over traditional RNNs, particularly in handling vanishing gradient issues. Key benefits

include:

• Memory Retention: LSTMs can maintain long-term dependencies by preserving rele-

vant information in the cell state.

• Effective Training: By mitigating the vanishing gradient problem, LSTMs facilitate sta-

ble and efficient training over long sequences.

• Versatility: Their design makes LSTMs applicable to various domains, including speech

recognition, machine translation, and dynamic system modeling.



Chapter 3

V2I Datasets Generation and Their

Aspects from a 3GPP Perspective

This work employs the Raymobtime methodology to generate wireless channels data in

the context of Beyond 5G (B5G). The Raymobtime methodology, initially proposed in [37]

and later refined in [38], was developed to address the shortage of 5G mmWave datasets that

incorporate time evolution, spatial consistency, and mobility features. These characteristics

are achieved through the integration of two software tools. The first tool is Wireless Insite

(WI), a Ray-Tracing (RT) simulator from REMCOM [39], which accurately models wireless

communication channels by simulating propagation paths. The second tool is the Simulator for

Urban Mobility (SUMO), which is free and open source software designed for traffic simulation

and is responsible for generating dynamic movement patterns and simulating traffic scenarios.

3.1 Raymobtime Datasets

One of the primary contributions of the Raymobtime project is its commitment to support-

ing the academic community by not only providing a means to simulate mmWave ray-tracing

in scenarios with mobility but also making publicly available a series of datasets with pre-

calculated results. These datasets, which integrate channel information from ray-tracing, Global

Navigation Satellite System (GNSS), and multimodal data sources, have been widely adopted

by researchers to advance the study of communication systems in dynamic environments. For

example, [40] utilized the datasets in their work to evaluate the use of federated learning tech-



21

niques in beam selection applications, demonstrating the applicability of the datasets in modern

research topics.

Multiple studies suggest that incorporating external data sources, such as LIDAR sen-

sors and camera images [41, 11], can address critical challenges in 5G applications, including

blockage prediction [42]. In this regard, Raymobtime provides a diverse set of multimodal data,

integrating information from various sources, as illustrated in Figure 3.1.

Figure 3.1: Raymobtime multimodal data sources.

The Raymobtime datasets are organized into different episodes, each consisting of mul-

tiple scenes. An episode represents a continuous recording of a specific scenario over a pe-

riod, while a scene captures a momentary snapshot within the episode. This episodic struc-

ture allows for detailed analysis of how the wireless environment evolves over time, provid-

ing researchers with high-resolution temporal data. However, it is important to remember that

episodes should be evaluated independently from each other. The datasets cover a range of sce-
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narios and frequencies, featuring both mobile and fixed receivers, allowing for diverse use cases,

such as Infrastructure-to-Infrastructure (I2I) communication for fixed receiver and Vehicle-to-

Vehicle (V2V) communication and V2I communication for mobile receivers.

The current public available datasets can be categorized into three types: ray-tracing

datasets combined with GNSS information (Table 3.1), multimodal datasets (Table 3.2) that

also include LIDAR and camera imagery, and specialized V2V communication datasets (Ta-

ble 3.3).

Table 3.1: Ray-Tracing + GNSS Datasets

ID Scenario Freq.

GHz

Rx(Type) Scene

Interval

Episodes

Interval

Episodes Scenes

per

Episode

Valid

Ch.

s000 Rosslyn 60 10 Mobile 100 ms 30 s 116 50 41K

s001 Rosslyn 2.8; 5 10 Fixed 5 ms 37 s 200 10 20K

s002 Rosslyn 2.8; 60 10 Fixed 1 s 3 s 1800 1 18K

s003 Rosslyn 2.8; 5 10 Fixed 1 ms 35 s 200 10 20K

s004 Rosslyn 60 10 Mobile 1 s 30 s 5000 1 35K

s005 Rosslyn 2.8; 5 10 Fixed 10 ms 35 s 125 80 100K

s006 Rosslyn 28; 60 10 Fixed 1 ms 35 s 200 10 20K

s010 Rosslyn 60 10 Mobile 0.5 s 5 s 100 50 30K

s011 Rosslyn 60 10 Mobile 0.5 s 6 s 76 20 13K

s012 Rosslyn 60 10 Fixed 0.5 s 6 s 105 20 21K

Table 3.2: Multimodal Datasets (Ray-Tracing + LIDAR + Camera Images + GNSS)

ID Scenario Freq.

GHz

Rx(Type) Scene

Interval

Episodes

Interval

Episodes Scenes

per

Episode

Valid

Ch.

s007 Beijing 2.8; 60 10 Mobile 1 s 5 s 50 40 15K

s008 Rosslyn 60 10 Mobile 0.1 s 30 s 2086 1 11K

s009 Rosslyn 60 10 Mobile 0.1 s 30 s 2000 1 10K
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Table 3.3: Ray-Tracing Datasets for V2V Communication

ID Scenario Freq.

GHz

Tx Rx Scene

Interval

Episodes

Interval

Episodes Scenes

per

Episode

Valid

Ch.

v001 Rosslyn 60 2 5 100 ms 30 s 20 50 8.5K

v002 Rosslyn 60 1 5 0.1 s 0.1 s 2500 1 12.5K

In order to contribute to the evolution of the methodology and provide higher-quality

datasets, this work proposes to model new datasets in the V2I scenario, based on specifications

obtained from 3GPP documents and discussions. The new datasets will be further detailed in

section 3.3.

3.2 Raymobtime Simulator

In addition to offering public datasets, Raymobtime empowers researchers to create cus-

tomized datasets tailored to their specific needs. The following section outlines a comprehensive

guide, from installation to result generation.

3.2.1 Configuring Wireless Insite

WI allows for the import of 3D models to compose the simulation scenario and objects.

Utilizing this feature, the methodology proposes exporting satellite data to generate a realis-

tic environment based on a real location (see Figure 3.2). The first step is to choose a study

area where the signal propagation is to be analyzed. To import the scenario, we suggest us-

ing the CadMapper tool, an online resource that transforms data from public sources such as

OpenStreetMap, NASA, and USGS into organized CAD files.

To ensure realism, it is important to select well-mapped areas. The CAD file generated by

CadMapper contains 3D constructions, roadways, topography, vegetation, and other elements.

However, it is crucial to ensure that all these features are in a format compatible with WI. It is

recommended use DXF or Collada file formats, although WI supports other formats as well.

Once the scenario is imported correctly, the next step is to configure the basic settings in
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Figure 3.2: Simulation environment in Wireless InSite using 3D models and satellite data for signal

propagation analysis.

the RT simulator, such as the positions of antennas, waveforms, frequencies, and other param-

eters. The Raymobtime MIMO channel is typically simulated during post-processing, as this

provides greater flexibility in exploring array dimensions. For this purpose, it is necessary to

place the Rx and Tx as isotropic antennas and to include as many antennas as required for the

experiment. It is important to note that while the number of antennas can be reduced in later

stages, increasing the number after the initial setup is not feasible.

In setting up a simulation with the Raymobtime methodology, several essential files are

required to ensure proper configuration and execution. The default simulation name should be

"model," and the corresponding files include .txrx, .study.xml, .setup, .city, and .object. These

files serve distinct purposes: the .txrx file defines the transmitter and receiver parameters, the

.study.xml file contains the study configuration, the .setup file includes the simulation settings,

the .city file represents the imported 3D scenario, and the .object file outlines specific objects

within the simulation environment. To maintain a baseline configuration, it is necessary to

create a copy of each of these files and rename them with the prefix "base" (e.g., base.txrx,

base.study.xml). These base files should be placed in the same directory as the original "model"

files, ensuring they are readily available for reference or to reset the simulation to its default

state.

Remember to adjust the material properties of the scenario according to the carrier fre-

quency. Due to the increased computational cost of adding more realistic 3D objects with many

faces, always optimize and review your models to ensure both integrity and good performance.
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3.2.2 Setting Up SUMO for Mobility Simulation

To simulate realistic mobility patterns within the study area used in the WI setup, we

must configure SUMO appropriately. This process start by importing the geographic data of

the study area into SUMO. This data should match the location used in the WI simulation to

ensure consistency. Use OpenStreetMap (OSM) data, which provides detailed maps that can be

converted into SUMO-readable formats. The netconvert tool, provided by SUMO, is used

to convert OSM data into a road network file (.net.xml).

1 netconvert --osm-files <file.osm> --output-file <file.net.xml>

Ensure that the OSM data covers the exact boundaries of your study area for accurate

alignment with theWI environment.

After creating the road network, the next step is to generate the traffic routes. While

SUMO provides scripts to generate random traffic, it is recommended to create custom scripts

to generate routes that accurately represent the desired traffic patterns and vehicle distributions.

These script must creates route files (.rou.xml) that include a fixed header specifying sup-

ported vehicle types and other simulation parameters. Ensure that the header is configured

correctly to define the types of vehicles, such as cars, buses, and trucks, reflecting the traffic

mix in the study area.

For example, a custom script might generate a route file with the following structure:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <routes>

3 <vTypeDistribution id="typeVehicleDistribution">

4 <vType id="Car" departSpeed="max" accel="3" decel="4.5"

5 length="4.645" width="1.775" height="1.59"

6 maxSpeed="17.88" speedDev="0.1" sigma="0.2"

7 minGap="0.3" probability="0.6"/>

8 <vType id="Truck" accel="2.0" decel="4" length="12.5"

9 width="2.5" height="4.3" maxSpeed="17.88"

10 speedDev="0.1" sigma="0.2" minGap="0.3"

11 probability="0.2"/>

12 <vType id="Bus" accel="2.0" decel="4" length="9"

13 width="2.4" height="3.2" maxSpeed="17.88"
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14 speedDev="0.1" sigma="0.2" minGap="0.3"

15 probability="0.2"/>

16 </vTypeDistribution>

17 <flow id="flowA" color="0,0,1" begin="0" end= "3000"

18 probability="0.98" type="typeVehicleDistribution">

19 <route edges="laneA"/>

20 </flow>

21 <flow id="flowB" color="0,1,0" begin="0" end= "3000"

22 probability="0.98" type="typeVehicleDistribution">

23 <route edges="laneB"/>

24 </flow>

25 </routes>

Once the network and routes are defined, configure the simulation parameters in the

SUMO configuration file (.sumocfg). This file should include references to the generated

network and route files, as well as simulation settings like time steps and output files.

1 <configuration>

2 <input>

3 <net-file value="file.net.xml"/>

4 <route-files value="custom_routes.rou.xml"/>

5 </input>

6 <time>

7 <begin value="0"/>

8 <end value="3600"/>

9 <step-length value="1.0"/>

10 </time>

11 </configuration>

It is possible run the SUMO simulation using either the SUMO GUI or CLI. The GUI is

useful for visualizing traffic flow and validating route configurations, while the CLI is ideal for

automated and batch processing.

1 sumo-gui -c <study_area.sumocfg>

Adjust the route generation scripts and simulation parameters as needed to ensure the

simulation accurately reflects the conditions of the study area. This flexibility allows for fine-
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tuning traffic scenarios, such as adjusting vehicle types, traffic density, and other simulation

factors.

3.2.3 Raymobtime Simulation Setup

To set up a simulation using the Raymobtime framework, some software tools and scripts

must be properly configured and executed. This subsection details the necessary steps, from

code organization to running the simulations, providing a structured approach to simulate real-

istic mobility and wireless channel conditions. All related projects for the simulation setup start

with the prefix 5gm on GitHub. The simulation environment explained above is assumed using

Linux and Python 3. The following steps outline the installation process:

Quick Installation: To quickly set up the environment, first create and activate a Python

virtual environment. Then, install the required Python packages and clone the necessary GitHub

repositories:

1 # Clone the simulation repository and install

2 git clone https://github.com/lasseufpa/5gm-rwi-simulation

3 cd 5gm-rwi-simulation

4 # If you have a Python virtual environment, activate it

5 # Install all required packages

6 pip install -r requirements.txt

7 python3 setup.py install

8 # Clone the data processing repository and install

9 cd ..

10 git clone https://github.com/lasseufpa/5gm-data

11 cd 5gm-data

12 python3 setup.py install

After a successful installation, the directories 5gm-data and 5gm-rwi-simulation

should be present in the specified location, and several Python packages, including rwimodeling,

rwiparsing, and rwisimulation, will be installed.

These three Python packages are fundamental to the simulation setup. The rwimodeling

package manages the manipulation of 3D objects within the InSite files, enabling modifica-

tions and analysis of environmental geometry. This package works closely with rwiparsing,
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which handles the proprietary file formats of InSite, ensuring that data is correctly interpreted

and processed. Finally, the rwisimulation package orchestrates the entire simulation pro-

cess, leveraging the functionalities provided by both rwimodeling and rwiparsing to run

the simulations efficiently and accurately.

Ensure that the Wireless InSite is installed in your setup and accessible through your

system’s PATH environment variable for seamless execution of the ray-tracing simulations.

3.2.4 Running the Simulation

To run the simulation, you first need to configure the config.py file, which can be

found in the "example" folder of the 5gm-rwi-simulation repository. This file contains

essential parameters that define the paths and settings for the simulation environment. Open

config.py in a text editor and adjust the following key variables:

base_insite_project_path : This variable should point to the folder with the

base simulations files created ate subsection 3.2.1.

results_dir : Define the directory where all simulation outputs will be stored.

wibatch_bin and calcprop_bin: These variables should specify the paths to the

respective executables for running different simulation modes in WI.

sumo_bin : Set this to the directory where SUMO is installed in you machine. For

instance: /usr/bin/sumo.

sumo_cfg: This variable defines the path to the SUMO configuration file, which con-

tains the simulation settings and network routes.

n_run: This variable defines an iterator that controls the number of ray-tracing simula-

tions samples to be executed, running from 0 to 99. It sets the maximum number of simulations

to 100, iterating one simulation at a time.

sampling_interval: This variable sets the time interval between scenes during the

simulation, measured in seconds.

time_of_episode: This variable defines the total duration of each episode in terms

of the number of scenes.

time_between_episodes: This variable specifies the time, in seconds, determining
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the pause between episodes.

You can also customize the simulation’s behavior through the following variables, which

control different modes:

use_fixed_receivers: Set to True use the receivers in the same positions placed in

the base simulation file; otherwise, set to False to focus on mobile receivers.

use_pedestrians: Set to True to include pedestrians in the simulation, provided your

SUMO setup supports them.

use_vehicles_template: Set to True to use pre-made 3D vehicle models instead

of generic boxes. Ensure the objects folder containing the models is present.

drone_simulation: Set to True if only drones should act as receivers in the simula-

tion, provided your SUMO setup supports them.

use_V2V: Set to True to enable Vehicle-to-Vehicle (V2V) communication, where both

transmitters and receivers are vehicles.

These variables are the most commonly adjusted to tailor the simulation to specific sce-

narios. However, there are several other configuration options available in the config.py

file. Users should carefully review these additional variables to ensure that all relevant param-

eters are set correctly based on their specific simulation requirements. After configuring these

variables, you’re ready to run the simulation.

Next, execute the simulation script by navigating to the 5gm-rwi-simulation/example

directory and using the following commands:

1 python3 -m rwisimulation.simulation -po

2 python3 -m rwisimulation.simulation -rj

Here’s what the individual commands do:

-po (Placement Only): This command runs the pre-processing stage of the simulation. It

parses the scenario files, sets up the 3D environment models, and configures the SUMO traffic

patterns. During this step, it integrates mobility data from SUMO and updates the InSite files

with accurate object placements. Additionally, it creates multiple run folders, each representing

an individual simulation, contributing to the overall mobility dataset.

-rj (Run Job): This command executes the full simulation, using the environment and
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mobility data set up in the pre-processing phase. It triggers Wireless InSite to simulate wireless

propagation for each run folder, calculating the channel characteristics and metrics. If a simula-

tion folder has already been processed, the -rj command skips it, ensuring efficient execution

by only processing pending runs.

By following these steps, you will be able to configure and execute a comprehensive

simulation environment that models complex wireless communication scenarios for research

and development purposes.

3.2.5 Post-Processing and Analysis

After completing the simulation runs, each folder will have individual raw RT output data,

including the MPC information and channel characteristics. To facilitate the usage of the data, it

must be must be organized and converted into more accessible formats for further analysis. The

raymobtime results are typically stored in a SQLite database file (episodedata.db) and can

also be transformed into matrix formats such as Hierarchical Data Format - Version 5 (HDF5),

which are convenient for use in Python and MATLAB.

Storing Results in SQLite: The ray-tracing and SUMO simulation outputs can be stored in

an SQLite database for easier management and querying. To do this, move the simulation files

to the 5gm-data project directory and use the following commands to insert the raw data into

an SQLite database named episodedata.db:

1 cd 5gm-data

2 python3 todb.py rt_results

Mobile Simulations: For simulations with mobile receivers, you can convert the episodedata.db

file into HDF5. Before proceeding, ensure the variables numScenesPerEpisode and fileNamePrefix

in convert5gmv1ToChannels.py are correctly set. Then, run the conversion script to or-

ganize the data further:

1 python3 convert5gmv1ToChannels.py

Fixed Simulations: For simulations with fixed transmitters and receivers, you can convert

the ray-tracing output into formats suitable for Python and MATLAB. Then, run the following

command to generate the matrix files:
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1 python3 collectFixedChannels.py rt_results

V2V Simulations: For vehicle-to-vehicle (V2V) simulations, additional adjustments are re-

quired. Ensure that the variables numScenesPerEpisode, numTx, and numRx in the script

collectChannels_from_V2V.py are properly set according to your scenario. Once con-

figured, run the following command to convert the data into HDF5 files:

1 python3 collectChannels_from_V2V.py rt_results output

The primary output format is an HDF5 file containing a 4D structure with the dimensions:

number of scenes, transmitter-receiver pairs, rays, and path parameters. These parameters in-

clude metrics such as received power, time of arrival, angles of departure and arrival, and line-

of-sight flags of each MPC. This ensures that the simulation data can be efficiently analyzed

and visualized, supporting further research and development efforts. The structure of the HDF5

output is detailed in Table 3.4, ensuring all key channel characteristics are stored for further

analysis.

Table 3.4: Ray-Tracing Data Output Format

Archive Type Archive Format Order of Path Parameters

HDF5 4D structure:

[scenes, TX-RX pairs, max

rays, parameters]

1. Received power (dBm)

2. Time of arrival (s)

3. Elevation angle of departure (degree)

4. Azimuth angle of departure (degree)

5. Elevation angle of arrival (degree)

6. Azimuth angle of arrival (degree))

7. LOS flag (’1’ = LOS, ’0’ = NLOS)

8. Ray phase (degree)

3.3 V2I 3GPP-Based Datasets Scenarios

This section outlines the datasets generated based on specifications discussed within the

3GPP Radio Access Network - 1 (RAN-1) study group, which focuses on Physical (PHY) layer.

The group is actively engaged in several topics but the data discussed in this work were collected
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from discussions on AI/ML in beam management topic.

Two primary scenarios have been modeled for this research: Rosslyn and Marselha. The

Rosslyn scenario is a well-established example within the Raymobtime framework, recognized

for its representation of an urban canyon environment. This scenario effectively captures the

complexities of wireless communication in densely built-up areas, making it a valuable bench-

mark for evaluating beam management algorithms.

In contrast, the Marselha scenario was chosen to illustrate a more residential context. This

scenario enables the exploration of beam management performance in environments character-

ized by lower density and different mobility patterns. By analyzing both urban and residential

scenarios, this research aims to provide a comprehensive understanding of how varying envi-

ronments influence the effectiveness of beam management strategies.

The Table 3.5 presents the details of the 3GPP-based datasets, including key parameters

such as frequency, receiver type, and scene intervals. The 3D representations of these scenarios

are shown in Figures 3.3 and 3.4. These datasets serve as a foundation for further analysis and

experimentation, aligning with the specifications set forth by the 3GPP discussions.

Table 3.5: 3GPP-Based Datasets

ID Scenario Freq.

GHz

Rx(Type) Scene

Interval

Episodes

Interval

Episodes Scenes

per

Episode

Valid

Ch.

t005 Marselha 30 5 Mobile 80 ms 30 s 145 40 29K

t006 Rosslyn 30 5 Mobile 80 ms 30 s 145 40 29K

As can be verified in the meeting document R1-2407554 [35], the discussion group which

focuses on the evaluation of AI/ML techniques for beam management places primary impor-

tance on Downlink (DL) transmit beam prediction, that can be separated into two key scenarios:

• BM-Case1 - Spatial-domain DL Tx beam prediction: This approach predicts Set A beams

using measurement results from Set B beams, capitalizing on spatial correlations to en-

hance beam selection accuracy.

• BM-Case2 - Temporal DL Tx beam prediction: In this case, predictions for Set A beams

are derived from historical measurement data of Set B beams, which allows the system to
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Figure 3.3: Simulated scenario: Rosslyn (in USA) Urban-canyon

Figure 3.4: Simulated scenario: Marselha (in France) Suburban

consider the time-dependent evolution of the environment for future beam predictions.

The 3GPP has not yet reached a consensus on the definitions of Set A and Set B, leading

to scenarios where one may be a subset of the other or where both sets are entirely independent.

In this work, we will present a configuration proposal for Set A and Set B in Section 4.

The parameter specifications used in our both simulations are closely aligned with on-



34

going discussions within the 3GPP RAN1 study group, particularly the insights from meeting

document R1-2306199 [7]. These specifications are derived from the scenarios outlined in the

meeting discussions, ensuring compliance with emerging standards in beam management for

5G and beyond.

The frequency range is set to 30 GHz, consistent with the mmWave frequency band, which

is crucial for high-capacity and high-speed data transmission in vehicular communication sce-

narios. In the 3GPP discussions, two distinct mobility profiles were considered for evaluation.

The first, labeled as Set A, simulates low-mobility conditions with a a UE speed of 3 km/h,

while Set B incorporates higher mobility scenarios with speeds of 30 km/h and 60 km/h. These

profiles capture a variety of mobility conditions typically encountered in urban and suburban

environments. For t003 and t004 datasets only the Set B configuration, which focuses on higher

mobility, was adopted to better reflect the challenges of fast-moving vehicular environments.

The base station (BS) transmission power is specified at 40 dBm, ensuring adequate cov-

erage and signal strength across the selected environments. The BS antenna is mounted at a

height of 25 meters, with a downtilt angle of 110°, which optimizes beamforming for both

near-field and far-field UE locations. The inter-site distance between base stations is set to 200

meters, representing a typical urban deployment scenario.

The UE distribution for beam prediction is outlined in 3GPP specification, distinguishing

between the spatial and temporal prediction domains. For spatial domain beam prediction, the

UE distribution follows the guidelines in TR 38.901 [43], with 80% of UEs positioned indoors

and 20% outdoors. An alternative scenario with 100% outdoor UEs is also considered. For

time-domain prediction, all UEs are assumed to be outdoors to account for mobility dynamics.

Given that our application focuses on beam tracking, where mobility plays a crucial role, our

dataset adopts the 100% outdoor configuration to better reflect the dynamic conditions of the

target scenarios.



Chapter 4

System and Architecture Overview

In this chapter, we present the overall system and architecture developed for efficient

beam-tracking in V2I communications using mmWave MIMO systems. With the growing de-

mand for high-speed, low-latency communication in next-generation networks, beam-tracking

has emerged as a crucial technique to maintain robust connections in dynamic environments.

This work addresses the challenges posed by rapid vehicular movement and complex multipath

propagation.

The system integrates a new beam-tracking approach with machine learning techniques,

specifically leveraging a RNN to enhance the ability to predict and adapt to beam changes in

real-time in comparison with previous works.

4.1 Beam-Tracking Proposed Approach

The proposed beam-tracking system is designed to adapt to different dynamic scenarios

of vehicular networks by employing deep learning to select the optimal beam in real time. This

approach leverages historical beam data as input for accurate predictions.

4.1.1 Input Hierarchical Dimensionality Reduction

To efficiently optimize the input size, the system utilizes a technique similar to hierarchi-

cal beamforming [33] to reduces the overhead associated with exhaustive beam searches. Based

on the estimate position of the UE obtained by CSI [44] the set of all beams is geometrically

reduced to a subset of potential N candidates, referred to as Set A, following the current 3GPP
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nomenclature defined in [35]. This reduction is achieved by identifying beams that are oriented

towards the estimated location of the UE, as illustrated in Figure 4.1. The selection process

considers the angular proximity of each beam in Set A, retaining only those that fall within a

specified angular sector around the UE’s estimated position.

The angular selection process involves computing the relative angle between each beam’s

direction and the estimated UE position. The angle θ between the BS position P and the UE

position Q is calculated as:

θ = arctan2(yQ − yP , xQ − xP ) ·
180

π
, (4.1)

where (xP , yP ) and (xQ, yQ) are the coordinates of the BS and UE, respectively. The resulting

angle is normalized to lie within the range [−180◦, 180◦] for consistency.

To form Set A, the system selects the N beams with directions closest to θ, based on their

absolute angular differences from θ. This step minimizes redundancy by prioritizing beams

most aligned with the estimated UE position, as shown in Figure 4.1.

Figure 4.1: Beam set spatial reduction.

Once the N candidates in Set A are determined, the time series input can be build.

4.1.2 Historical Beam Time Series Input

The method utilizes historical beam data, structured as shown in Figure 4.2, to predict the

optimal beam. The system adopts a periodic RSRP measurement strategy, where RSRP (mea-

sured in Watts) is recorded within an observation window of size 4 (scenes). In this methodol-

ogy, a beam measurement is interleaved with two predictions. As a result, each input incorpo-
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rates at least two real RSRP measurements, with the remaining data consisting of predictions.

This frequency ensures that the system can respond quickly to changes in the environment.

Figure 4.2: Structure of historical beam data as input for the RNN.

The RSRP is used as input to provide a better understanding of the beam’s signal strength,

allowing the system to track variations over time. Additionally, the beam index is also included

in the input. This is crucial because it provides a structured way to handle the beam search

process when hierarchical dimensionality reduction is applied, narrowing the scope to the most

probably relevant beams. This way the system is able to efficiently manage the complexity of

the beam-tracking process while maintaining the temporal context necessary to monitor changes

in the communication channel.

In this work beam measurements are taken every 240 ms, while beam predictions are per-

formed more frequently, at intervals of 80 ms between the measurements. Figure 4.3 illustrates

an example input considering a Set A with N = 2, where the selected beams are the ones in-

dexed as 32 and 33, and their corresponding hypothetical RSRP values. In beam 32, the 0.6

and 0.8 are values derived directly from physical measurements, accounting for the overhead

of real-time data acquisition. On the other hand, predicted values, such as 0.8 and 0.7, are

estimated by the model.

By relying on predictions to fill in the gaps between measurements, the approach sig-

nificantly reduces the overhead compared to scenarios where measurements are taken at every

timestamp. For example, if beam measurements were performed at the same frequency as the
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predictions, the overhead would duplicated, depending on the scenario and the number of beams

being tracked.

Figure 4.3: Example of historical beam information as input to the RNN, with selected beams and RSRP

values.

4.1.3 Recurrent Neural Network Architecture

As shown in Figure 4.4, the proposed tracking method is realized through an RNN model,

specifically using LSTM layers, designed to handle the sequential historical beam data, predict-

ing future beam behavior based on past trends.

The architecture leverages multiple LSTM layers to handle the dynamic nature of ve-

hicular scenarios by extracting features from time-series input. Dropout layers are integrated

to prevent overfitting, ensuring robust performance across varying conditions. Dense layers

further refine the predictions, producing outputs that align with the number of candidate beams.

This hierarchical structure effectively handles sequential data, balancing model complex-

ity and generalization. By leveraging the sequential processing capabilities of LSTM layers with

regularization and dense transformations, the architecture addresses the challenges of real-time

beam tracking, such as fluctuating channel conditions and limited historical data. This approach

balances accuracy and efficiency, making it well-suited for dynamic vehicular environments.
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Figure 4.4: Proposed beam tracking RNN architecture.

This architecture will be evaluated on two primary and independent tasks, designed to

assess its effectiveness in beam-tracking scenarios:

4.1.3.1 Beam Index Classification

The first task involves classifying the optimal beam index for the next time step. Given the

sequential historical beam data, the model predicts the most probable best beam index from the

candidate set. The model’s performance will be trained and evaluated using the top-K accuracy

metric, ensuring its capability to identify the optimal beam under dynamic conditions.

4.1.3.2 Beam RSRP Regression

The second task focuses on predicting the RSRP for each candidate beam. This regression

task provides a quantitative measure of signal strength, enabling the system to rank beams based

on their predicted RSRP values. The model is trained using Mean Squared Error (MSE) as the

loss function.

Additionally, the regression predictions will also be used to evaluate top-K accuracy. The

beam index corresponding to the highest predicted RSRP will be extracted and compared to the

ground truth to assess the model’s ability to identify the optimal beam within the top-ranked

candidates.

Hence, it is important to note that, after the model performs regression, we will use the

outputs to perform top-K classification.



Chapter 5

Simulations and Results

This chapter outlines the experimental setup and presents the results of the proposed

beam-tracking system. The simulations are conducted to evaluate the system’s performance in

dynamic vehicular scenarios, focusing on two core tasks: beam index classification and RSRP

regression. The evaluation employs key metrics such as Top-K accuracy to assess the model’s

effectiveness, and Mean Absolute First Difference (MAFD), and beam index switching rate to

provide insights into the dataset’s characteristics. Additionally, the results are benchmarked

against the similar LSTM based approach proposed by Zhao et al. [14], and a LIDAR-based

CNN baseline originally proposed in [11], which was later enhanced with residual layers [45]

and utilized in [46], resulting in the final architecture define by Suzuki et al. [12] showed in

Figure 5.1.

Figure 5.1: CNN baseline architecture.

This comparison underscores the need for a deeper analysis of the vehicular communica-

tion environment to fully understand the factors influencing system performance. The following
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section delves into some characteristics of the V2I wireless channels datasets generated for this

research, which play a critical role in beam-tracking accuracy and reliability.

5.1 V2I Wireless Channels Analysis

The analysis of V2I wireless channels is essential to understanding the dynamics of beam-

tracking in real-world vehicular scenarios. This section evaluates the characteristics of the

datasets used in the simulations, focusing on LOS and NLOS proportions, as well as key metrics

such as the MAFD and beam index switching rate.

5.1.1 Line-of-Sight Proportion

The LOS and NLOS distribution provides insights into the propagation conditions of the

datasets. Table 5.1 summarizes the LOS and NLOS sample counts for the Marselha and Ross-

lyn scenarios. Both datasets exhibit a high proportion of LOS samples, reflecting typical V2I

environments where clear visibility often dominates, mainly due to the 3GPP specifications [7]

about the base-station antenna height (25 meters). However, the presence of NLOS samples

highlights the challenges of beam management in obstructed scenarios, emphasizing the impor-

tance of robust tracking mechanisms.

Table 5.1: Datasets Line of Sight proportion

Dataset ID LOS NLOS

Marselha - t005 27800 2200

Rosslyn - t006 27899 2101

5.1.2 Beam Index Dynamics

Some metrics are employed to characterize the beam index dynamics in the datasets: MAFD,

the beam variance and beam index switching rate. These metrics quantify the temporal variabil-

ity and stability of beam selection, which are crucial for evaluating the tracking system’s ability

to adapt to rapid changes in communication channels.
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The MAFD makes sense when consecutive beam indices represent neighboring (consec-

utive) angles, and is defined as:

MAFD =
1

R

R∑
r=1

∑S−1
s=1 Dsr

S − 1
, (5.1)

where R is the number of receivers, S is the number of scenes in the given episode, and Dsr

represents the difference between beam indices îsr and îsr−1 of consecutive scenes, and is given

by

Dsr = min((̂isr−1 − îsr) mod Ntotal, (̂isr − îsr−1) mod Ntotal). (5.2)

The mod Ntotal operation implements a “wrap around”, with Ntotal being the total number of

beams. For instance, assuming Ntotal = 3, a given receiver r = 5, an episodes with S = 7

scenes and a sequence of beam indices î given by

1, 1, 0, 2, 1, 2, 0;

the respective sequence Ds5 is

0, 1, 1, 1, 1, 1.

Note the wrap around Ntotal − 1 = 2 in this case, such that the last value of Ds5 is 1 (not 2),

characterizing a closed loop.

The beam index switching rate is calculated as:

Index switching rate =
1

R

R∑
r=1

∑S−1
s=1 1(̂isr ̸= îsr−1)

S − 1
, (5.3)

this rate indicates how often the selected beam index changes from one time instant to the next.

Table 5.2: Datasets beam change rate.

Dataset ID MAFD Variance Index switching rate

Marselha - t005 0.922 130.24 0.3481

Rosslyn - t006 2.032 310.01 0.3495

Key Observations

The results in Table 5.2 reveal distinct patterns in beam dynamics for the Marselha and

Rosslyn datasets:
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• The beam index switching rates are comparable for both datasets, suggesting similar num-

ber of beam indices changes. However, this rate does not indicate by how much the

indices changed. This is something that the variance and the MAFD can inform.

• The Marselha dataset exhibits a lower MAFD, indicating smoother beam transitions,

mainly in the shift between LOS channel and NLOS channel, resulting in a more sta-

ble channel conditions (in the sense that the best beam index does not vary much).

• The Rosslyn dataset shows a higher MAFD, reflecting more significant beam angular

variations, likely due to the urban canyon environment.

These findings highlight the varying demands of different vehicular environments on

beam-tracking systems and underline the importance of adaptability in the proposed method.

5.2 Beam Tracking Evaluation

This section presents the performance evaluation of the proposed beam-tracking system.

The analysis focuses on comparing the proposed RNN-based model with a CNN-based baseline

to assess their effectiveness in dynamic vehicular scenarios. The comparison encompasses vari-

ous dimensions, including model complexity, input size requirements, and overall performance

in beam-tracking tasks.

Table 5.3 summarizes the key specifications of the models used in the evaluation. The

RNN-based model leverages its sequential processing capabilities to handle historical beam

data, while the CNN baseline processes LIDAR data, which inherently requires larger input

sizes. Both models differ slightly in the number of trainable parameters and have a signifi-

cant difference in memory footprint, reflecting distinct trade-offs in computational and storage

requirements.

Table 5.3: Models Specifications

Model Parameters Model size Input mean size

RNN 535,552 2.04 MB 1.25 KB

CNN 514,000 1.96 MB 1048 KB

The input sizes were calculated based on the memory requirements of the arrays used to
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represent the data. Specifically, the memory size corresponds to the dimensions and datatype of

the arrays processed by each model during training. For instance, the RNN processes smaller

arrays derived from sequential historical data, while the CNN requires larger arrays to accom-

modate the spatial dimensions of LIDAR inputs.

Table 5.3 illustrates that the RNN model achieves a comparable number of parameters

and model size to the CNN, despite using a significantly smaller input size. This reduction also

minimizes computational demands and lowers the memory requirements for processing. The

RNN’s efficiency stems from its ability to extract meaningful features from sequential historical

data, eliminating the need for the large-scale spatial inputs required by the CNN.

5.2.1 Top-K Accuracy

Top-K Accuracy is a metric used to evaluate a model’s performance in multi-class clas-

sification or ranking tasks. Unlike standard accuracy, which only considers the top prediction,

Top-K accuracy checks whether the true label is within the Top-K predicted values, ranked by

their probabilities or scores. In our model, this metric is applied as follows:

• For classification tasks, a prediction is considered correct if the true class label is within

the Top-K predictions sorted by their associated probabilities.

• For ranking tasks, such as beam RSRP prediction, the metric evaluates whether the true

beam is included among the Top-K candidates ranked by their predicted RSRP values.

The formula for Top-K accuracy is:

Top-K Accuracy =
Number of samples where the true label is in the top-K predictions

Total number of samples

.

Top-K accuracy is particularly relevant for beam management systems, as it measures

how often the correct beam index or candidate is included among the Top-K predictions. By

identifying a smaller set of high-probability candidates, this metric can inform strategies that

reduce the frequency of exhaustive beam sweeps in dynamic scenarios, potentially minimizing

overhead while maintaining system performance.

The subsequent sections provide a detailed comparison of the proposed and baseline mod-

els performance across classification and regression tasks using the Top-K accuracy
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5.3 Performance Analysis and Visualization

The performance of the proposed beam-tracking approach is evaluated using the Top-K

accuracy metric across various configurations and datasets. The results are presented in Figures

5.2 to 5.6 and are analyzed below.

5.3.1 Comparison of Models Performances

The performance analysis, visualized in Figures 5.2 through 5.6, highlights key insights

into the behavior of the proposed beam-tracking model.

In Marselha-T005 (Figure 5.2), the classification models outperform the regression mod-

els. However, the regression models still achieve high absolute accuracy levels, demonstrating

their viability for beam tracking. The strong performance of the classification approach in this

scenario suggests that it effectively leverages the dataset’s topological characteristics. Never-

theless, as evidenced by the results on the Rosslyn-T006 dataset, classification models may face

limitations and struggle to maintain consistent performance across varying scenarios.

In T006 (Figure 5.3), the performance gap between classification and regression mod-

els becomes more pronounced. The classification models, both RNN and CNN, underperform

significantly, likely due to the higher MAFD of the dataset. This increased MAFD introduces

greater complexity in identifying the correct beam index, as it disrupts the predictable patterns

in the output labels. In contrast, the regression models maintain robust performance across

both datasets, showcasing their ability to generalize effectively to more complex and dynamic

scenarios. This robustness positions regression models as strong candidates for real-world de-

ployment, where adaptability and consistent performance are critical.

Comparing the baselines with the proposed model in Marselha-T005 (Figure 5.2), the

RSRP regression model outperforms the Zhao et al. LSTM model by achieving higher Top-

K accuracy and compared to the Suzuki et al. CNN, the proposed model achieves equivalent

performance. However, it achieves this result with a significantly lower computational burden.

In Rosslyn-T006 (Figure 5.3), the RSRP regression model outperforms both baselines.

These results highlight the model’s ability to adapt to the dynamic propagation conditions

present in the Rosslyn-T006 dataset. Below is a concise analysis of the results obtained in

both scenarios, highlighting key performance trends and insights.
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Figure 5.2: T005 beam tracking Top-K accuracy.

Figure 5.3: T006 beam tracking Top-K accuracy.

Summary of results obtained in Marselha-T005

• RNN Index Classification (N = 64) outperforms other models, achieving nearly 99.9%

accuracy at K = 10, demonstrating its superiority in beam index prediction.
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• RNN RSRP Regression (N = 64) exhibits consistent improvement, reaching a maxi-

mum accuracy of 98.2% for K = 10.

• Suzuki et al. CNN Index Classification with LIDAR data, shows high accuracy, reach-

ing 99.4% for K = 10, highlighting the benefit of incorporating multimodal data with

spatial information.

• Zhao et al. LSTM Classification achieves 95.5% at K = 10, suggesting that the lower

variance and reduced MAFD value may facilitate the beam tracking process.

Summary of results obtained in Rosslyn-T006

• RNN RSRP Regression (N = 64) shows robust performance, achieving 97.2% at K =

10, although slightly lower than T005 due to increased dataset complexity.

• Zhao et al. LSTM Classification achieves 80.07% at K = 10, which is lower than

the result reported in the reference paper. This difference is justifiable, as although the

scenario (Rosslyn) is the same, the dataset was modeled differently, leading to variations

in the evaluation conditions.

• Suzuki et al. CNN Index Classification with LIDAR data, improves progressively,

achieving 74.4% at K = 10.

• RNN Index Classification (N = 64) performs poorly, achieving an accuracy of only

34.3% at K = 10, likely due to dataset-specific challenges.

5.3.2 Impact of Set A Size

The impact of varying the input size (N) on beam tracking accuracy is illustrated in Fig-

ures 5.4 and 5.5. As expected, increasing N generally improves accuracy across the Top-k

values, likely due to the larger data context available for decision-making. However, interesting

trends emerge when analyzing specific scenarios.

In the Marselha-T005 dataset, an intriguing observation is that the model with N=32

outperforms the model with N=64, despite using a smaller input size. This result highlights

the potential of achieving superior accuracy with reduced computational overhead, which is

advantageous for scenarios requiring low-latency or resource-constrained environments. This

unexpected behavior may be influenced by the dataset’s MAFD, which can create scenarios
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where an intermediate input size captures the most relevant information without redundancy.

In contrast, for the Rosslyn-T006 dataset, the model with N=64 maintains a slight advan-

tage over N=32, though the difference in accuracy is minimal. This close performance suggests

that, for the simulated scenarios, using N=32 remains a viable alternative for scenarios where

reducing overhead is critical, offering a good balance between computational cost and accuracy.

A noteworthy observation for both datasets is the behavior of the model with N=5. Due

to the limited input size, its accuracy plateaus at Top-k values greater than five, as the reduced

input inherently limits its ability to provide diverse predictions. While the performance is under-

standably lower compared to larger input sizes, N=5 still offers insights for applications where

resource constraints outweigh accuracy requirements.

Overall, the results emphasize the importance of tailoring input size to the specific sce-

nario, balancing accuracy and computational efficiency while accounting for dataset character-

istics such as MAFD.

A concise evaluation of the outcomes in both scenarios is provided below, showcasing

key performance patterns and observations:

Figure 5.4: T005 beam tracking Top-K accuracy with varying input sizes.
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Figure 5.5: T006 beam tracking Top-K accuracy with varying input sizes.

Summary of Results Obtained by Varying Input Size in Marselha-T005

• N = 32 achieves the highest accuracy, reaching 99.0% at K = 10, surpassing N = 64.

• Increasing N to 64 results in slightly lower accuracy at K = 10, achieving 98.2%.

• Smaller input sizes (N = 10 achieves 90.6% and N = 5) lead to noticeable performance

drops, with N = 5 stabilizing at 83.9% from K = 5 on-wards while still maintaining

relevant accuracy levels.

Summary of Results Obtained by Varying Input Size in Rosslyn-T006

• N = 64 achieves the best accuracy, reaching 97.2% at K = 10.

• Reducing N to 32 slightly lowers accuracy to 94.1% at K = 10.

• For N = 10, the model achieves 77.16% accuracy at K = 10. While not as strong as

higher input sizes, this result is still reasonable given the reduction in input data.

• N = 5 results in the lowest performance, stabilizing at 57.9% for K ≥ 5.
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5.3.3 Performance Under LOS and NLOS Conditions

Figure 5.6 compares the Top-K accuracy of the proposed regression model under Line-

of-Sight (LOS) and Non-Line-of-Sight (NLOS) conditions. As expected, the accuracy under

LOS conditions outperforms NLOS due to the clearer and more direct beam paths available in

LOS scenarios. However, it is notable that the NLOS accuracy remains relatively high despite

the increased complexity and unpredictability of the environment.

In T005, the LOS condition achieves a peak accuracy of 98.2% at K = 10, while the

NLOS condition reaches 88.2%. The gap of approximately 10% demonstrates the impact of

obstructed paths on the model’s performance but also highlights its robustness in less ideal

conditions.

In T006, the gap is slightly wider, with LOS achieving 97.2% and NLOS reaching 82.2%

at K = 10. This is consistent with the more challenging characteristics of T006, as reflected in

its higher MAFD.

While the NLOS results are lower across both datasets, they are still promising, particu-

larly given the inherent difficulty of accurately predicting beam paths in such conditions. Future

work could explore the effects of training the model with a more balanced dataset containing

additional NLOS samples to further enhance generalization in complex environments.

Overall, these results emphasize the strengths of the proposed RSRP regression model,

particularly in its resilience to dataset complexities and its potential for reducing overhead while

maintaining high accuracy in beam-tracking tasks.
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Figure 5.6: Line-of-sight and Non-line-of-sight beam tracking Top-K accuracy.

5.3.4 Throughput Ratio

Figure 5.7 illustrates the throughput ratio achieved for Top-1 accuracy across different

beam-tracking methods in two distinct scenarios: Marselha (T005) and Rosslyn (T006). The

throughput ratio is a key performance metric that quantifies the fraction of successful beam

alignments relative to an ideal baseline, offering insight into the effectiveness of the proposed

models in maintaining a stable communication link.

Among the classification models, only Zhao et al. maintained a good generalization ca-

pacity across both datasets. The "RSRP Regression" methods, even when reducing the size of

Set A by half, achieved comparable and high throughput in both scenarios. Specifically, with

N = 64, the throughput ratios achieved 0.8739 in Marselha (T005) and 0.8449 in Rosslyn

(T006), while for N = 32, the throughput ratios were 0.8702 and 0.7663 in Marselha (T005)

and Rosslyn (T006), respectively.

These results highlight notable differences in performance between the two datasets, re-

flecting a similar pattern to that observed in the accuracy results.
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Figure 5.7: Throughput Ratio for Top-1 accuracy.

5.3.5 Advantages of Reducing the Number of Measurements

Reducing the number of measurements performed in beam tracking not only reduces net-

work overhead but also offers significant advantages in terms of resource efficiency and energy

consumption. By evaluating the performance of the proposed model with different measure-

ment setups, we can quantify these benefits while maintaining satisfactory accuracy levels.

In the full measurement case, each episode comprises 40 scenes, and each beam is mea-

sured in all 40 scenes, resulting in a total of 40× 64 = 2560 measurements per episode. How-

ever, by adopting the proposed methodology, this number is significantly reduced. For example:

• Considering the input using both measurements and predictions this became a reduced

measurement scenario, only 14 scenes are used per beam, leading to 14 × 64 = 896

measurements—an overall reduction of approximately 65%.

• Further reductions can be achieved by decreasing the input size N . For instance, with

N = 32, the total number of measurements drops to 14 × 32 = 448, representing an

82.5% reduction compared to the full measurement case.
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Given that each episode spans 3.12 seconds, the reduced measurement setup also de-

creases the time required for data acquisition. This reduction is particularly advantageous in

scenarios where network resources are limited, as it allows the system more time to focus on

transmitting user data, thereby improving overall network efficiency.

Moreover, the proposed reduction methodology preserves the model’s performance, as

shown in earlier analyses. Even with fewer measurements and smaller input sizes, the regression-

based approach achieves competitive accuracy levels, reinforcing the practicality of the method.

This trade-off between efficiency and performance highlights the potential for deploying beam-

tracking solutions in real-world applications where resource constraints are critical.
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Conclusions

This research presented a first exploration of deep learning-based beam tracking for 5G

and 6G mmWave communication, specifically targeting V2I scenarios. By leveraging regres-

sion models to predict RSRP values, the proposed methodology demonstrated consistent and

robust performance across the investigated environmental conditions, including the more chal-

lenging NLOS propagation scenarios.

The results highlighted the model’s capacity to achieve high accuracy while reducing the

input size and the number of measurements required per episode. These optimizations signif-

icantly enhance the system’s computational efficiency and decrease network overhead, freeing

resources for actual data transmission. Unlike most approaches, which focus on beam selection,

this work addresses the more challenging problem of beam tracking. The results represent ini-

tial steps in this direction, evaluated on two distinct scenarios, and provide promising evidence

of the method’s applicability.

In the Marselha-T005 dataset, regression models displayed exceptional performance, achiev-

ing accuracy levels as high as 98.2% for K = 10. Classification models excelled further in this

specific scenario, with the RNN index classification model achieving nearly 99.9% accuracy at

the same K value. The use of multimodal data, such as LIDAR, proved beneficial for the CNN

classification model, which reached up to 99.4% accuracy. However, For the RNN models,

reducing the input size revealed trade-offs between computational efficiency and accuracy, as

models with smaller inputs like N = 5 or N = 10 displayed noticeable performance degrada-

tion.
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In the Rosslyn-T006 dataset, the RSRP regression models again exhibited robustness,

maintaining high accuracy levels despite the increased dataset complexity, which introduced a

higher degree of unpredictability in beam index patterns. The RSRP regression model achieved

a maximum accuracy of 97.2% for K = 10. However, classification models struggled in this

scenario, with the RNN classification model reaching only 34.3% accuracy at K = 10, likely

due to the higher MAFD present in the dataset. These results demonstrate the adaptability of the

regression approach to diverse and dynamic scenarios, making it a strong candidates for more

researches seeking real-world deployments where generalization and resilience to environmen-

tal variability are critical.

Further analyses of varying input sizes reinforced the effectiveness of the regression-

based models. For Marselha-T005, an input size of N = 32 surprisingly achieved higher

accuracy than the largest input size N = 64, suggesting a potential for optimizing accuracy

while reducing computational overhead. For Rosslyn-T006, the highest accuracy was observed

with N = 64, while N = 32 provided comparable results with only minimal accuracy loss,

highlighting its utility in resource-constrained scenarios. Models with N = 5 or N = 10

exhibited significant accuracy reductions, although they still offered meaningful insights for

highly constrained environments.

The proposed beam-tracking model demonstrated resilience across both LOS and NLOS

conditions, consistently achieving high accuracy levels. In the Marselha-T005 dataset, the LOS

condition reached 98.2% accuracy at K = 10, while the NLOS condition achieved 88.2%. The

Rosslyn-T006 dataset presented greater challenges, with LOS and NLOS conditions achieving

97.2% and 82.2% accuracy, respectively. For greater reliability of these results, it is neces-

sary to evaluate them in more scenarios. However, these initial results underscore the model’s

robustness and adaptability to various propagation environments.

Throughput ratio results further validated the proposed method’s effectiveness, with the

"RSRP Regression" models demonstrating stable throughput ratios in both Marselha and Ross-

lyn scenarios.

Reducing the number of measurements proved to be a crucial factor in improving network

efficiency, particularly in terms of communication dynamics. This approach reduces network

overhead by up to 65%, allowing more efficient use of resources by focusing on essential mea-

surements that align with the dynamics of beam tracking, such as beam sweep and channel
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estimation. While there is a relationship between the reduction in measurements and model

accuracy, the primary benefit lies in optimizing the overall system performance, freeing up net-

work resources for data transmission. These optimizations reflect a crucial trade-off between

between performance and efficiency.

The insights gained from this research contribute to advancing the state-of-the-art in beam

management for next-generation networks and provide a foundation for future investigations.

6.1 Future Works

For future work, several avenues can be further explored to enhance the methodology and

broaden its applicability. One promising direction is leveraging transfer learning techniques,

which could allow the model to adapt to new scenarios or environments with limited data, sig-

nificantly reducing the need for retraining and enabling faster deployment in diverse conditions.

Additionally, the extension of this work to V2V communication scenarios presents an exciting

opportunity to evaluate the method’s robustness and adaptability in a wider range of vehicular

networks.

Another key avenue lies in evaluate the methodology in more scenarios, since this work

was limited to two datasets only. Also is necessary focus in optimizing the training process

using datasets with a more balanced LOS and NLOS distribution to assess model performance

comprehensively in various conditions. Incorporating real-world measurements for validation

and extending the methodology to handle dynamic multi-user scenarios could also broaden its

applicability.

Finally, introducing mechanisms to correct beam-tracking failures in real-time may fur-

ther improve system reliability, particularly in highly dynamic environments.

6.2 Published Articles

This master’s research culminated in several contributions to the academic community,

resulting in the publication of the following articles:

• Oliveira, A., Suzuki, D., Bastos, S., Correa, I., & Klautau, A. (2024, November). Ma-

chine Learning-Based mmWave MIMO Beam Tracking in V2I Scenarios: Algorithms
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and Datasets. In 2024 IEEE Latin-American Conference on Communications (LATIN-

COM). IEEE.

• Klautau, A., Correa, I., Bastos, F., Nascimento, I., Borges, J., Oliveira, A., ... & Lins,

S. (2023). Integrated simulation of deep learning, computer vision and physical layer of

UAV and ground vehicle networks. In Deep Learning and Its Applications for Vehicle

Networks (pp. 321-342). CRC Press.

• Bastos, S., Oliveira, A., Suzuki, D., Gonçalves, L., Sousa, I., & Klautau, A. (2023).

Generation of 5G/6G Wireless Channels Using Raymobtime with Sionna’s Ray-Tracing.

XLI Simpósio Brasileiro de Telecomunicações e Processamento de Sinais.

• Brasil, C., Reis, R., Oliveira, A., Braun, C., Damasceno, L., Correa, I., & Klautau, A.

(2023). Automatic Generation of Images Using Unreal Engine for Supervised Learning.

XLI Simpósio Brasileiro de Telecomunicações e Processamento de Sinais.

• Suzuki, D., Oliveira, A., Gonçalves, L., Correa, I., Klautau, A., Lins, S., & Batista, P.

(2022, November). Ray-Tracing MIMO Channel Dataset for Machine Learning Applied

to V2V Communication. In 2022 IEEE Latin-American Conference on Communications

(LATINCOM) (pp. 1-6). IEEE.

• Correa, I., Oliveira, A., Du, B., Nahum, C., Kobuchi, D., Bastos, F., ... & Klautau, A.

(2022). Simultaneous beam selection and users scheduling evaluation in a virtual world

with reinforcement learning. ITU Journal on Future and Evolving Technologies, 3(2),

202-213.
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