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Resumo

Sistemas user-centric (UC) cell-free (CF) massive multiple-input multiple-output (MIMO)
são tecnologias promissoras para as próximas gerações de redes de banda larga móvel.
Nesses sistemas, o equipamento do usuário (UE - user equipment) é associado a um
subconjunto de pontos de acesso (APs - access points) distribuídos na área de cobertura,
resultando em melhorias na macrodiversidade e na eficiência espectral (SE - spectral
efficiency) da rede, quando comparado com sistemas celulares convencionais. Apesar dos
benefícios provenientes destes sistemas, desafios como métodos escaláveis de seleção de
APs, complexidade computacional (CC) e intercoordenação entre unidades centrais de
processamento (CPU - central processing units) ainda podem existir nos mesmos. Neste
sentido, esta tese propõe um novo framework de seleção de APs que fornece escalabilidade a
sistemas UC, possibilitando um uso mais eficiente dos recursos da rede, tais como potência
de transmissão e demandas de processamento. A solução é baseada em uma decisão casada
que visa estabelecer as conexões que sejam mais vantajosas tanto para os UEs quanto para
os APs. Além disso, são propostas três estratégias que modificam os grupos de APs dos
UEs, com o objetivo de reduzir o número de APs conectados a cada UE sem comprometer
a SE. Resultados de simulação revelam que o framework de decisão casada pode melhorar
a SE dos 95% likely UEs em até 163% quando comparado com as soluções de referência.
Uma abordagem heurística que reduz os efeitos da inter coordenação entre CPUs também
é proposta. A mesma diminui o número de UEs inter coordenados (i.e., UEs conectados
a múltiplas CPUs) em cada CPU para reduzir as demandas de sinalização nos links de
backhaul. Resultados numéricos indicam que o método proposto mitiga os impactos da
inter coordenação entre CPUs, enquanto gera perdas marginais na SE e melhora a eficiência
energética (EE). Por fim, investiga-se o desempenho de sistemas UC com capacidade de
processamento limitada. Especificamente, assume-se que a CC de realizar a estimativa
de canal e precodificação de sinais não cresce com o número de APs. Assim, o UE só
pode ser associado a um número finito de APs. Além disso, propõe-se um método para
ajustar os grupos de APs de acordo com a implementação da rede, ou seja, centralizada ou
distribuída. Os resultados mostram que os sistemas UC podem manter a SE sob pequena
degradação mesmo reduzindo a CC em até 96%. Além disso, o método proposto para
ajustar o grupo de APs leva à reduções adicionais na CC.

Palavras-chaves: Abordagem centrada no usuário, cell-free massive MIMO, complexidade
computacional, escalabilidade, inter coordenação entre CPUs, selecão de AP.



Abstract

User-centric (UC) cell-free (CF) massive multiple-input multiple-output (MIMO) systems
are promising technologies for beyond 5G (B5G) networks. In these systems, the user
equipment (UE) is associated with a subset of access points (APs) distributed into
the coverage area, leading to improvements in macro-diversity and spectral efficiency
(SE) compared to conventional cell-based systems. Despite the benefits, challenges such
as scalable AP selection strategies, computational complexity (CC), and inter-central
processing unit (CPU) coordination may still exist in these systems. In this regard, this
thesis proposes a novel and general AP selection framework that affords scalability for UC
systems, enabling more efficient use of the network resources, such as transmission power
and reduced processing demands. The solution is based on a matched-decision among the
most suitable connections for APs and UEs. Moreover, three strategies to fine-tune the
AP clusters of UEs are proposed, aiming to reduce the number of APs connected to each
UE without compromising the SE. Simulation results reveal that the matched-decision
framework improves up to 163% the SE of the 95% likely UEs compared with baseline
schemes. A heuristic approach that reduces the effects of inter-CPU coordination is also
proposed. It decreases the number of inter-coordinated UEs (i.e., UEs connected to multiple
CPUs) on each CPU to reduce signaling demands on backhaul links. Numerical results
indicate that the proposed method mitigates inter-CPU coordination while yielding slight
degradation in SE and improving energy efficiency (EE). Finally, this thesis investigates
the performance of UC systems with limited processing capacity. Specifically, it is assumed
that the CC of performing channel estimation and precoding signals does not increase
with the number of APs. Thus, the UE can only be associated with a finite number of APs.
Furthermore, a method is proposed for adjusting the AP clusters according to the network
implementation, i.e., centralized or distributed. The results show that UC systems can
keep the SE under minor degradation even if the CC up to 96%. Besides, the proposed
method for adjusting the AP cluster leads to further reductions in CC.

Keywords: AP selection, computational complexity, cell-free massive MIMO, inter-CPU
coordination, scalability, user-centric approach.
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1 Introduction

1.1 Contextualization

The rapid expansion in the number of connected devices and the increasing po-
pularization of high-capacity applications, such as real-time videos and streaming, has
driven the demand for increasingly higher data rates on mobile broadband networks [1, 2].
According to Ericsson’s mobility report, the total mobile data traffic is expected to increase
threefold between 2023 and 2029 due to factors such as improved device capabilities
and data-intensive content [3]. Therefore, wireless networks will have to provide greater
spectral efficiencies (SEs) and a higher quality of experience (QoE) for connected user
equipments (UEs) in the upcoming years.

In order to address these challenges, massive multiple-input multiple-output
(MIMO) technology has emerged as a promising solution. Massive MIMO systems employ
many antennas for signal transmission and reception, enabling UEs to utilize the same
time-frequency resources through spatial multiplexing. As a result, the network’s SE
improves without increasing the transmission power [4].

Initially, the massive MIMO concept was applied to cellular networks and demons-
trated great potential in providing increasingly higher SEs, making cellular massive MIMO
a key technology for fifth-generation of wireless networks (5G) [1]. However, inter-cell
interference and signal-to-interference-plus-noise ratio (SINR) degradation at cell edges can
limit the performance of cellular massive MIMO systems [5–9]. In other words, even though
massive MIMO is a promising technology, cellular networks have their physical limitations,
which prevent the full potential of massive MIMO from being explored. Consequently,
some requirements of beyond 5G (B5G) networks may not be met by cellular massive
MIMO systems, e.g., uniform coverage and a large number of connected devices [10–15].

Distributed MIMO (D-MIMO) systems were a possible solution investigated in the
literature to deal with cellular network coverage issues. In these ones, the coverage area is
divided into disjoint static access point (AP) clusters, where each cluster comprises a subset
of APs and serves the UEs within its zone, as depicted in Fig. 1. Thus, instead of connecting
to a single base station (BS), as in cellular networks, the UE connects to multiple APs.
Hence, the coverage probability improves as the UE receives signals from APs located in
different positions [15,16]. D-MIMO systems are recognized by many names in the literature,
including network MIMO, distributed antenna systems (DAS), and coordinated multi-
point with joint transmission (CoMP-JT) [17–19]. D-MIMO systems were also employed
in fourth-generation of wireless networks (4G), but despite the theoretical potential, they
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only provided small practical gains. This was mainly due to the intense interference coming
from adjacent AP clusters [20,21].

UE

AP

Figure 1 – Illustration of a D-MIMO network. The coverage area is divided into static and
disjoint AP clusters. Each AP cluster provides service for the UEs within its zone.

In this context, user-centric (UC) cell-free (CF) massive MIMO networks have
emerged to exploit the advantages of massive and distributed MIMO systems. In UC
systems, several APs are spread out in the coverage area, and the UE is served by a subset
of APs, called AP cluster, as Fig. 2 illustrates. Therefore, there are no cell boundaries
from the UE’s perspective during uplink (UL) and downlink (DL) transmission since all
APs affecting a UE will actively participate in the communication. Furthermore, they
mitigate network edge effects by moving the APs closer to the UEs, which means that
although the UE is far from an AP, it can be close to another AP. Consequently, UC
systems provide a more uniform SE and a better coverage probability than cell-based ones
due to the enhanced macro-diversity and reduction of AP-UE distances [22–28].

///

//

CPU 1

CPU 2CPU 3

UE

Backhaul link

Fronthaul link

AP

Figure 2 – Illustration of a UC CF massive MIMO network.

UC systems were initially called canonical CF massive MIMO, which assumed that
all APs in the network served all UEs. However, this approach proved to be unfeasible
due to the intense signaling required on the fronthaul links and the computational costs
required from the central processing units (CPUs), which had to receive and process
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data from all UEs coming from all APs. Therefore, the UC approach also demand fewer
fronthaul/backhaul requirements than its predecessor, the canonical CF massive MIMO,
owing to the ability of each UE to connect to a subset of APs in its vicinity [24,25].

UC systems can also achieve scalability when the network resources per AP, such
as signal processing, signaling on fronthaul/backhaul, and total power, are independent of
the number of UEs [27]. That is, the network resources per AP remain sufficient to provide
service to the UEs even if the number of UEs goes to infinity. This would not be possible in
a non-scalable system, such as the canonical CF, as the AP’s resources (e.g., transmission
power) would have to be divided among all UEs. Moreover, non-scalable systems may
require enormous processing requirements of specific APs [26]. One can note that UC CF
CF massive MIMO networks are a particular case of D-MIMO, i.e., a D-MIMO network
with a single static cluster and a large number of APs. Hence, these networks can also
be referred to as UC distributed massive MIMO (D-mMIMO) networks [29–32]. Besides,
it is noteworthy that UC systems have been envisaged as one of the most promising
technologies for B5G networks [33–36].

Even though the seminal papers embrace the UC approach, it can be impractical
and unfair in aspects like processing capabilities, AP selection, and scalability. Moreover,
computational complexity (CC) and signaling can still be a drawback in UC systems. In
the next section, we highlight the challenges of UC systems investigated in this thesis.

1.2 Challenges in User-Centric Systems

UC CF massive MIMO systems are emerging technologies for the next generations
of mobile communication networks. Thus, several challenges, such as channel estimation,
pilot contamination, and power allocation, are still under investigation. Although some
solutions have been proposed [37–51], there is still considerable exploration in these
areas [52–59]. This section outlines the challenges investigated in this thesis, focusing on
AP selection processes, processing capacity limitations, signaling demands, and scalability.
For a deeper investigation into the other topics, one can refer to [37–59].

1.2.1 AP Processing Capabilities, Scalability and AP Selection

The distributed architecture employed by UC networks may require high processing
capabilities from the APs since the APs need several advanced hardware components to
process the signals of many UEs, such as a clock circuit and signal processor. Regarding
scalability, the UC approach does not ensure that the network resources are independent
of the number of UEs. That is, although traditional UC systems typically connect each
UE to a subset of APs, most approaches do not present any mechanisms to prevent the
network complexity from growing with the number of UEs. To achieve a scalable system,
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the complexity and resource requirements for each AP must remain finite when the number
of UEs goes to infinity. In other words, the following tasks cannot rely on the number of
UEs: (i) signal processing for channel estimation; (ii) signal processing for data reception
and transmission; (iii) fronthaul signaling for data and channel state information (CSI)
sharing; and (iv) power control optimization [26].

In a traditional UC system, these conditions cannot be met, as it does not limit
the number of UEs an AP serves. For instance, if all UEs group near a specific AP, this
AP will serve all these UEs, generating an immense amount of traffic on the fronthaul
link that connects the AP to the CPU, when the number of UEs is large. In addition, the
power and processing capabilities of the AP may not be sufficient to serve all UEs. In
a nutshell, the complexity of implementing traditional UC systems can grow linearly or
faster with the number of UEs, making the UC approach unscalable [60,61]. A possible
strategy to partially solve these drawbacks is to restrict the maximum number of UEs that
each AP can serve [25, 26]. Such an approach can also alleviate the processing capabilities
demands from APs. Therefore, scalable AP selection algorithms that provide scalability
for baseline solutions are fundamental.

Regarding the AP selection process, most previous works do not limit the maximum
number of UEs that each AP can serve, making them unscalable [26]. Additionally, many
of these AP selection methods are unfair since they do not prevent the worst UEs from
being dropped. To the best of our knowledge, previous works also do not consider a
matched-decision among the APs and UEs, i.e., which connections among UEs and APs
are more beneficial for both. They regularly assume that the UEs select a subset of APs
to connect [24] or that the APs select a subset of UEs to serve [25]. However, relying on
matched-decision AP selection is expected to improve the system performance significantly.
Moreover, the AP clusters generated by AP selection methods can comprise APs that
contribute only marginally to the UE’s performance, leading the APs to waste power with
UEs that do not take advantage of the allocated power. Therefore, strategies that fine-tune
the AP clusters of UEs while keeping the SE under minor degradation or improving energy
efficiency (EE) are also indeed necessary.

1.2.2 Computational Complexity and AP Cluster Adjustment

Several baseline solutions consider that the complexity of UC systems grows with
the number of UEs and APs, which is not practical [23,24]. In this regard, [26,27] proposed
a framework to provide scalability to UC systems. Essentially, it limits the number of UEs
each AP can serve simultaneously. Consequently, the network resources (i.e., processing
requirement, fronthaul/backhaul signaling, and total power) remain finite even if the
number of UEs goes to infinity. The authors showed that scalable UC systems can still
provide uniform coverage with negligible SE losses compared to the case when the UEs
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are served by all APs. The conclusions hold for both centralized and distributed network
implementations. In the former, channel estimation and combining processing tasks are
carried out on the CPUs, while in the latter, they occur on the APs. However, although
the network resources become independent of the number of UEs, the signal processing
complexity can still grow with the number of APs [26]. For instance, the number of
complex multiplications required to perform channel estimation and precoding signals
remains proportional to the number of APs serving the UE [27]. Thus, a more in-depth
investigation into this topic is necessary, as the literature regularly assumes that there are
more APs than UEs in the network.

Another limitation inherent to UC CF massive MIMO systems is that the AP
selection processes are not adapted to the network implementations (i.e., centralized or
distributed processing). They generally only intend to improve some key points, such
as effective channel gain [62], reduce pilot contamination [26], among others [63–68].
Consequently, AP clusters may benefit one implementation over another. For instance, AP
clusters with a large number of APs can degrade the EE and CC of UC systems operating
in distributed implementation while they can improve the SE for the centralized ones.

1.2.3 Inter-CPU Coordination

Existing UC CF massive MIMO systems rely on a network composed of several
APs linked by fronthaul to multiple CPUs, as Fig. 2 depicts [61]. Therefore, the AP cluster
of each UE can comprise APs connected to different CPUs. Hence, the CPUs may need to
exchange signals via backhaul to inter-coordinate several AP clusters, which means that
the UC approach may require a lot of signaling and data sharing among the CPUs, i.e.,
intense inter-CPU coordination, also called inter-CPU communication [10]. The latter can
limit coherent transmissions in wide-scale networks with more UEs and APs, impairing the
feasibility of UC systems for large deployments. Thus, strategies to control the effects of
inter-CPU coordination are crucial to improving system performance in terms of reducing
signaling requirements. Nonetheless, such a task is challenging, as a threshold must be
found between the degradation of SE and the reduction of inter-coordination effects
between CPUs.

1.3 Related Works

The CF massive MIMO literature presents several AP selection schemes [62–68].
For instance, [62] associates the UE with the AP, simultaneously presenting the largest
channel gain and causing less interference. In contrast, [65] utilizes a graph neural network-
based AP selection to reduce the number of reference signal received power (RSRP)
measurements necessary to generate the AP clusters. Nonetheless, the complexity of [62]
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increases with the number of UEs, and the complexity of [65] can grow faster with the
number of APs compared to other baseline solutions such as [26].

These are some strategies that the literature has proposed, but the most commonly
analyzed methods are presented in [23–26]. In [23], the AP cluster of each UE is composed
of all APs, which is the canonical version of CF. This method improves the SE of the worst
UEs and increases the network’s coverage probability compared to co-located systems.
However, it can require exceptionally high computation costs and backhaul/fronthaul
capabilities from the APs. Moreover, all APs have to divide their transmission powers
among all UEs, leading the power allocation to be as small as zero in some cases. Therefore,
the canonical form of CF is non-scalable (NS).

In [25], the APs serve the UEs with the largest estimated channel in their vicinity.
This scheme improves the SE of the UEs compared to canonical CF systems and avoids the
depletion of allocated power by limiting the number of UEs each AP can serve. Nonetheless,
it is an NS method since the APs need to have access to the channel estimates of all UEs in
the network. Additionally, it does not prevent the worst UEs from being dropped. In [24],
the UE establishes a connection with the subset of APs that contribute most to the sum of
its total channel gain, which can improve network energy efficiency. Nevertheless, it is also
an NS scheme since it does not limit the number of UEs each AP can serve. Therefore, it
does not guarantee scalability for the network resources.

In [26], a scalable AP selection method that relates the pilot allocation to the
AP cluster formation was proposed. The solution is based on the dynamic cooperation
clustering (DCC) framework and prevents the worst UEs from being dropped. Moreover,
the paper limits the number of UEs per AP and proves that only heuristic solutions that
do not rely on the number of UEs are scalable. However, the literature in this research
field is still in its infancy, and further investigations are indeed required to provide more
valuable insights and advances in the area.

Regarding reducing the network complexity under computational and signaling
aspects, the literature has also proposed some approaches [25–27]. For instance, [25]
introduced the UC approach, demonstrating that UC systems could achieve comparable
performance to canonical CF massive MIMO systems while reducing CC and fronthaul
requirements. In [26,27], the authors analyzed the scalability of UC systems, presenting
their performance in terms of SE assuming both centralized and distributed network
implementations. The authors demonstrated that the CC of the network and signaling in
the fronthaul links could be prevented from growing with the number of UEs, but without
providing any analysis regarding the number of APs. Besides, [26,27] claimed that their
proposed strategies are effective for UC systems with multiple CPUs but did not detail
the network’s requirements to make it successful. That is, the authors in [26,27] did not
investigate the impacts of inter-CPU coordination.
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Strategies for reducing the number of APs serving the UE were proposed in [63,69].
Nevertheless, a mechanism to prevent network processing demands from growing with the
number of APs was not presented, i.e., the maximum number of APs serving each UE was
not restricted. In [52], the maximum number of APs serving the UE was limited, defined
as a parameter that can be adjusted to avoid losses in SE. However, the analysis did not
account for the system processing capacity limitation. In addition, a detailed investigation
regarding CC and multiple CPUs was not provided.

In [10], an approach to mitigate inter-CPU communication was proposed. The
authors considered a network composed of multiple virtual cells, each managed by an
individual CPU. The UEs within a virtual cell are exclusively associated with the APs
inside that cell. Conversely, UEs at the cell edges can connect to APs from different virtual
cells (i.e., belonging to distinct CPUs). This approach reduced the effect of inter-CPU
communication compared to traditional UC systems. Despite this advantage, the SE can
decrease, while the signaling demands between CPUs still grow with the number of UEs.
Regarding the adjustment of AP clusters under different network implementations, to the
best of the authors’ knowledge, no other works addressing this topic were found.

1.4 Thesis Contributions

This section presents the main contributions of this thesis. It summarizes this
thesis’s proposals to fill the literature gaps regarding the drawbacks of UC CF massive
MIMO systems mentioned above.

The first contribution of this thesis is a general and scalable AP selection framework
that exploits a matched-decision among UEs and APs. The proposed method is divided
into two stages, where the UEs first connects to an intermediate subset of APs and then
to a final cluster of APs. The first stage allows the UEs and APs to establish the best
connection for both in terms of large-scale fading. The second one enables the UEs to
expand their AP clusters, aiming to improve SE. Additionally, modifying some parameters
allows the proposed algorithm to behave like previous AP selection methods. Nevertheless,
it improves these schemes by affording scalability and decreasing their time complexity.
We compare the proposed AP selection strategy with the canonical CF system and three
baseline solutions, one of which is also a scalable approach. We also analyze the system
performance for perfect and imperfect knowledge of channel statistics.

Secondly, three novel methods for fine-tuning the AP clusters are proposed, cleverly
dropping UE-AP connections that do not significantly contribute to the system performance.
To the best of the author’s knowledge, this thesis contains the first work that proposes
general strategies for fine-tuning the AP clusters of UEs in scalable UC systems. The first
fine-tuning scheme relies on power allocation, the second is based on SE, and the third is
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on EE. The proposed techniques work for any AP selection scheme, and numerical results
indicate that the SE can be kept under minor degradation, even when dropping the UEs’
connections with some APs.

This thesis also investigates the performance of scalable UC CF massive MIMO
systems by assuming that the CC to perform channel estimation and precoding signals
does not grow with the number of APs. In particular, it is considered a UC system where
the UE is associated only with a finite number of APs, i.e., the UE is connected only with
the APs having the strongest channel gains. In other words, the maximum AP cluster size
of the UE is controlled.

To the best of the author’s knowledge, this thesis presents a pioneering work that
proposes an approach to constrain the CC of UC systems from growing with the number of
APs. Moreover, a method is proposed to adjust the AP clusters according to the network
implementation. The proposed methods for adjusting the AP clusters work in UC systems
with and without processing capacity limitations, and can be used as an alternative solution
for reducing CC in UC systems without processing capacity limitations. As far as the
author is aware, this thesis is also innovative in proposing a method for adjusting the AP
clusters according to the network implementations.

Finally, this thesis proposes a novel method that reduces the effects of inter-
CPU coordination in UC CF massive MIMO systems while keeping the SE under minor
degradation. The proposed method assumes that each CPU serves only a finite number
of inter-coordinated UEs, i.e., UEs connected to more than one CPU. Hence, the CPUs
can drop inter-coordinated UEs with the smallest channel gains to mitigate inter-CPU
coordination. To the best of the author’s knowledge, the proposed approach is the first
method that effectively limits the impacts of inter-CPU coordination in UC CF massive
MIMO systems.

1.5 Objectives

The main objective of this thesis is to enhance the performance of scalable UC CF
massive MIMO systems. This is achieved through the proposal of AP selection strategies,
fine-tuning algorithms, and AP cluster adjustment, aiming to improve SE and EE, reduce
CC, and decrease the impacts of inter-CPU coordination.

The following specific objectives are addressed to achieve the main objective:

• Investigate the impact of the matched-decision scheme in UC systems considering
different processing capacity restrictions in the APs, i.e., by varying the number of
UEs each AP can serve.
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• Compare the performance of the matched-decision framework with baseline AP
selection schemes and afford scalability to non-scalable baseline solutions. Perform
the comparisons for perfect and imperfect knowledge of channel statistics.

• Verify the effectiveness of the proposed fine-tuning algorithms in reducing the number
of APs serving the UEs while keeping the SE under minor degradation or improving
the EE of UC systems.

• Limit the CC of performing channel estimation and generating the precoding vectors.
Then, verify how much it affects the network’s SE. Moreover, assess the pros and
cons of adjusting the AP clusters according to each network implementation.

• Investigate the impacts of reducing inter-CPU coordination in UC systems by
restricting the number of inter-coordinated UEs each CPU can serve. Perform
analyses regarding the SE, EE, and number of inter-coordinated UEs per CPU.

• Consider a wide range of UEs, APs, and antennas per AP in the simulation results.
Assume that each AP can serve a limited number of UEs, where this number
varies according to the scenario. Evaluate the system performance under different
degrees of cooperation among the APs, i.e., centralized and distributed network
implementations.

1.6 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 - User-Centric Cell-Free Massive MIMO Networks

It describes the system model utilized in this thesis to simulate a UC CF massive
MIMO network. The channel estimation procedure, the mathematical representation of
AP clusters, the network implementations, power allocation, and the DL SE are presented.
The model adopted for EE and the motivation behind the CF concept are also presented.

Chapter 3 - Matched-Decision AP Selection

The chapter presents the framework proposed in this thesis to enable a matched-
decision among the most suitable connections to UEs and APs in UC systems. Moreover,
the chapter outlines the three methods proposed in this thesis to fine-tune the AP clusters
of UEs. The algorithms and equations utilized in the proposed strategies are presented,
and their time complexity is discussed.

Chapter 4 - Reducing Inter-CPU Coordination

This chapter describes the proposed strategy to reduce the effects of inter-CPU
coordination in UC CF massive MIMO systems. It details the procedure for associating
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the UE with a primary CPU and shows how CPUs can drop UEs to mitigate the effects
of inter-CPU coordination.

Chapter 5 - Scalable User-Centric Cell-Free Massive MIMO with Limited Proces-
sing Capacity

It discusses the proposed approaches to reduce the CC of UC systems in performing
channel estimation and generating the combining vectors. It details the proposed procedure
and shows that it is possible to prevent the CC from growing with the number of APs by
controlling the maximum AP cluster size of each UE. In addition, the two methods that
adjust the AP clusters according to the network implementations are presented.

Chapter 6 - Numerical Results

This chapter presents illustrative numerical results along with insightful discussions
to demonstrates the effectiveness of the proposed methods compared to previous baseline
schemes. For instance, it shows that the matched-decision scheme can improve up to 163%
the SE of the 95% likely UEs compared with baseline solutions and that the number of
UEs that each AP serves is crucial for improving SE. Simulation results also reveal that
UC systems can maintain the SE under small degradation even if the processing capacity
is restricted, decreasing the CC by up to 96%. Additionally, they show that it is possible
to control the effects of inter-CPU coordination without significantly harming the SE.

Chapter 7 - Conclusions and Future Works

This chapter concludes the thesis, presenting final considerations and possibilities
for future works.
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2 User-Centric Cell-Free Massive MIMO
Networks

This chapter presents the theoretical foundation of this thesis associated with UC
CF massive MIMO system. The system model is presented, introducing channel models,
estimation methods, precoding schemes, and others. The assumptions adopted in this
thesis to compute performance metrics such as SE and EE are also discussed.

2.1 System Model

We consider a CF massive MIMO network composed of K ingle-antenna UEs, J
CPUs, and L APs distributed over the coverage area, where L > K. Each AP is equipped
with N antennas and the total number of antennas considering all APs is M = NL. The
APs connect to the CPUs through fronthaul links, while the CPUs communicate with
each other through backhaul ones, as depicted in Fig. 2. The network infrastructure (e.g.,
fronthaul, backhaul, and core network) is assumed to be perfectly syncronized, error-
free and capable of supporting data traffic, which is a common assumption in the CF
literature [22–28]. Other approaches may also consider fronthaul/backhaul limitations
when modeling a UC CF massive MIMO network [70–76]. However, we focus on the most
common assumptions to compare the proposed methods and baseline solutions fairly.

2.1.1 Block Fading Model and TDD Protocol

In wireless communication systems, the propagation channels are generally time-
variant. Consequently, their frequency response can present fluctuations over time. These
oscillations, known as fading, represent variations in signal strength experienced by radio
waves as they travel through the wireless channel, often caused by factors such as multipath
propagation and environmental changes like mobility and obstacles. Even slight variations in
the propagation environment, such as movements of the receiver on the scale of centimeters
or millimeters, can significantly change the channel. Nevertheless, if we consider a time
interval sufficiently short, the frequency response becomes approximately constant and
flat-fading. This time interval is called coherence time, and the frequency range over which
the channel frequency response is flat-fading is named coherence bandwidth.

A coherence block corresponds to the time-frequency block, containing both the
coherence time and bandwidth. Each coherence block undergoes an independent channel
realization, requiring channel properties to be estimated separately for each coherence
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block. Besides, since it is constant, the channel frequency response can be represented by
only one scalar coefficient in each coherence block.

UC CF massive MIMO systems typically utilize the block fading model to describe
fading channels. In this one, the time-frequency plane is divided into several coherence
blocks, as illustrated in Fig. 3. Moreover, each coherence block is assumed to operate in
time-division duplexing (TDD) mode, which is a transmission protocol where the UL and
DL channels occur at the same frequency band but are separated in time. Therefore, the
UL and DL channels utilize the same coherence bandwidth, but occur at different time
intervals within each coherence block. That is, the time interval of each coherence time is
divided between DL and UL signals.

Frequency

Time

UL Data DL DataUL Pilots

Uplink Downlink

One coherence block

Figure 3 – The block fading model divides the time-frequency plane into several coherence
blocks, where the channel is frequency-flat and time-invariant. In each coherence block,
the UL and DL channels use the same coherence bandwidth, but occur at distinct time
intervals within each coherence time.

Source: adapted from [4].

The coherence block is calculated as τc = TcBc, where Tc and Bc denote the
coherence time and bandwidth, respectively. The coherence block is measured in complex-
valued samples and represents the symbols utilized to convey information in a UC system.
In practice, the exact values of Tc and Bc are challenging to model since they can be a
function of several factors, such as the UE mobility, carrier frequency, and delay spread.
The latter is the time interval between the shortest and longest paths the transmitted
signal takes before reaching the receiver. A common approximation computes Tc = λ/4v
and Bc = 1/2Td, where λ denotes the transmission wavelength, v means the UE speed,
and Td is the delay spread [4].

In TDD mode, the complex-valued samples τc of each coherence block can be
divided into τp samples for UL pilot signaling, and τu and τd samples for UL and DL data
transmissions, respectively, as Fig. 4 shows. The pilot signals are predefined sequences of
τp-length that the UEs periodically send to the APs to estimate their channels. Then, the
APs (or CPUs) correlate the received pilot with the predefined pilot signal and estimate
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the UE channel. The pilot signals are mutually orthogonal to each other, with each pilot
being one of the columns of matrix Φ ∈ Cτp×τp , referred to as pilot book [4].

UL data

( )
DL data ( )

UL pilots

 ( )
Coherence

bandwidth Bc

Coherence time Tc

= + +

Figure 4 – A TDD protocol is considered where each coherence block can be divided into
pilot signaling, UL data, and DL data.

The pilot signals are sent only in the UL direction since the channel frequency
response remains constant throughout Tc, making UL channel estimates also valid for DL
transmissions. Hence, massive MIMO systems (including UC CF massive MIMO) usually
consider that the UL and DL channels are reciprocal in the coherence time Tc. That is, the
UL and DL estimated channels are equal since they utilize the same coherence bandwidth
in TDD mode. In this thesis, we focus on DL transmissions and consider that τu = 0.

The principle of reciprocity is one of the characteristics of wireless communication
channels that the TDD protocol benefits from in massive MIMO systems, as the reciprocity
reduces the CSI acquisition overhead [77]. However, there are many efforts to find efficient
implementations based on frequency-division duplexing (FDD) since a vast amount of
spectrum is reserved for FDD operation [78–84]. Furthermore, DL channel estimation
can also be helpful for decoding data from UEs, as reciprocity is not always achieved in
practice, as hardware imperfections, impedance mismatches, and calibration errors in the
radio-frequency (RF) chain can make the channel non-reciprocal [85,86].

2.1.2 Channel Models

It is considered that the channel vector hkl ∈ CN×1 between the AP l and UE k

undergoes an independent correlated Rician fading, being defined as [87–89]

hkl =
√

κkl
1 + κkl

hLoS
kl ejψkl

︸ ︷︷ ︸
hkl

+
√

1
1 + κkl

hNLoS
kl︸ ︷︷ ︸

h̃kl

, (2.1)

where hkl ∈ CN×1 means the deterministic line-of-sight (LoS) component, while h̃kl ∼
NC(0N , R̃kl) ∈ CN×1 stands for the small-scale fading with statistical correlation matrix
R̃kl = E{h̃klh̃H

kl} ∈ CN×N . The small-scale fading denotes the effects of the non-line-of-
sight-wireless (NLoS) propagation. The correlation matrix represents the large-scale fading
of the system, being a function of the spatial channel correlation, path loss, and shadowing.
The term ψkl ∼ U [0, 2π) denotes random phase shifts that may occur in LoS components
due to the UE’s mobility, and the Rician factor κkl stands for the power ratio between the
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LoS and NLoS components, being defined as [90]

κkl = pLoS

1 − pLoS
, (2.2)

with pLoS being the probability of the LoS component’s existence. Thus, pLoS = 0 for
propagation links presenting only NLoS components.

Assuming the APs are equipped with half-wavelength-spaced uniform linear arrays
(ULAs), the correlation matrix of the NLoS channel hNLOS

kl , i.e., RNLoS
kl , can be computed

following the local scattering model for spatial correlation presented in [4, Sec. 2.6]. Thus,
the correlation matrix of the term h̃kl in (2.1) is given by

R̃kl = E{h̃klh̃H
kl} = 1

κkl + 1RNLoS
kl , (2.3)

which implies that Rkl = E{hklhH
kl} = (hklh

H
kl + R̃kl). Moreover, the LoS channel between

the UE k and AP l can be expressed as

hLoS
kl =

√
βkl

[
1, ejπ sin(φkl) cos(θkl), · · · , ej(N−1)π sin(φkl) cos(θkl)

]T
, (2.4)

where φkl denotes the azimuth angle, θkl is the elevation angle of the LoS component,
and βkl is the large-scale fading gain, which can be calculated as βkl = tr(Rkl)/N . We
assume that the correlation matrices remain unchanged for many coherence blocks, while
the small-scale fading changes in each block [11]. Additionally, the channels of different
APs are assumed to be uncorrelated, thus E{hklhH

kl′} = 0N for l ̸= l′ [91–94].

It is worth noting that there are different models for the channel between an AP
and UE, which are valid under different assumptions. The Rician fading is often used in
UC systems because it allows the APs to be closer to the UEs. Moreover, Rician fading
has the advantage of capturing the effects of the LoS and NLoS components. Rayleigh
fading propagation is also commonly used to model the channel vectors of UC systems.
Nonetheless, it assumes that the LoS channel is blocked and relies on rich scattering
scenarios, i.e., when there are many NLoS propagation components. An independent
correlated Rayleigh fading realization can be expressed as

hkl =
√

RNLoS
kl gkl, (2.5)

where gkl ∈ CN×1 is composed of elements that are independent and identically distributed
(i.i.d) complex Gaussian NC (0, 1) random variables (RVs). One can note that (2.5) equals
(2.1) for pLoS = 0. It is noteworthy that there are also other solutions for modeling the
channel propagation, such as tapped delay line (TDL), clustered delay line (CDL), and
quasi deterministic radio channel generator (QuaDRiGa) models. Nevertheless, a more
profound discussion regarding the best channel model is outside the scope of this thesis.
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2.1.3 Uplink Training

When a UE enters the network, the APs or CPUs need to know its channel to
serve it. Thus, UC systems incorporate a training phase where the channels between UEs
and APs are estimated. During the training phase, the UEs send pilot signals of τp-length
to the APs to estimate their channels [4, 95]. Recall that in TDD mode, τp samples of
each coherence block are dedicated to the pilot signals, which are vectors of dimension τp

mutually orthogonal to each other.

Ideally, a unique orthogonal pilot signal should be assigned to each UE, so that
τp = K. However, coherence blocks have limited resources, making it impossible to assign
a distinct pilot for each UE if the number of UEs K is greater than the number of
complex-valued samples in the coherence block, i.e., K > τc. Because of this, a pilot tk can
be reused by some UEs if K > τp to ensure scalability for the pilot resources, with τp < τc.
The pilot reuse leads to the phenomenon known as pilot contamination, where channel
estimation is less accurate, as the estimated channels of the UEs utilizing the same pilot
correlate [4]. Therefore, choosing the most appropriate number of complex-valued samples
for pilot signals τp is not a trivial task. A balance is generally sought between SE and
estimation accuracy [32].

Given that the pilot vector ϕt ∈ Cτp×1 must satisfy |ϕt|
2 = τp, for t = 1, .., τp, and

that ϕH
t1ϕt2 = 0, for t1 ̸= t2, the received signal Ypilot

l ∈ CN×τp at AP l during the channel
estimation phase is

Ypilot
l =

K∑
i=1

√
ηihilϕT

ti
+ Nl (2.6)

where ηi denotes the power that the UE i transmits in the UL direction and Nl ∈ CN×τp

represents the noise at the receiver with i.i.d elements distributed as NC (0, σ2
ul). Considering

that the channel hkl needs to be estimated and that the UE k transmitted the pilot tk = t1,
the expression of the received signal can be further simplified. To do this, Ypilot

l is multiplied
by the normalized conjugate of ϕtk

(i.e, ϕ∗
tk
/
√
τp) to eliminate the interference coming

from UEs using pilots signals orthogonal to tk. After this, only the effects of UEs sharing
the pilot tk will affect the received signal. Thus, letting Stk ⊂ {1, ..., K} represent the
subset of UEs that send the pilot tk to the APs, the received signal at AP l is given by

ypilot
tkl

= Ypilot
l

ϕ∗
tk√
τp

=
K∑
i=1

√
ηi√
τp

hilϕT
ti

ϕ∗
tk

+ 1
√
τp

Nlϕ
∗
tk
, (2.7)

which can be simplified to

ypilot
tkl

=
∑
i∈Stk

√
τpηi hil + ntkl, (2.8)

where ϕ∗
tk
/
√
τp is a vector with unit norm and ntkl = 1√

τp
Nlϕ

∗
tk

∼ NC (0N , σ2
ulIN). Assuming

that the correlation matrix Rkl is perfectly known and utilizing the linear minimum mean-
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squared error (MMSE) estimator, the estimated channel ĥkl is given by

ĥkl = √
τpηk RklΨ−1

tkl
ypilot
tkl

, (2.9)

where Ψtkl ∈ CN×N is a matrix containing the sum of the correlation matrices of UEs
that share the pilot tk, which can degrade the system performance since it causes pilot
contamination. The computation of Ψtkl can be performed as

Ψtkl = E{(ypilot
tkl

)(ypilot
tkl

)H} =
∑
i∈Stk

ηiτp(hilh
H
il + R̃il) + σ2

ulIN . (2.10)

Depending on the network implementation, UC systems can delegate the channel estimation
process to APs or CPUs. These network implementations will be discussed further in
Section 2.2. In addition, note that the estimated channel ĥkl relies on the perfect knowledge
of Rkl and Ψtkl in (2.9). Nonetheless, channel statistics change in practice due to UE
mobility or scheduling. Hence, each AP (or a subset of CPUs) needs to estimate these
matrices, leading ĥkl to

ĥkl = √
τpηk R̂klΨ̂−1

tkl
ypilot
tkl

, (2.11)

where R̂kl and Ψ̂tkl are the imperfect versions of Rkl and Ψtkl. We rely on [92] to calculate
these terms, which proposes a two-stage approach. It considers that the AP l (or the CPUs)
observes many channel realizations in different coherence blocks and uses the received
pilots to estimate

Ψ̂(sample)
tkl

= 1
NΨ

NΨ∑
n=1

ypilot
tkl

[n]
(
ypilot
tkl

[n]
)H
, (2.12)

where NΨ is the number of observations. The AP computes Ψ̂tkl as Ψ̂tkl = ξ′Ψ̂(sample)
tkl

+
(1 − ξ′)Ψ̂(diagonal)

tkl
, where ξ′ ∈ [0, 1] is a regularization factor and Ψ̂(diagonal)

tkl
is the main

diagonal of Ψ̂(sample)
tkl

. Assuming that the channel statistics are fixed over the system’s
bandwidth (Bs) and a time interval (Ts), the number of coherence blocks that the AP can
observe is NΨ ≤ τs, where τs = BsTs/τc. For instance, considering that each coherence
block has τc = 200 samples in a mobile scenario with Bs = 100 MHz and Ts = 0.5 s, the
AP could observe the channel over τs = 250000 coherence blocks.

One can note that no extra-pilots are needed to calculate (2.12), since it is obtained
from the pilots used to perform channel estimation. However, they are needed to compute
R̂kl. To adjust the strategy proposed in [92] to a UC CF massive MIMO scenario, we
consider that τp pilots are utilized to estimate R̂kl over NR observations, requiring a total
of NRτpK extra pilots1. R̂kl is computed as R̂kl = ξ′′R̂(sample)

kl +(1−ξ′′)R̂(diagonal)
kl , where ξ′′

is a regularization factor and R̂(sample)
kl = Ψ̂(sample)

tkl
− Ψ̂(sample)

tkl,−k . The term Ψ̂(sample)
tkl,−k denotes

a stage where only the interfering UEs sharing the same pilot as the UE k send the pilot.
1 The scalability of [92] is questionable as its complexity increases with K. However, this thesis only

investigates the influence of the imperfect knowledge of Rkl in the system performance. Therefore, a
more profound discussion involving the best method of acquiring R̂kl is out of the scope of this thesis.
For a deeper investigation, one can read the following references [93,94,96].
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The parameters ξ′ and ξ′′ can be optimized according to the evaluated scenario when
the APs are equipped with more than one antenna (N > 1), especially for N ≫ 1. For
simplicity, we evaluate the impacts of R̂kl and Ψ̂tkl only for single antenna APs (N = 1).
Hence, ξ′ = 1 and ξ′′ = 1.

It is worth mentioning that channel estimation can be performed by alternative
methods, such as element-wise MMSE and least square estimators. The former does not
utilize the full spatial correlation matrices but only the main diagonal elements, while the
latter neglects channel correlation. Both demand smaller CC than MMSE but at the cost
of reduced estimation accuracy [4].

2.1.4 DL Data Transmissions

In UC systems, each UE is associated with a subset of APs called AP cluster. In
order to generate AP clusters, we proceed as follows. First, let Mk ⊂ {1, ..., L} denote the
indexes of APs that serve the UE k. Second, let ck = [ck1, ..., ckL] ∈ N1×L be the vector
which designates the APs that transmit a signal to UE k. That is, if the AP l transmits a
signal to UE k, ckl = 1, otherwise ckl = 0, which means that

ckl =

1 if l ∈ Mk

0 if l /∈ Mk

. (2.13)

Moreover, the matrix Dkl ∈ NN×N describes which antennas of the AP l establish a
connection to the UE k. It is assumed that all N antennas of the AP l transmit a signal
to the UE k. This is similar to write

Dkl =

IN if l ∈ Mk

0N if l /∈ Mk

. (2.14)

Note that ck and the diagonal block matrix Dk = diag (Dk1, ...,DkL) ∈ CM×M define the
AP cluster of UE k, but this is not their only function. They also indicate the subset
of UEs that each AP serves after the AP cluster formation. We denote this subset as
Dl ⊂ {1, ..., K}, where Dl has the indexes of the UEs that the AP l serves. Hence, it is
possible to observe that |Dl| = ∑

k∈Dl
ckl and |Mk| = ∑

l∈Mk
ckl. The cardinalities of Mk

and Dl can also be represented by Lk and Kl, where Lk = |Mk| and Kl = |Dl|.

The cardinality of Dl is regularly lower than K. However, if all UEs group in the
vicinity of specific APs, Kl may be equal to K, which is unscalable. In order to solve
this drawback, it is assumed that Kl ≤ Umax, where Umax is a constant that remains
unchanged even if K → ∞. That is, even if the number of UEs is extremely high, the
APs will serve at most Umax UEs in Dl. The constant Umax can also be seen as a type of
processing capacity limitation regarding the maximum number of UEs that each AP can
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process signals. Let xl = ∑K
k=1 Dklwklsk denote the data signal sent by the AP l. The DL

received signal at UE k is given by [27]

ydl
k =

L∑
l=1

hH
klxl + nk =

L∑
l=1

hH
kl

(
K∑
i=1

Dilwilsi

)
+ nk (2.15)

where si ∈ C denotes the signal transmitted for the UE i, which satisfies E
{
∥si∥2

}
= 1;

nk ∼ NC (0, σ2
dl) represents the receiver noise, and wil ∈ CN×1 is the precoding vector. In

a more compact form, (2.15) can be written as

ydl
k = hH

k Dkwksk︸ ︷︷ ︸
Desired signal

+
K∑

i=1,i ̸=k
hH
k Diwisi︸ ︷︷ ︸

Interfering signals

+ nk︸︷︷︸
Noise

, (2.16)

with wi =
[
wT
i1, ...,wT

iL

]T
∈ CM×1 being the collective precoding vector.

The expression hH
k Dkwk in (2.16) is called the effective DL channel and the UE

needs to know it to decode the DL data. When only UL pilots are considered, the UE
employs the average value of the effective channel to decode the DL data, which can be
inaccurate in a distributed network since the channel vector comprises elements that can
have quite different channel gains. Thus, other approaches can also estimate the effective
channel utilizing DL pilots [51,52] or blind estimation [45–47]. However, they can reduce
the number of samples per data transmission in each coherence block or may rely on
coherence blocks with a large number of samples. On the other hand, they can also enhance
the network’s SE or reduce channel estimation error.

The best strategy will depend on the type of system to be implemented. We utilize
UL pilots and rely on reciprocity for UL and DL channels since this approach is widely
employed in the literature. Nevertheless, further investigations related to DL pilots or
blind estimation may provide valuable insights into the UC literature.

2.2 Network Implementations and Precoding Vectors

UC CF massive MIMO systems are commonly implemented in centralized or
distributed manners according to processing capabilities. The centralized implementation
places most processing tasks on the CPUs, as Fig. 5 shows. Therefore, the CPUs are
responsible for channel estimation, generating the combining and precoding vectors,
and processing the DL signals. In the distributed implementation, essential processing
functions, such as channel estimation, are moved to the APs. Consequently, the CPUs are
only responsible for encoding the DL signals [26]. The centralized implementation usually
offers superior interference mitigation since the CPUs can access global CSI, which includes
channel estimates and statistics. Conversely, the distributed one can be less complex and
avoids the need for transmitting the pilot signals on fronthaul links [28].
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Table 1 summarizes the fronthaul signaling required by each network implementa-
tion in terms of the number of complex scalars that an AP l sends to a CPU j in each
coherence block [26]. One can note that the data traffic (complex scalars for transmitting
the UL and DL signals) scales with the number of UEs each AP serves (i.e., Kl = |Dl|)
in the distributed implementation. Conversely, in the centralized implementation, the
data traffic is proportional to the number of antennas N per AP. In the centralized
approach, the APs also transmit UL pilots to the CPUs. This last fact can lead to the
idea that distributed implementation always requires less signaling in the fronthaul than
the centralized one. However, this is not always true, since if τc/(τc − τp) ≈ 1 and Kl > N ,
the distributed implementation may require more signaling [28]. It is worth mentioning
that this condition is often met in UC systems, since the APs are equipped with few
antennas (generally N ≤ 4). For example, consider a network in which each AP is equipped
with N = 2 antennas and serves ten UEs simultaneously, i.e., Kl = 10. Besides, consider
that each coherence block comprises τc = 200 complex-valued samples, where τp = 10
samples are reserved for pilot signals, τu = 95 samples for UL data and τd = 95 samples
for DL data. In this case, each AP would have to exchange 400 complex scalars with
a CPU via fronthaul in each coherence block in the centralized implementation, since
2∗ (10+95+95) = 400. In contrast, each AP would need to exchange 1900 complex scalars
with a CPU via fronthaul in each coherence block in the distributed implementation, as
10 ∗ (95 + 95) = 1900.

Channel estimation, DL

data encoding and generates

the combining/precoding

vectors with partial CSI

CPU j AP l UE k

UL pilot TX

UL pilot TX

DL data TX

DL data TX

(a) Centralized

DL data
encoding

CPU j AP l UE k

UL pilot TX

Encoded DL data TX

Channel estimation
and generates the

combining/precoding

vectors with partial CSI

DL data TX

(b) Distributed
Figure 5 – Illustration of the two considered network implementations: (a) centralized and
(b) distributed. Partial CSI means that the CPUs compute the channel estimates only for
the subset of APs serving the UE.

Different combining and precoding techniques can be generated for each network
implementation. Notably, MMSE combining represents a signal processing method that
minimizes the mean square error (MSE) of data detection and maximizes the SINR for
all UEs in the network. It relies on channel estimates available on the CPUs, effectively
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Table 1 – Number of complex scalars that an AP l has to exchange with a CPU j via
fronthaul in each coherence block in the centralized and distributed implementations.

Pilot signals UL signals DL signals
Centralized τpN τuN τdN
Distributed - τuKl τdKl

mitigating interference. The MMSE combining can be written as

vMMSE
k = ηk

(
K∑
i=1

ηiDk

(
ĥiĥH

i + Ci

)
Dk + σ2

ulILN
)−1

Dkĥk, (2.17)

where Ck is the correlation matrix of the estimation error hek = hk − ĥk, such that
Ck = E{hekhH

ek}. For the centralized implementation, the combining vector is generated
using the collective channel vector, given by hk =

[
hT
k1, ...,hT

kL

]T
∈ CM×1. Additionally, it

utilizes the diagonal block matrix Dk = diag (Dk1, ...,DkL) ∈ CM×M .

The distributed version of MMSE combining is named local MMSE (L-MMSE),
which utilizes the local channel estimates of all UEs in the network, which is given by

vL−MMSE
kl = ηk

(
K∑
i=1

ηi
(
ĥilĥH

il + Cil

)
+ σ2

ulIN
)−1

Dklĥkl. (2.18)

Both MMSE and L-MMSE are not scalable combining techniques since they need the
channel estimations of all UEs in the network. Therefore, some adjustments must be made
to provide scalability to these schemes.

The partial MMSE (P-MMSE) is the scalable version of MMSE combining. The
only difference between them is that the P-MMSE scheme does not consider all UEs’
channel estimates but only the subset of UEs that most interfere with UE k. Specifically,
the subset of UEs partially served by the same APs as UE k, which is computed as

Pk = {i : DkDi ̸= 0LN×LN} . (2.19)

Hence, the P-MMSE combining can be expressed as [27]

vP−MMSE
k = ηk

∑
i∈Pk

ηiDkĥiĥH
i Dk + ZPk

+ σ2
ulILN

−1

Dkĥk (2.20)

where
ZPk

=
∑
i∈Pk

ηiDkCiDk. (2.21)

The local partial minimum mean-squared-error (LP-MMSE) is the scalable version of
L-MMSE combining scheme. It considers only the channel estimates of the UEs that AP l

serves, i.e., k ∈ Dl, since Kl = |Dl| is limited. The LP-MMSE combining can be written as

vLP−MMSE
kl = pk

∑
i∈Dl

pi
(
ĥilĥH

il + Cil

)
+ σ2

ulIN

−1

Dklĥkl. (2.22)
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There are also two other techniques that are commonly used in UC CF massive
MIMO literature for combining signals, which are called maximum-ratio (MR) and partial
regularized zero-forcing (P-RZF). The MR (or conjugated beamforming) is the most
common choice for the distributed implementation, which is expressed as

vMR
kl = ĥkl. (2.23)

The MR combining is a scalable and low-complexity technique. It maximizes the ratio
between the received power and the square norm of the UL combining vector but cannot
efficiently mitigate interference among UEs.

The P-RZF is utilized in centralized implementation and simplifies the P-MMSE
combining aiming to decrease the CC. It neglects the matrix ZPk

by observing that
when the channel conditions of the interfering UEs in Pk are good, all the corresponding
estimation error correlation matrices Ci will be small. This modification has a negligible
influence on CC but allows to rewrite the P-RZF combining vector as [27]

vP−RZF
k =

[
DkĤPk

(
ĤH

Pk
DkĤPk

+ σ2
ulP−1

Pk

)−1
]

:,1
(2.24)

where [·]:,1 represents the operation of only keeping the first column of its matrix argument,
ĤPk

∈ CLN×|Pk| contains the stacked vectors ĥi with indices i ∈ Pk, with the first column
being ĥk, and PPk

∈ R|Pk|×|Pk| is a diagonal matrix containing the transmit powers ηi for
i ∈ Pk, listed in the same order as the columns ĤPk

. Basically, the P-RZF combining takes
the pseudo-inverse of the partial channel ĤPk

and regularizes it by adding the matrix
σ2

ulP−1
Pk

. Combining vectors using pseudo-inverses forces the interference between the UEs
to zero. However, it may result in notable reductions in the desired signal power when the
UEs possess similar channels.

Motivated by the UL-DL duality, the DL precoding vectors can be select based on
the UL combiners [26, 27]. This strategy also reduces CC for computing the precoding
vectors, since it is only needed to normalize the combining vectors, such as

wk = √
ϱk

vk√
E {vH

k Dkvk}
, wkl = √

ϱkl
vkl√

E {vH
klDklvkl}

, (2.25)

where vk and vkl represent the arbitrary combining vector used for centralized and
distributed implementations, respectively. Furthermore, the terms ϱk and ϱkl denote the
transmission powers assigned to the UE k in centralized and distributed implementations.
The term ϱk represents the total transmission power assigned to UE k from all its serving
APs, while ϱkl stands for the transmission power that the UE k receives from AP l.

We adopt the MR and LP-MMSE precoding for the distributed implementation,
while we employ the P-RZF and P-MMSE for the centralized one. Besides, note that all
precoding vectors are calculated under imperfect CSI. For instance, vk = ĥk and vkl = ĥkl
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for the MR precoding. Table 2 exhibits the CC (in number of complex multiplications)
required to compute the precoding schemes for each UE in each coherence block. Note
that although the CC does not grow with the number of UEs in a scalable system (i.e.,
Kl is restricted by Umax), it can still increase with the number of APs per UE (Lk).

Table 2 – Number of complex multiplications required to generate the combining vectors
for each UE in each coherence block [26].

Scheme Channel estimation Combining vector computation
MMSE (Nτp +N2)KLk (NLk)2+NLk

2 K + (NLk)2 + (NLk)3−NLk

3
P-MMSE (Nτp +N2) |Pk|Lk (NLk)2+NLk

2 |Pk| + (NLk)2 + (NLk)3−NLk

3
LP-MMSE (Nτp +N2)∑l∈Mk

Kl
N2+N

2
∑
l∈Mk

Kl +
(
N3−N

3 +N2
)
Lk

MR (Nτp +N2)Lk -

2.3 Power Allocation

Two heuristic methods for power allocation are considered to address scalability
aspects in both network implementations. We employ fractional power allocation2 for the
centralized one, since it performs better than equal power allocation for the worst UEs. In
the centralized implementation, the transmission powers that the APs assign to the UE
k are coupled by means of the precoding vector in (2.25). Thus, it is usual to compute
the total transmission power that each UE receives from all its serving APs first, i.e., ϱk.
Then, the normalized precoding vector in (2.25) determines how this power is distributed
between the APs serving the UE k (i.e., for all l in Mk).

This is done to maintain the same direction of the precoding vector. Otherwise,
the capacity of the APs to mitigate each others’ interference can be lost in centralized
implementation. The DL fractional power allocation is computed as [27]

ϱk = ϱd

( ∑
l∈Mk

βkl

)v′

ω−κ′

k

max
ℓ∈Mk

∑
i∈Dℓ

( ∑
l∈Mi

βil

)v′

ω1−κ′
i

, (2.26)

with ωk being calculated as
ωk = max

ℓ∈Mk

E
{
∥w̄kℓ∥2

}
(2.27)

where w̄kℓ ≜ vkℓ ∈ CN×1 is the fraction of the centralized collective precoding vector
(w̄k ≜ vk ∈ CLN×1) that correspond to AP ℓ and the term ϱd represents the total
transmission power of each AP. The normalization factor in the denominator of (2.26)
is utilized to ensure that none of the APs will exceed the maximum transmission power
2 There is a wide range of power allocation methods in the literature [37–43]. However, analyses involving

the best power allocation algorithm are out of the scope of this thesis.
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ϱd [27]. Thus, ϱk is a function of βkl, v′ ∈ [−1, 1], κ′ ∈ [0, 1], and βkl, which is large-scale
fading of UE k regarding AP l. Moreover, v′ and κ′ are project parameters [27].

For the distributed implementation, we employ a method that also divides the
power resources proportionally to the large-scale fading gains of each UE [61]. Thus, ϱkl is
given by

ϱkl =


ϱl

√
βkl∑

i∈Dl

√
βil

if k ∈ Dl

0 otherwise
, (2.28)

where ϱl = ϱd and βkl = tr (Rkl) /N if the channel statistics are assumed to be perfectly
known or, otherwise, βkl = tr(R̂kl)/N .

2.4 Spectral and Energy Efficiencies

In order to calculate the SE of DL channels, we rely on the received signal presented
in (2.16). Thus, an achievable DL SE for the UE k can be expressed as [27]

SEk = Pf log2 (1 + SINRk) , (2.29)

where Pf is the pre-log factor, which is a fraction of samples per coherence block that
is used to transmit data. For perfect knowledge of correlation matrices, Pf = τd/τc and
Pf = 1 − (τp/τc) − α for imperfect knowledge, where α = NRτpK/τsτc. The term SINRk

denotes the DL SINR. From (2.16), the SINRk can be computed as

SINRk = |DSk|2

ISk − |DSk|2 + σ2
dl
. (2.30)

where DSk = E
{
hH
k Dkwk

}
denotes the desired signal and ISk = ∑K

i=1 E
{∣∣∣hH

k Diwi

∣∣∣2}
stands for the interference. Eq. (2.29) is also known as hardening bound, which is commonly
used in massive MIMO theory and is valid for any choice of precoding vectors [28, 37]. It
can be seen as a capacity lower bound and, unfortunately, it does not have a closed-form
expression when using P-MMSE and LP-MMSE schemes, but can be computed through
Monte-Carlo simulations if wi is selected as in (2.25). Besides, all expectations presented
in (2.30) are related to the channel realizations [27].

The total EE in bit/Joule is defined as the ratio between the total data rate
Rt = Bs

∑K
k=1 SEk, and the total power consumption in Watts [97]. In UC systems, the

EE can be interpreted as the total data rate that the network can achieve for a given
power consumption. We have computed the EE as [24]

EEt = Rt

L∑
l=1

{
1
νl
E
{
∥xl∥2

}
+NPtc,l + Pfh,l

} , (2.31)
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where 0 < νl ≤ 1 denotes the efficiency of the power amplifier in the AP l, and Ptc,l is the
power that each antenna of AP l needs to run internal components, such as converters
and filters. Besides, Pfh,l is the power consumption in the fronthaul link connecting a CPU
to AP l, which is calculated as

Pfh,l = P0,l + Pft,lBs

∑
k∈Dl

SEk, (2.32)

where P0,l is a fixed power consumption of each link and Pft,l is the traffic-dependent power
in Watt per bit/s. It is noteworthy that (2.32) is only suitable for distributed network
implementations since the term ∑

k∈Dl
SEk scales with the subset of UEs that the AP l

serves (Dl). In a centralized implementation, (2.32) should be proportional to the number
of antennas N in each AP. Besides, several other factors may affect the EE of UC systems,
such as the power consumption due to CC in APs and CPUs, idle mode, and others. Such
an investigation comprises the next steps of the research involving this thesis.
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3 Matched-Decision AP Selection

The literature presents several approaches for AP selection in UC CF massive
MIMO systems, which associate UEs and APs to improve some network performance
metrics, such as EE, SE, and others. However, they do not evaluate whether these
connections benefit both the UEs and APs. They generally consider that the AP selects
a subset of UEs to serve or that the UE selects a subset of APs to connect but do not
consider a matched-decision between the most suitable connections for both the UEs and
APs. These strategies may also not prevent the UEs from being dropped from the network
and may fail in scalability since they do not limit the number of UEs each AP can serve.
Additionally, these AP selection methods may associate the UEs with APs that contribute
only marginally to UE’s performance, leading to ineffective use of network resources.

This chapter presents the general AP selection framework proposed in this thesis
that allows a matched-decision between the most advantageous connections for UEs and
APs. The proposed framework is flexible and can be adapted to different AP selection
criteria. Furthermore, it can provide scalability for unscalable AP selection schemes while
ensuring the connections of all UEs to the network. This chapter also presents the three
fine-tuning schemes proposed to drop UE-AP connections that contribute only marginally
to the system performance.

3.1 Proposed AP Selection Framework

This section presents a novel AP selection framework that exploits a competitive
mechanism and considers a matched-decision among UEs and APs. The scheme is divided
into two stages, and the flowchart exhibited in Fig. 6 provides an overview of the method’s
operation. The matched-decision process occurs in the first stage (named intermediate
AP cluster). In this stage, the UEs connect to an intermediate subset of APs, aiming
to make the UEs and APs establish the best connection for both in terms of large-scale
fading. In the second stage (called final AP cluster), the UEs try to connect to more APs
and expand their AP clusters, intending to improve the SE. For clarification, Figs. 7 (a)
and 7 (b) illustrate the intermediate and final AP clusters, respectively. The first stage
can enable better use of the power resources since the matched-decision allows the APs
to serve the best UEs in their vicinity. The second one gives the worst UEs a chance to
increase their SE.

We assume a specific limitation in the processing capacity of the APs, that is, each
AP can serve only a limited number of UEs, named Umax. However, unlike previous works,
we do not consider that Umax is always equal to τp [26, 27]. Instead, we assume that Umax
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New accessing UE, UE k

Large scale fading
measurement

The APs accept or deny
the UE k request

UE k requests a
connection to the

nearby APs

UE k selects a
master AP

APs and expand its AP cluster
End

Intermediate
AP cluster

Final AP cluster

Begin

UE k tries to connect to more

Figure 6 – Flowchart of the proposed matched-decision AP selection method.

(a) Intermediate stage (b) Final stage
Figure 7 – Illustration of the AP cluster formation. (a) Intermediate AP clusters, with
arrows indicating the master APs. (b) Final AP clusters after the second stage.

depends on the AP processing capabilities, such that 1 ≤ Umax ≤ τp. Additionally, the AP
selection is generated on a per-UE basis to achieve scalability, such that the AP clustering
occurs only among the UEs and the APs. The CPUs do not participate in the AP cluster
formation.
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3.1.1 Intermediate AP Cluster

Fig. 7 (a) illustrates the intermediate AP clusters created for each UE in the network.
Its generation is detailed as follows: when a new UE k enters the network, it measures
the large-scale fading βkl of the APs in its vicinity. Then, the UE requests a connection
to a subset of APs according to a decision criterion that follows the requirements of the
system’s design. This thesis considers that the UE k will request a connection only to the
APs whose channel gains satisfy βkl > γ. The target is to evaluate the system performance
under a controlled parameter (γ), where γ refers to a threshold gain. The subset of APs
selected by the UE k is denoted by ek = [ek1, ..., ekL] ∈ N1×L and is defined as

ekl =

1 if βkl > γ

0 otherwise
. (3.1)

However, although UE k desires to connect to the APs that meet the decision
criterion, the connection will only be carried out whether these APs individually accept
the request of UE k. That is, there must be a matched-decision between the UE k and
the APs. In other words, the connection must be advantageous for both UE k and APs.
The APs can employ several decision criteria, such as the least pilot contamination [26],
effective channel gain [62], among others. Nonetheless, to use similar criteria across UEs
and APs, we assume that the decisions rely on channel gain βkl in the APs. The decisions
are denoted by fk = [fk1, ..., fkL] ∈ N1×L and can be summarized as

fkl =

1 if βkl > βminil

0 otherwise
, (3.2)

where i ̸= k denotes the UE with the smallest channel gain (βminil ) that the AP l serves in
Dl. Recall that Dl denotes the subset of UEs served by AP l, with Kl = |Dl|. In case of
βkl > βminil , the AP accepts the UE k and keeps the connection of the UE i only if there
are available connections (i.e., Kl < Umax). The intermediate AP cluster is given by

cintk = ek ∧ fk, (3.3)

where ∧ is the logical operation AND. From (3.3), one can note that the UE k may not
connect with any AP if it is rejected by all APs in (3.2). To circumvent this issue, the UE
k also claims a master AP. This AP ensures that the network will no longer drop the UE
k since it serves the UE regardless of its channel condition [26]. We consider that each
UE has a master AP and that its choice is independent of the threshold γ. Hence, the UE
connects to at least one AP. Consequently, the cardinality of the subset of APs that serve
the UE k (i.e., Mk) becomes

Lk =
∑

l∈ Mk

cintkl ≥ 1. (3.4)
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In Fig. 7 (a), the arrows indicate the master AP of each UE. The proposed strategy
assumes that the procedure for choosing a master AP is the same for all UEs. Thus, the
procedure will be explained only for the UE k. To choose a master AP, the UE k solicits
a connection to the available APs. Then, the available APs respond, and the UE k selects
the one with the strongest channel gain βkl to be its master AP. Let Al ⊂ Dl denote
the subset of UEs that the AP l is serving as a master. The available APs are the ones
presenting |Al| < Umax, ∀l ∈ {1, . . . , L}. That is, these APs are not using their total
processing capacity only for serving UEs as master APs. Therefore, the master AP of UE
k can be defined by

l = arg maxl βkl
s.t |Al| < Umax

, (3.5)

which means that although several APs (that present |Al| < Umax) reply to the request
of the UE k, it selects only the AP with the highest βkl to be its master AP. It is worth
noting that in (3.5), |Al| + |Bl| ≤ Umax, where Bl ⊂ Dl denotes the subset of UEs that the
AP l serves, but not as a master (i.e., UEs that the AP can drop). Due to the addition of
the master AP, (3.1) becomes

ekl =

1 if (UE k ∈ Al) ∨ (βkl > γ)

0 otherwise
, (3.6)

where Al ⊂ Dl and ∨ represents the logical operation OR. Additionally, (3.2) changes to

fkl =

1 if (UE k ∈ Al) ∨ (βkl > βmin
il )

0 otherwise
, (3.7)

where i ≠ k and i ∈ Bl. One can note that the network will no longer drop the UE k if we
apply (3.6) and (3.7) in (3.3) instead of (3.1) and (3.2), since the choice of the master AP
is independent of γ. It is worth noting that the subset Bl does not affect the master AP
assignment in (3.5). For instance, if Kl = Umax and |Bl| ≥ 1, the AP l could drop the UE
with the weakest channel gain belonging to subset Bl (UEs that the AP l serves, but not
as a master) in order to be the master of UE k in subset Al. Such an approach guarantees
that Kl ≤ Umax since |Al| + |Bl| ≤ Umax. Algorithm 1 summarizes the intermediate AP
selection process.

3.1.2 Final AP Cluster Formation

Fig. 7 (b) depicts the final AP clusters of each UE. Its generation is detailed as
follows: after the formation of vectors ek and fk, the UE k may have been rejected by
some APs. However, the UE has a new chance to link to these APs and then expand its
AP cluster in this second step. To do this, an AP l′ that initially rejected the UE k, verify
if there are still connections available for a new UE. That is, it checks if Kl′ < Umax. Then,



Chapter 3. Matched-Decision AP Selection 49

Algorithm 1: Intermediate AP cluster
Input: γ, Umax;

1 The UE k connects to a master AP by solving (3.5);
2 Update Al according to the solution of (3.5);
3 for l = 1 to L do
4 ekl = 0; fkl = 0; ckl = 0;

// The UE k requests connections to the nearby APs:
5 if k ∈ Al or βkl > γ then
6 ekl = 1;
7 end

// The APs accept or reject the UE request:
8 if k ∈ Al or βkl > βminil then
9 fkl = 1; fil = 1; // where i ∈ Bl

10 if Kl = Umax then
11 fil = 0;
12 end
13 end
14 cintkl = (ekl ∧ fkl) // Matched-decision
15 end

Output: cintk = [cintk1 , . . . , cintkL ].

the AP accepts the request of the UE k if this condition is satisfied. Computationally, this
can be represented by the vector zkl′ = [zk1, ..., zkL] ∈ N1×L, which is given by

zkl′ =

1 if Kl′ < Umax

0 otherwise
, (3.8)

where l′ ̸= l. However, the UE k may be dropped again in (3.7) if a new UE with a better
channel condition enters the network. In the end, the final AP cluster is computed as

ck = cintk ∨ zk, (3.9)

where the operator ∨ denotes the logical operation OR. From (3.9), one can compute the
number of APs serving the UE k by calculating Lk = ∑

l∈Mk
ck. One can also compute

Dk through ck by assuming that Dkl = IN , when ckl = 1. Otherwise Dkl = 0N , for
l = {1, ..., L}. For clarification, Algorithm 2 summarizes the final AP clustering.

The AP selection proposed in this section is composed of the Algorithms 1 and
2. In the first step of the Algorithm 1, the time complexity for each new UE to select its
master AP by solving (3.5) is O(L). Then, the complexity for each new UE that requests
connections to nearby APs is O(|Al|), while for each AP to accept or reject the request is
O(|Bl|). This comes from the fact that only the UEs belonging to subsets Al and Bl are
evaluated. The complexity for computing the intermediate AP cluster is O(L(|Al| + |Bl|)),
since these steps are repeated for each AP. Then, noticing that |Al| + |Bl| ≤ Kl, the
complexity of Algorithm 1 simplifies to O(LKl). The complexity to compute the final
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Algorithm 2: Final AP cluster
Input: cintk , Umax;

1 for l = 1 to L do
// Connect the k-th UE with available APs:

2 if |Dl| < Umax then
3 zkl = 1;
4 end
5 ckl = cintkl ∨ zkl;
6 end

Output: ck = [ck1, . . . , ckL].

AP cluster in Algorithm 2 is also O(LKl), since only the UEs belonging to subset Dl are
evaluated for each AP. Therefore, the overall time complexity of the proposed AP selection
is O(LKl), which can be further simplified to O(LUmax) by noticing that Kl ≤ Umax.
Therefore, one can note the scalability aspect of the proposed strategy since its complexity
does not increase with K.

It is noteworthy note that the decision criteria employed in this section rely on
large-scale fading coefficients. This is because these statistics remain valid for several
coherence blocks, which means that we do not need to re-run the algorithm too often.
However, the decision criteria could also include other metrics, such as pilot contamination
and EE. The purpose of the matched-decision algorithm is to generate a compromise
between the best connections for UEs and APs. Therefore, it can be generalized to other
metrics. Furthermore, although this is not presented in this thesis, the concept of matched-
decision can also be extended to CPUs. In this scenario, one should analyze the most
advantageous connections for UEs, APs, and CPUs.

3.2 Comparison with other AP Selection Methods

The proposed solution aims to generate AP clusters composed of the more con-
venient connections for UEs and APs. Consequently, it inherits several characteristics of
classical AP selection schemes (decisions taken only in the UEs or in the APs) and can
degenerate into these by adjusting the vectors ek, fk, and zk. Before showing it, let us
briefly describe some solutions that we use for comparisons.

3.2.1 Brief Description of Baseline AP Selection Methods

• Canonical CF: it is a NS scheme in which the AP cluster of each UE is composed of
all APs. This method improves the SE of the worst UEs and increases the network’s
coverage probability compared to cellular networks [23].
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• UCC: the AP serves the Umax UEs with the greatest estimated channel in each
coherence block. We have adjusted this strategy to consider only the large-scale fading
to avoid performing AP selection in each coherence block. Thus, it is considered
that the AP serves the Umax UEs presenting the largest large-scale fading in their
vicinity. The user-centric clustering (UCC) is a NS method that does not prevent the
worst UEs from being dropped. The time complexity of this method is O(LK logK)
for each UE as whenever a new UE enters the network, all APs have to perform a
sorting operation to select Umax UEs to serve [25].

• LSFB: the UE establishes a connection with the subset of APs that contribute most
to the sum of its total channel gain, in percentage δ%. This strategy has complexity
O(L logL) for each UE, as each new UE sorts the channel gains of L APs during the
AP selection process. One can note that this method could be scalable, as its time
complexity does not increase with K. Nevertheless, the largest-large-scale-fading-
based (LSFB) is also a NS scheme since it does not limit the number of UEs that
each AP can serve [24].

• Scalable CF: the UE enters the network and connects to a master AP. Then, the
master AP assigns a pilot tk to the UE and informs other APs in its neighborhood
(named non-master APs) that it is serving the new UE in the pilot tk. Posteriorly,
Each non-master APs individually decides to serve or not the UE. To be served,
the UE has to present a channel gain above a threshold value. Then, one of the
following conditions has to be met: i) the AP is available for another UE, ii) The
UE’s channel gain must be greater than the channel gain of the UE that is already
using the pilot tk at the non-master AP. Each AP serves only one UE per pilot.
The first τp UEs are assigned to mutually orthogonal pilots, and the remaining ones
to the pilot causing the lowest pilot contamination in the master AP. Among the
reference schemes analyzed, this is the only one that is scalable and prevents the
worst UEs from being dropped. However, providing a mechanism that aims further
to improve the SE of the worst UEs is not one of the goals of this method. The
time complexity is O(Lτp) for each UE, which is due to the fact that after the pilot
assignment, each AP chooses to serve up to one UE per pilot. The time complexity
of this pilot assignment method for all UEs K is O((K − τp)τp) [26].

3.2.2 Relationships Between the Matched-Decision and Baseline Methods

The matched-decision scheme behaves like a UCC strategy if we set ekl = 1 for all
APs, which is similar to considering a small γ in (3.6). By doing that, the UEs’ choices do
not impact (3.3), and the APs’ decisions dominate the AP cluster formation. Consequently,
the APs tend to select the UEs presenting the best channel gain in their vicinity in
(3.7), leading to a UCC scheme. However, this UCC implementation achieves scalability,
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guarantees connection for all UEs, and its time complexity is independent of the number
of UEs. Hereafter, we name it matched-decision (MD) UCC.

The proposed scheme can also behave like a scalable version of the LSFB algorithm.
Hereafter, we name it as MD LSFB. To this end, one should consider ekl = 1 for the
subset of APs that contribute most to the total sum channel gain δ%, instead of relying
on γ in (3.6). One can also achieve a similar implementation of the scalable CF scheme
by considering ekl = 1 and zkl = 0 for all APs. Then, (3.7) should be modified to make
the APs serve only the UEs, causing the least pilot contamination to the received signal.
Regarding the canonical CF, it is only a particular case of the UC approach when ckl = 1
and Dkl = IN for all APs and UEs [26].

3.3 Proposed Fine-Tuning AP Selection Schemes

The AP cluster of each UE created by AP selection schemes can comprise APs
that contribute only marginally to the UE’s performance. Therefore, this section proposes
two strategies to reduce the number of APs connected to each UE while avoiding reducing
the SE significantly, and a third one that aims to improve the EE. We have named these
solutions as fine-tuning AP selection.

3.3.1 Fine-Tuning Based on Allocated Power

The first one is performed locally in each AP, without the CPUs participation.
The AP l can drop not mastered UEs (i.e., UEs that are in Bl) that receive only a small
fraction of the total power in (2.28). For this, the AP sorts {ϱ1l, ..., ϱkl} in descending
order to identify the not mastered UEs that receive more power, leading to {ϱ̄1l, ..., ϱ̄k′l}.
The indexes of the unsorted UEs are stored in the k′-th element of subset B̄l. Then, the
AP carries out a cumulative sum, which can be expressed as

ϱsum
k′l =


ϱ̄k′l∑

k∈Dl
ϱkl

if k′ = 1
ϱ̄k′l∑

k∈Dl
ϱkl

+ ϱsum
(k′−1)l otherwise

. (3.10)

After that, the AP makes ckl = 1 for the UEs that contribute to at least Γ% of the
cumulative sum in (3.10) and ckl = 0 for the remaining ones. Algorithm 3 summarizes the
entire process. A similar approach has been considered in [24], where an AP selection is
carried out based on each UE’s received power after acquiring power coefficients from an
optimal power allocation strategy that maximizes EE. However, such an approach is NS
as its complexity increases with K. Besides, it does not use the power to fine-tune the AP
clusters but only generates them.
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3.3.2 Fine-Tuning Based on Spectral Efficiency

The second fine-tuning scheme works in a centralized fashion, and it is based on
SE. Specifically, the CPUs drop the connections of APs that contribute only marginally
to the SE of the UE k. For fine-tuning the AP clusters, the CPUs consider that all APs
apply MR precoding and assume perfect CSI to simplify the calculation of the desired
signal (DSk) and interference (ISk) terms in (2.30), which are computed as

DSk = E
{
hH
k Dkwk

}
=

∑
l∈Mk

√
ϱk tr (Rkl)

ISk =
∑
i∈Pk

E
{∣∣∣hH

k Diwi

∣∣∣2} =
∑
i∈Pk

ϱi
∑
l∈Mi

tr (RilRkl)
tr (Ril)

,
(3.11)

where Pk denotes the subset of UEs that are partially served by the same APs as the UE k.
Pk is adopted to make (3.11) scalable since by definition Pk = {i : DkDi ̸= 0LN×LN} [27].
Next, the CPUs estimate SINRk in (2.30) and calculate the SE of the UE k in (2.29).

In the following, it is created the vector qk = [qk1, ..., qkL] ∈ R1×L to identify the
contribution of each AP to the desired signal, where qkl = DSkl whether the AP serves
the UE (i.e., if l ∈ Mk) and qkl = 0, otherwise. Then, the elements of qk are sorted in
descending order leading to the vector q̄k = [q̄k1, q̄kl′ , ..., q̄kL]. The indexes of the APs in
the unsorted vector qk are stored in the l′-th element of subset M̄k, where L̄k =

∣∣∣M̄k

∣∣∣.
Posteriorly, a cumulative sum is performed, being expressed as

q̄sum
kl′ =

q̄kl′ if l′ = 1

q̄kl′ + q̄sum
k(l′ −1) otherwise

, (3.12)

which represents the impact of adding each AP in the desired signal. Finally, one can
compute a cumulative SINR as SINRsum

kl′ =
∣∣∣q̄sum
kl

′

∣∣∣2 /(ISk −
∣∣∣q̄sum
kl′

∣∣∣2 + σ2
dl), and calculate

SEsum
kl′ as a function of SINRsum

kl′ . Therefore, the fine-tuned AP cluster will be found when
SEk − SEsum

kl′ ≤ ε, where ε is the maximum loss limit allowed for the SE.

Then, the CPUs will assign ckl = 1 for the APs in M̄k, presenting the more
substantial contribution to SEsum

kl′ and ckl = 0 for the remaining ones. Recall that we
consider a CF system with multiple CPUs. Therefore, each CPU computes SEsum

kl′ and set
ckl = 0 or ckl = 1 only for the APs that are linked to it by fronthaul. This fine-tuning
scheme is also valid for imperfect knowledge of channel statistics. For this, one should
replace Rkl and Ril by R̂kl and R̂il. Algorithm 4 summarizes the entire process.

One can note that only channel statistics are needed to compute the proposed
fine-tuning schemes, making them valid for many coherence blocks. In (3.11), the CPUs
have to perform about |Pk|LiN3 complex multiplications per UE, and for scalability
purposes, we assume that the CPUs can fine-tune the AP clusters of only LUmax UEs,
corresponding to the number of connections in the network.
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Algorithm 3: Fine-tuning based on power allocation
Input: Γ%, Bl;

1 Sort ϱkl in descending order for the not mastered UEs
2 for k′ = 1 to

∣∣∣B̄l

∣∣∣ do
3 Perform a cumulative sum in (3.10)
4 Map k′ to the unsorted value of k in the subset B̄l

5 if ϱsumk′l ≤ Γ%; then
6 ckl = 1 // Performed in the APs
7 else
8 ckl = 0
9 end

10 end
Output: ck = [ck1, . . . , ckL].

Algorithm 4: Fine-tuning based on SE
Input: ε, Mk;

1 Compute SEk in (2.29) using (3.11) and create qk
2 Sort the elements of qk in descending order
3 for l′ = 1 to L̄k do
4 Perform the cumulative sum in (3.12)
5 SINRsum

kl′ =
∣∣∣q̄sum
kl′

∣∣∣2 /(ISk −
∣∣∣q̄sum
kl′

∣∣∣2 + σ2
dl)

6 Using SINRsum
kl′ , compute SEsum

kl′ in (2.29)
7 Map l′ to the unsorted value of l in the subset M̄k

8 if SEk − SEsum
kl′ ≥ ε; then

9 ckl = 1 // Performed in the CPUs
10 else
11 ckl = 0
12 end
13 end

Output: ck = [ck1, . . . , ckL].

The fine-tuning scheme presented in Algorithm 4 also works if the CPUs consider
the imperfect CSI to calculate DSk and ISk. In this case, the closed-form expressions of SE
derived for MR in [26] could be employed, but at the cost of |Pk|Li(8N3 −N) complex
multiplications per UE. Moreover, a pilot assignment strategy has to be performed before
the fine-tuning process. It is essential to emphasize that the CPUs assume perfect CSI
only to simplify the calculation of DSk and ISk. Recall that perfect CSI is not employed
in the precoding vectors.

3.3.3 Fine-Tuning Based on Energy Efficiency

The third proposed strategy aims to improve EE. It fine-tunes the AP cluster
based on the SE and allocated power ratio (SEk/ϱkl). This strategy aims to remove the
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connections with UEs that achieve high SE and consume a small percentage of the AP
power resources. Although this approach may seem counter-intuitive, note that the APs
allocate more power (ϱkl) to the UEs presenting the strongest channel gains in (2.28).
Besides, the SEk increases with the desired signal, which is proportional to the UE channel
gain in each serving AP, as (3.11) demonstrates. Thus, if a UE achieves a high SE, receiving
only a tiny fraction of power from the AP compared to other UEs, it indicates that this
AP is not so fundamental to the SE of this UE. In (2.32), one can also note that the power
consumption on fronthaul links (Pfh,l) is proportional to the SE of the UEs the AP serves
in Dl. Therefore, some UEs do not benefit as much from some APs, but contribute to
increase Pfh,l, which decreases the EE in (2.31).

Algorithm 5: Fine-tuning based on EE
Input: ζ, Bl;

1 for l = 1 to L do
2 Compute SEk/ϱkl for all UEs in Bl

3 Find the UE with the largest SEk/ϱkl, k(l,max)
4 rk(l,max) = SEk(l,max)/ϱk(l,max)l

5 for k′′ = 1 to |Bl| do
6 Map k′′ to the unsorted value of k in subset Bl

7 if (SEk/ϱkl)−1 > ζ/rk(l,max) then
8 ckl = 1 // Performed in the CPUs
9 else

10 ckl = 0
11 end
12 end
13 end

Output: ck = [ck1, . . . , ckL].

To fine-tune the AP clusters, we proceed as follows: the power allocation is performed
in (2.28), and the SE of each UE is computed in (2.29) using (2.30) and (3.11). In the
following, the CPUs find the UE presenting the maximum ratio SEk/ϱkl in each AP,
such that k(l,max) = arg maxk (SEk/ϱkl) and rk(l,max) = SEk(l,max)/ϱk(l,max)l. For scalability
purposes, we adopt a heuristic solution for making the APs drop not mastered UEs (i.e.,
UEs that are in Bl). We consider that ckl = 1 if (SEk/ϱkl)−1 > ζ/rk(l,max) , and ckl = 0
otherwise, where ζ is a project parameter. Each CPU performs these tasks for the APs
linked to it by fronthaul. The elements of Bl are indexed by k′′ and Algorithm 5 summarizes
the entire process.
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4 Reducing Inter-CPU Coordination

The literature considers that UC systems should rely on a network composed of
multiple CPUs to be more feasible, as Fig. 8 illustrates. This approach brings the benefits
of not overloading a single CPU with the data flows coming from all APs, and some
processing tasks, such as data encoding, can be distributed among CPUs. On the other
hand, the AP cluster of a specific UE may comprise APs connected to different CPUs,
resulting in additional signaling on the backhaul links as the CPUs may have to exchange
signals such as DL data to serve distinct AP clusters. In this chapter, the solution proposed
in this thesis to control the effects of inter-CPU coordination is presented. The chapter
describes the proposed algorithm, which is divided into two stages. The first one associates
the UE with a primary CPU, while the second decreases the number of UEs per CPU to
mitigate inter-CPU coordination.

4.1 Proposed Algorithm

The proposed method to reduce inter-CPU coordination in UC systems considers
that the CPUs and UEs are divided into two classes. Specifically, CPUs are classified as
primary and non-primary, while UEs are classified as inter-coordinated and non-inter-
coordinated. A primary CPU serves the UE regardless of its channel condition to ensure
its connection to the network. In contrast, a non-primary CPU may drop the UE to reduce
inter-CPU coordination. Each UE is associated with a primary CPU, but its AP cluster
may contain other CPUs (i.e., non-primary ones), as depicted in Fig. 8. Moreover, the
UE’s primary CPU calls it a non-inter-coordinated UE, while the other CPUs call it an
inter-coordinated UE, as Fig. 9 illustrates.

The proposed method aims to reduce the number of inter-coordinated UEs associa-
ted with each CPU since inter-CPU coordination results from several UEs being served by
multiple CPUs. However, note that the number of non-inter-coordinated UEs on each CPU
is not modified since these UEs utilize the CPU as a primary CPU. Therefore, a CPU
j does not drop its non-inter-coordinated UEs since CPU j guarantees their connection
to the network. For instance, CPU 2 could only drop the UE 2 to reduce the effects of
inter-CPU coordination in Fig. 9 since UE 2 is an inter-coordinated UE.

In a nutshell, the proposed strategy is divided into two stages, ant the flowchart
exhibited in Fig. 10 provides an overview of the method’s operation. In the first one, the
new accessing UE k connects with a master AP and a primary CPU to ensure connection
to the network, with both the master AP and primary CPU serving the UE regardless
of its channel condition. In the following, an arbitrary AP selection scheme is performed,
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Figure 8 – Illustration of a UC CF massive MIMO network with multiple CPUs. Each
CPU coordinates a subset of APs. The CPU 1 is the primary CPU of UE k, while the
remaining CPUs are the non-primary CPUs of UE k.
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Figure 9 – Illustration of the two classes of UEs. The CPU 1 is the primary CPU of UEs
1 and 2, while CPU 2 is the primary CPU of UE 3 and the non-primary CPU of UE 2.
The term IC means inter-coordinated.

and the AP cluster of the UE k is generated. In the second stage, each CPU associated
with the AP cluster of the UE k runs a fine-tuning algorithm to decide if they will drop
the UE k. The primary CPU keeps the UE k connected, whereas the non-primary CPUs
can drop it to reduce inter-CPU coordination.

4.2 First Stage: Master AP and Primary CPU

In the proposed method’s first stage, the UE k must associate with a master AP
and a primary CPU. To connect with a master AP, the UE solves (3.5). Once a master
AP is chosen, it assigns an identifier IDjCPU ∈ N to UE k, with j being the CPU index.
This identifier is a scalar which indicates the CPU that is linked to the master AP by
fronthaul. This CPU is considered the primary CPU of the UE k.

In the following, the UE k is associated with a subset of APs (Mk) through an
arbitrary AP selection strategy. The connections between the UE and APs are represented
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Figure 10 – Simplified flowchart of the proposed strategy.

by vector ek = [ek1, . . . , ekL] ∈ N1×L, being expressed as

ekl =

1 if l ∈ Mk

0 if l /∈ Mk

. (4.1)

The UE k also sends the identifier IDjCPU to the APs that are in Mk, and they forward
IDjCPU to their CPUs, which use IDjCPU to identify the primary CPU of UE k. In other
words, to check if the UE k is a non-inter-coordinated (IDj′CPU = IDjCPU) UE or a
inter-coordinated (IDj′CPU ̸= IDjCPU) UE, where j′ ∈ {1, . . . , J}.

4.3 Second Stage: Fine-Tuning the AP clusters

In this stage, the CPUs can drop inter-coordinated UEs to mitigate inter-CPU
coordination. To this end, this method states that each CPU can serve only a limited
number of inter-coordinated UEs, denoted as Kint, where Kint ∈ N is a system design
parameter. Hence, the maximum number of inter-coordinated UEs served by a CPU
becomes independent of the number of UEs K. Let Dj′ ⊂ {1, . . . , K} denote the subset of
inter-coordinated UEs that have been served by the CPU j′. The fine-tuning procedure
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Algorithm 6: Reducing inter-CPU coordination
Input: Kint

1 The UE k connects to a master AP by solving (3.5);
2 The master AP assigns an identifier IDjCPU to the UE k. The CPU j, i.e, the CPU

linked to the master AP, will be the primary CPU of UE k;
3 The UE connects to a subset of APs (Mk) following any AP selection scheme in

(2.13). Thus, generating vector ek = [ek1, . . . , ekL];
4 for j′ = 1 to J do
5 CPU j′ computes the number of inter-coordinated UEs it is serving (|Dj′ |);
6 CPU j′ identifies its subset of APs serving the UE k (Mkj′);
7 CPU j′ computes the partial sum gain Gkj′ = ∑

l∈Mkj′ βkl;
8 CPU j′ identifies its inter-coordinated UE presenting the smallest partial sum

gain, imin, where imin = arg mini∈Dj′ Gij′ , with Gij′ = ∑
l∈Mij′ βil;

9 if (IDj′CPU = IDjCPU) or (|Dj′ | < Kint) or (Gkj′ > G(imin)j′) then
10 fkl = 1;
11 else
12 fkl = 0;
13 end
14 ck = ek ∧ fk;
15 end

Output: ck = [ck1, . . . , ckL].

performed on the CPUs is denoted by vector fk = [fk1, . . . , fkL] ∈ N1×L, given by

fkl =

1 if (IDj′CPU = IDjCPU) ∨ (|Dj′| < Kint)

0 otherwise
, (4.2)

for j′ ∈ {1, . . . , J} and l ∈ Mkj′ , where Mkj′ ⊂ {1, . . . , L} denotes the subset of APs
associated with the UE k that are linked to the CPU j′. Besides, ∨ represents the logical
operation OR. In (4.2), a non-primary CPU only serves an inter-coordinated UE if it
does not reach its maximum capacity (i.e., |Dj′ | < Kint). To circumvent this issue, (4.2 )
becomes

fkl =

1 if (IDj′CPU = IDjCPU) ∨ (|Dj′| < Kint) ∨ (Gkj′ > G(imin)j′)

0 otherwise
, (4.3)

where Gkj′ is the partial sum gain, which is computed as Gkj′ = ∑
l∈Mkj′ βkl. The term

partial sum gain means that the CPU j′ computes Gkj′ only considering the APs that
are in Mkj′ . In (4.3), UE imin represents the inter-coordinated UE served by the CPU j′

presenting the smallest partial sum gain, where imin = arg mini∈Dj′ Gij′ , with Gij′ being
calculated as Gij′ = ∑

l∈Mij′ βil. In case of Gkj′ > G(imin)j′ , the UE imin is disconnected
from all APs linked to the CPU j′. It is worth noting that each CPU operates autonomously
and does not exchange any information with other CPUs to compute (4.3). Finally, the
final AP cluster of the UE k is given by

ck = ek ∧ fk, (4.4)



Chapter 4. Reducing Inter-CPU Coordination 60

where ∧ is the logical operation AND. From (4.4), one can note that the AP cluster
generated in (4.1) is modified by vector fk. Thus, the final AP cluster of UE k will only be
composed of the APs whose CPUs do not drop it. Moreover, the UE k can affect the AP
clusters of other UEs since the non-primary CPUs can disconnect the UE imin to serve
the UE k in (4.3). Algorithm 6 summarizes the proposed method.

The time complexity of each new UE k to select its coordinating AP by solving
(3.5) is O(L). Assuming the worst case, where all CPUs serve the UE k in (4.1), the
time complexity for computing (4.3) and (4.4) is O(JKint logKint), as each CPU has to
perform a sort operation for calculating (4.3). Thus, the time complexity of the proposed
method is O(L+ JKint logKint). It is noteworthy that the time complexity for performing
AP selection in (4.1) is not considered because the proposed method is agnostic to the
employed AP selection scheme.
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5 Scalable User-Centric Cell-Free Massive
MIMO with Limited Processing Capacity

In scalable UC systems, the network complexity does not grow with the number
of UEs since the number of UEs that each AP serve is limited, i.e., Kl ≤ τp, where
Kl = |Dl|. Therefore, the maximum number of UEs served by each AP remains finite even
if the number of UEs K goes to infinity. However, the complexity of performing channel
estimation and computing the precoding vectors can still grow with the number of APs,
as depicted in Table 2. That is, as L increases, the number of APs connected to the UE k

(Lk) can also increase, resulting in more processing complexity from the network, where
Lk = |Mk|. This chapter presents the strategy utilized in this thesis to circumvent this
issue. Essentially, we rely on a solution where each UE can be associated only with a
finite number of APs, denoted as Cmax, with Lk ≤ Cmax [52]. We refer to this strategy as
maximum AP cluster size control. It is noteworthy that despite having a similar function,
the Cmax on this thesis is fundamentally different from the one presented in [52]. In the
proposed approach, Cmax is a parameter that refers to the system processing capacity
limitation that provides a new type of analysis for UC CF massive MIMO systems.

5.1 AP Cluster Size Control

The maximum AP cluster size control procedure is presented in Fig. 11 and can be
described as follows: when a new UE k enters the network, it measures the large-scale fading
coefficients of the APs in its vicinity, which is calculated according to βkl = tr (Rkl) /N [26].
Then, it claims a master AP to ensure its connection with at least one AP. For connecting
with a master AP, the UE solves (3.5).

After selecting the master AP, the UE k performs any UC AP selection scheme
in (2.13). In the following, the CPUs associated with the AP cluster of the UE k share
the indexes of the APs serving the UE (Mk) with each other. Then, the CPUs serving
the UE k compute the number of APs serving the UE k, i.e., Lk = |Mk|. If Lk ≤ Cmax,
no action is required. Otherwise, the CPUs will drop the connection of the UE k with
the Ek APs presenting the weakest channel gains, where Ek denotes the number of APs
that exceed Cmax, which is calculated as Ek = Lk − Cmax. Let Jk denote the subset of
CPUs associated with the AP cluster of the UE k. The maximum AP cluster size control
is performed in Jk CPUs, where Jk = |Jk|.

In order to drop the APs in excess, the Jk CPUs serving the UE k sort the channel
gains (βkl) of the APs serving the UE k in ascending order, such that β̃kl′ ≤ · · · ≤ β̃k(Lk),
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Figure 11 – Flowchart of the AP cluster size control.

where β̃kl′ denotes the sorted version of βkl, ∀l ∈ Mk. The indexes of the APs before the
sort operation are stored in the l′-th element of the subset M̄k. Finally, the CPUs drop
the connection of the first Ek APs presenting the smallest channel gains. This procedure
can be expressed as

ckl =

0 if l′ ≤ Ek

1 otherwise,
(5.1)

where l′ is mapped to the unsorted value of l in subset M̄k. Hence, the final AP cluster of
UE k will only be composed of the Cmax APs with the largest channel gains. Algorithm
7 summarizes the maximum AP cluster size control algorithm performed by the CPUs
serving the UE k.

Algorithm 7: AP cluster size control
Input: Cmax

1 The UE connects to a master AP by solving (3.5) and associates with a subset of
APs (Mk) in (2.13);

2 Identify the Jk CPUs serving the UE; // Jk = |Jk|
// The Jk CPUs perform AP cluster size control:

3 if Lk > Cmax then
4 Ek = Lk − Cmax; // where Lk = |Mk|
5 Sort the channel gains of the APs serving the UE in ascending order, such that

β̃kl′ ≤ · · · ≤ β̃k(Lk);
6 for l′ = 1 to Ek do
7 Map l′ to the unsorted value of l in subset M̄k;
8 ckl = 0; // Computed in (5.1)
9 end

10 end
Output: ck = [ck1, . . . , ckL].
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The time complexity of the proposed technique is calculated as follows: the comple-
xity for selecting a master AP by solving (3.5) is O(L). The time complexity to perform
AP cluster size control in each CPU j is O

( ∣∣∣Kall
j

∣∣∣ log
∣∣∣Kall

j

∣∣∣), since each CPU has to perform
a sort operation before computing (5.1). Therefore, the overall time complexity can be
expressed as O

(
L+∑J

j=1

∣∣∣Kall
j

∣∣∣ log
∣∣∣Kall

j

∣∣∣).
5.2 AP Cluster Adjustment

In this section, a heuristic method that adjusts the AP clusters according to the
network implementation is proposed. Such method holds for any UC AP selection strategy,
i.e., with and without processing capacity limitation. Moreover, it is a heuristic technique
because only heuristic solutions are scalable [26]. In a nutshell, the UEs are associated
with a subset of APs following any AP selection process. Then, the proposed method aims
to simultaneously reduce the number of UEs served by each AP l (Kl) and the number of
APs connected to each UE k (Lk) while keeping the SE under minor degradation. In this
context, it is a novel way to reduce the CC and increase EE in scalable UC CF massive
MIMO systems. The analysis also assumes that each UE connects to a master AP by
solving (3.5).

5.2.1 AP Cluster Adjustment in the Distributed Implementation

In the distributed implementation, the proposed technique exploits the local long-
term CSI at each AP and intends to reduce Kl without causing significant SE degradation.
When all APs are involved, the average value of Lk is also reduced. It is noteworthy that
Lk is not directly decreased in distributed implementation, and neither could it be since it
would require global long-term CSI at each AP.

The adjustment of the AP cluster relies on two proposed metrics: (i) the partial
channel strength indicator (β̄kl) and (ii) the total channel strength indicator (β̄l). We
utilize these metrics to prevent the less fortunate UEs from being easily dropped by the
AP. Thus, they do not directly represent the long-term CSI of the UEs that the AP serves.
Instead, they are the long-term CSI raised to a normalization exponent, defined as λl,
which provides a better balance between the channel gains of the most and less fortunate
UEs served by the AP, such that 0 < λl < 1. Without this normalization, the AP could
easily drop a UE presenting a weaker channel gain if the AP was also serving UEs with
stronger channel gains. Nevertheless, these differences can be decreased when the channel
gains are raised to a power lower than one and greater than zero, such as λl. The partial
channel strength indicator is given by β̄kl = (βkl)λl , where

λl = mink∈Dl
(βkl)

maxk∈Dl
(βkl)

. (5.2)
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The second metric, called total channel strength indicator, is calculated as β̄l = ∑
k∈Dl

β̄kl.
In the proposed method, the two metrics are used by each AP l to compute

β̄l,−k = β̄l − β̄kl, (5.3)

∀k ∈ Dl. The purpose of calculating β̄l,−k is to evaluate how much the total channel
strength indicator β̄l is reduced by dropping the UE k from the AP l. After computing
(5.3), the AP keeps the connection of UE k, only if

ckl =

1 if (UE k ∈ Al) ∨
(
β̄l,−k ≤ β̄meanl

)
0 otherwise,

(5.4)

where β̄meanl = ∑
k∈Dl

β̄l,−k/Kl is a threshold value and Al ⊂ Dl is the subset of UEs
that AP l serves as a master AP. One can note that the term β̄l,−k has to be smaller
than β̄meanl , because β̄l,−k will be small if the UE k has a large partial channel strength
indicator β̄kl, since β̄l,−k = β̄l − β̄kl. Meanwhile, β̄l,−k will be large if the UE k adds only
a marginal gain to the total channel strength indicator β̄l. That is, if β̄kl represents a
considerable percentage of β̄l = ∑

k∈Dl
β̄kl, the term β̄l will be significantly reduced if the

UE k is disconnected from AP l. Algorithm 8 summarizes the AP cluster adjustment in
the distributed implementation.

Algorithm 8: AP cluster adjustment in the distributed implementation
Input: k′ = 1, ..., Kl

1 Compute λl and β̄kl = (βkl)λl , ∀k ∈ Dl, // Partial channel strength indicator
calculated in the APs

2 β̄l = ∑
k∈Dl

β̄kl ;// Total channel strength indicator
3 Compute β̄l,−k and β̄meanl = ∑

k∈Dl
β̄l,−k/Kl.

4 for k′ = 1 to Kl do
5 Map k′ to the value of k in subset Dl.
6 if k /∈ Al and β̄l,−k ≥ β̄meanl then
7 ckl = 0; // Remove the UE from the AP
8 end
9 end

Output: ck = [ck1, . . . , ckL].

5.2.2 AP Cluster Adjustment in the Centralized Implementation

In the centralized implementation, the long-term CSI of APs and UEs is available at
the CPUs [26,28]. Hence, the proposed method exploits the global long-term CSI to reduce
Lk. At first, reducing Lk may appear counter-intuitive since the centralized implementation
has a better interference suppression capability. However, since CC grows with the number
of APs serving the UE (recall that Lk = |Mk|), the AP cluster expansion will not always
be beneficial, and reducing Lk may be necessary even in this implementation. In the
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centralized implementation, the AP cluster adjustment is also performed by the Jk CPUs
associated with the AP cluster of the UE k, which are denoted as Jk, where Jk = |Jk|.
Moreover, the Jk CPUs need to share the indexes of the APs serving the UE (Mk) with
each other, as in Section 5.1.

The partial channel strength indicator is now calculated in the CPUs as β̄kl =
(βkl)λk , where λk introduces a balance between the serving APs presenting the smallest
and highest channel gain to the UE k. The CPUs compute λk as

λk = minl∈Mk
(βkl)

maxl∈Mk
(βkl)

. (5.5)

The total channel strength indicator is computed as β̄k = ∑
l∈Mk

β̄kl. Then, the CPUs
calculates the contribution that each AP brings to β̄k as

β̄k,−l = β̄k − β̄kl, (5.6)

∀l ∈ Mk. Therefore, the CPU connected to the AP l keeps the connection of AP l with
the UE k only if

ckl =

1 if (UE k ∈ Al) ∨
(
β̄k,−l ≤ β̄meank

)
0 otherwise,

(5.7)

where β̄meank = σsi/2 +∑
l∈Mk

β̄k,−l/Lk, with σsi denoting the standard deviation of β̄k,−l,
∀l ∈ Mk. The term σsi is utilized to make the CPUs drop fewer APs from the AP
cluster of UE k to exploit the centralized implementation’s capacity in improving SE. It
is worth noting that only the CPUs associated with the AP cluster of the UE run the
proposed method. Algorithm 9 summarizes the AP cluster adjustment in the centralized
implementation.

Algorithm 9: AP cluster adjustment in centralized implementation
Input: l′ = 1, ..., Lk, Jk

1 Compute λk and β̄kl = (βkl)λk , ∀l ∈ Mk // Partial channel strength indicator
calculated in the CPUs

2 β̄k = ∑
l∈Mk

β̄kl // Total channel strength indicator
3 Compute β̄k,−l and β̄meank = σsi/2 +∑

l∈Mk
β̄k,−l/Lk

4 for l′ = 1 to Lk do
5 Map l′ to the value of l in subset Mk

6 if k /∈ Al and β̄l,−k ≥ β̄meanl then
7 ckl = 0
8 end
9 end

Output: ck = [ck1, . . . , ckL].
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5.2.3 Pros and Cons of the two AP Clusters Adjustments

The utilization of the proposed method on a distributed implementation enables a
fronthaul signaling reduction since the number of data flows on the fronthaul is proportional
to Kl in Table 1. Besides, it allows the AP to carry out fewer operations while attaining
the same SE performance, increasing the system’s EE. Utilizing the proposed method in a
centralized implementation also allows significant savings in CC resources. Nonetheless, it
does not directly reduce the number of data flows in the fronthaul links since the data
traffic is not proportional to Kl, but to the number of antennas per AP, N . It is worth
noting that this thesis has considered that the AP cluster adjustment is only activated
when λl and λk are lesser than a threshold Θ to avoid excessive adjustments, where Θ is a
project parameter. We have set Θ = 10−2 and Θ = 10−3 for the distributed and centralized
implementations, respectively.
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6 Numerical Results

This chapter details the numerical simulations and results carried out in this thesis.
The results are divided in three sections and are organized as follows: Section 6.1 introduces
the numerical results associated with the matched-decision AP selection framework and the
fine-tuning algorithms, described in Chapter 3. Section 6.2 exhibits the simulation results
related to the proposed method to reduce the effects of inter-CPU coordination, discussed
in Chapter 4. Section 6.3 details our findings for the strategies presented in Chapter
5, which consist in limiting the processing capacity of UC systems and adjust the AP
clusters of UEs according to each network implementation (i.e., centralized or distributed
processing). A description of the simulation parameters and assumptions employed in the
results are given bellow.

We consider a CF network consisting of L APs, each equipped with N antennas.
Each AP can serve up to Umax UEs, which describes a processing capability limitation of
the AP and allows the system to achieve scalability. The K UEs are uniformly distributed
over a square area of 1 × 1 km, and the distribution of the APs follows a hard core
point process (HCPP)1. After the APs positioning, the coverage area is divided into J
rectangle regions of the same size, each consisting of a CPU coordinating approximately
L/J APs, where we have set J = 4. The values of L, N , Umax, and K vary and are
specified throughout the results. In order to provide a better balance as to the amount of
interference that affects each AP, we employ the wrap-around technique [4]. We focus on
DL channels and consider τc = 200 samples in each coherence block. The pre-log factor is
set to Pf = τd/τc for perfect knowledge of channel statistics, where τp = 10, and τd = 190.
For imperfect knowledge, Pf = 1 − (τp/τc) − α, where α = NRτpK/τsτc. We consider that
Bs = 100 MHz and Ts = 0.5 s, such that τs = 250000 [92]. To calculate α and perform the
correlation matrix estimation, we assume NR = 400 and NΨ = 800.

For computing the centralized power allocation (ϱk) we consider the following
fractional power parameters v′ = −0.5 and κ′ = 0.5 [27]. In the UL direction, we assume
that each UE transmits the pilot signals with full power [26]. The parameters for EE
are set as νl = 0.4, Ptc,l = 0.2 W, P0,l = 0.825 W, and Pft,l = 0.25 W/(Gbit/s) [24].
We perform Monte-Carlo simulations to evaluate the system’s performance in terms of
average and cumulative distribution function (CDF) of the SE. We also evaluate the average
numbers of APs connected to each UE (Lk) and UEs per AP (Kl). The propagation model
1 We use a HCPP because it adds a better spacing regularity between the APs that would not be possible

in a uniform distribution. In this method, the distance between any two APs cannot be smaller than
dmin =

√
A/L, where A is the coverage area in square meters. The first step is to randomly drop the

APs based on a homogeneous Poisson point process with mean a rate 1/dmin, then randomly update
the location of APs that do not meet the spacing requirement until it is fulfilled.
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adopted is in accordance with the 3GPP LoS/NLoS Urban Micro (UMi) path-loss model
defined in the Technical Report (TR) 38.901 [98]. We estimate the perfect correlation
matrices of NLoS channels RNLoS

kl according to the local scattering spatial correlation
model presented in [4, Sec. 2.6]. The parameter values used to set the entries for the UMi
model and RNLoS

kl can be found in Table 3.

Table 3 – Parameters assumed for the UMi path-loss and local scattering spatial correlation
model utilized to compute the correlation matrix of NLoS channels.

Parameter Value
Effective environment height, hE 1.0 m

Shadow fading standard deviation, σSE 4 dB
Antenna height AP, UE - hAP, hUE 11.65 m, 1.65 m

Rx noise figure (NF) 8 dB
Frequency center, bandwidth (Bs) 3.5 GHz, 100 MHz

angular standard deviations (ASDs) σφ = σθ = 15◦

Antenna spacing 1/2 wavelength distance

Throughout the results, we modify the scalable CF AP selection method to consider
the restriction Umax. For pilot allocation, we consider the algorithm presented in [26].
This is because we intend to compare the proposed solutions with baseline AP selection
schemes, such as the scalable CF scheme, which relies on this pilot assignment strategy to
generate the AP clusters. This method assumes that the pilot assignment is performed by
the AP with the strongest channel gain in the AP cluster of each UE. Moreover, the pilot
assigned to each UE is the one that causes the least pilot contamination in the master AP.
The literature has introduced several strategies for pilot assignment in massive MIMO
theory [99–101]. One can investigate how different AP selection schemes are affected by
distinct pilot assignment strategies and vice-versa. However, a more profound discussion
involving pilot allocation strategies is out of the scope of this thesis.

We compare the achievable SE results for different precoding choices. Recall that
the MMSE precoding is a signal processing technique that maximizes the SINR for all UEs
in the network based on channel estimates available on the CPU, efficiently suppressing
interference among them. The distributed version of MMSE is called L-MMSE precoding,
which uses the local channel estimates available at each AP. These methods are not
scalable since they need channel estimates of all UEs, but one can modify them to fulfill
the scalability requirements. The key features of each are summarized below [27]:

• Distributed implementation

– MR scheme: low-complexity precoding that maximizes the ratio between the
received power and the square norm of the UL combing vector but cannot
efficiently mitigate interference among UEs.
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– LP-MMSE scheme: an adaptation of the L-MMSE precoding that suppresses
interference only from UEs served by the AP using locally available channel
estimates, that is, with no cooperation among APs to this end. This precoding
has higher complexity than MR method but can provide better SE.

• Centralized implementation

– P-MMSE scheme: the only difference between this precoding and the MMSE
is that it does not consider all UEs in the UL combining vector, but only the
subset of UEs partially served by the same APs. The P-MMSE better mitigates
interference than LP-MMSE, as the CPU entity has access to the channel
estimates of several UEs, not only using local estimations.

– P-RZF scheme: this technique simplifies the P-MMSE precoding by neglecting
the estimation errors correlation matrix, allowing it to reduce time complexity.
However, it still can suppress interference of the subset of UEs partially served
by the same APs. It also generally performs better than LP-MMSE.

6.1 Simulation Results: Chapter 3

This section presents the numerical results associated with the matched-decision
AP selection framework and the fine-tuning algorithms described in Chapter 3. This
section follows the same parameters and assumptions discussed previously but with some
particularities, since it relies on specific AP selection methods. These specificities are: the
total transmission powers of the UEs and APs are ηi = 100 mW, ϱl = 1 W, respectively.
The threshold value of the LSFB algorithm is set to δ% = 99.9 and it is considered that
γ = −50 dB in the proposed method. Moreover, we set Γ% = 98, ε = 0.02 and ζ = τp for
the fine-tuning schemes. The proposed solutions are compared with four other AP selection
algorithms described earlier in Section 3.2, which are the canonical CF [23], UCC [25],
LSFB [24], and scalable CF [26]. Besides, it is considered that the channel vector between
a UE k and AP l undergoes an independent correlated Rayleigh fading, such as in (2.5).

6.1.1 Cumulative Distribution Function

We start by evaluating the CDF of the achievable DL SE in a network consisting
of L = 100 APs and K = 20 UEs. In Fig. 12, we compare the performance of the AP
selection methods considering two scenarios and assuming perfect knowledge of channel
statistics. The results compare APs that can serve a lower number of UEs (Umax = 4)
with APs that can deal with more UEs (Umax = 10), which represent different processing
capacity of their hardware.
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(a) MR (b) LP-MMSE

(c) P-RZF (d) P-MMSE
Canonical CF (NS) UCC (NS) LSFB (NS) Scalable CF Proposed method

Figure 12 – Comparison of DL SE per UE of the proposed AP selection method with
canonical CF [23], UCC [25], LSFB [24] and scalable CF [26]. Parameters setting: L = 100,
N = 1 and K = 20. Perfect knowledge of channel statistics.

In Fig. 12, the proposed solution can outperform the SE’s of the remaining methods
for the 95% likely UEs, when Umax = 4. It increases the SE of the 95% likely UEs by
approximately 100% both for the P-MMSE and P-RZF compared to the scalable CF
scheme, where the P-RZF achieves the same SE of the P-MMSE even though it is a
less complex technique. In the distributed implementation, we observe a gain of about
163% using LP-MMSE and 75% with MR compared with [26], which corresponds to the
expectations of both methods regarding interference mitigation. Additionally, the proposed
method provides higher SEs with approximately the same number of APs connected per
UE for Umax = 4, according to Table 4. It is similar to UCC but with the advantage of
being scalable and presenting less time complexity.

In Fig. 12, the increase in SE for the 95% likely UEs for Umax = 4 is related to the
final AP cluster stage, which makes the worst UEs to connect to more APs. On the other
hand, the 50% and 10% likely UEs benefit less from this stage, even if their SEs raise more.
For example, an increase of 1 (bit/s/Hz) can substantially enhance the SE of the 95%
likely UEs in percentage, while 1.2 (bit/s/Hz) will not present the same impact for the
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50% and 10% likely UEs. Moreover, the intermediate AP cluster was crucial to improve
performance. One can note that even though our solution makes the AP clusters comprise
more APs, the average number of APs connected to each UE is not that different in Table 4
compared to the scalable CF method, since Umax = 4 is relatively small. Therefore, the
matched-decision strategy enabled UEs and APs to establish more suitable connections,
which helped in enhancing SE.

Table 4 – Mean value and standard deviation (STD) of the number of APs connected to
each UE for different AP selection methods.

AP selection method Umax = 4 Umax = 10 Complexity
Mean STD Mean STD

UCC (NS) [25] 20 0 50 0 O(LK logK)
LSFB (NS) [24] 30.28 1.46 30.28 1.46 O(L logL)
Scalable CF [26] 18.57 0.93 24.67 2.69 O(Lτp)
Proposed method 19.94 0 49.94 0.57 O(LUmax)

In Fig. 12, the gains offered by our method are not that impressive for Umax = 10,
and some baseline solutions were slightly better in distributed implementation. As the
APs can serve more UEs when Umax = 10, our solution makes the AP clusters even larger
(as Table 4 shows), which generates more interference in the DL direction. Therefore,
the proposed scheme has to be used jointly with more robust precoding techniques, such
as P-MMSE and P-RZF, to provide gains in SE when Umax = 10. Otherwise, baseline
solutions can present higher SEs since they serve the UEs using fewer APs, as Table 4
demonstrates. Nonetheless, the proposed method can present the lowest time complexity
for Umax < τp.

In Fig. 12, one can note that the proposed method allows the systems that employ
APs with small Umax to provide SEs as high as those with a higher Umax. For instance, for
the P-MMSE, the SE of the 50% likely UEs is about 6 (bit/s/Hz) and 6.3 (bit/s/Hz) for
Umax = 4 and Umax = 10, respectively. These insights reveal that a network that employs
APs serving many UEs does not necessarily provide a higher capacity. Furthermore, Fig. 12
also indicates that even if an AP can serve more UEs, it could reduce Umax through
software to improve SE in some scenarios. Such results may also inspire future publications
involving scalable UC networks by showing that Umax must not be too small or too large
but properly suited to the network conditions. For instance, almost all AP selection
schemes can outperform the canonical CF (at least in these controlled simulations) in
Figs. 12 (a) and (b), emphasizing that an AP serving a higher number of UEs do not
necessarily bring the highest SEs, as the more UEs the AP serves, the less is the allocated
power and the higher is the interference.
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6.1.2 Similarities with other AP Selection Methods

Recall that the proposed method can also provide scalability for other AP selection
schemes. Fig. 13 compares the LSFB (NS) strategy with the MD LSFB described in
Section 3.2. Note that the MD LSFB strategy can achieve similar SEs as the LSFB with
the advantage of being scalable. Moreover, it can perform as great as the scalable CF
scheme. It can be noted in Fig. 12 that the LSFB (NS) scheme performs better than the
scalable CF scheme for Umax = 4 and matches this one when Umax = 10. As the scalable
version of the LSFB does not present notable performance losses in Fig. 13, one can
conclude that the MD LSFB presents SE levels as high as the scalable CF scheme.
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Figure 13 – Comparison of DL SE achieved when using LSFB and its scalable version, the
MD LSFB. It is also presented a fine-tuned version of the MD LSFB (based on Algorithm
4) for Umax = 10, the MD LSFB-FT. Parameters setting: L = 100, N = 1 and K = 20.
Perfect knowledge of channel statistics.

A similar result can be observed for the UCC scheme since it is the method that
most closely matches our scheme in Fig. 12. As Fig. 14 shows, the similarities between
the proposed method and the UCC are related to the value of γ. For γ < −40 dB, the
UE discovers a large number of APs in its vicinity, which makes the decisions of the
APs predominant. Therefore, if all UEs choose many APs to connect, the APs will select
those with the stronger channel gain in the intermediate stage. Thus, for γ < −40 dB,
the proposed scheme is probably approaching a scalable version of UCC, which is called
MD UCC. However, as γ increases, the UE decisions become even more restricted in the
intermediate stage, i.e., the UE selects fewer APs in (3.6) and the similarities disappear.
One can note that the similarity region (i.e., γ < −40 dB) allows the proposed method to
reach high SEs while reducing EE. Therefore, the matched decision scheme must operate
outside the similarity region to improve EE. That is, γ > −40 dB.

6.1.3 Performance of Fine-Tuning AP selection

Regarding the fine-tuning AP selection methods of Algorithms 3 and 4, one can
observe in Table 5 that they substantially reduce the number of APs connected to each
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Figure 14 – Average DL SE and EE achieved by the proposed solution for different values
of γ. Parameters setting: L = 100, N = 1 and K = 20. Perfect knowledge of channel
statistics.

UE (especially for Umax = 10) while achieving similar results in terms of SE. These
results demonstrate that fine-tuning AP selection schemes can potentiate the network
performance, as the number of complex multiplications to precoding signals and estimate
channels is proportional to Lk and Kl. In Table 5, one can note that the fine-tuning based
on power allocation (Algorithm 3) can improve SE in LP-MMSE while reducing it in
P-MMSE. As the distributed nature of this strategy aims to reduce the number of UEs
connected in each AP (Kl), it helps the interference mitigation of LP-MMSE. Therefore,
it is more recommendable for distributed implementation.

On the other hand, both P-MMSE and LP-MMSE benefit from the fine-tuning
based on SE (Algorithm 4) since this method reduces the number of APs connected to
each UE by looking to the UE side. That is, it tries to keep the SE of the UE under minor
degradation, while Algorithm 3 only considers the allocated power that each UE receives
from the AP. It is worth noting that these fine-tuning methods work in any AP selection
scheme. For instance, Fig. 13 shows that we can keep the SE of the MD LSFB strategy
almost unchanged while reducing the average number of APs per UE (Lk) from 30.38
to 26.51 and the average number of UEs per AP (Kl) from 6.05 to 5.3. In Fig. 13, the
fine-tuning strategy based on SE is employed for Umax = 10, and the fine-tuned version of
MD LSFB is called MD LSFB - FT.

In Fig. 15, we analyze the impacts of Algorithm 5 on the system’s EE. Specifically, it
is evaluated the EE of the MD LSFB scheme vs. the variation of ζ. The more ζ grows, the
more the APs disconnect UEs (i.e., Kl reduces). Therefore, the fine-tuning of Algorithm
5 is not activated when ζ = 0. When ζ is maximum, the number of UEs the AP serves
assumes the lowest value. It is considered that 0 ≤ ζ ≤ τp, where τp = 10. The results
indicate that we can improve the EE up to 43.3% in the LP-MMSE for Umax = 4. These
values are achieved by comparing the EE values in ζ = 0 and ζ = 10.
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Table 5 – Average number of APs per UE (Lk), UEs per AP (Kl) and DL SE for the
proposed AP selection method before and after applying the fine-tuning methods from
Algorithms 3 to 5. Parameters setting: L = 100, N = 1 and K = 20, Γ% = 98, ε = 0.02,
and ζ = τp. Perfect knowledge of channel statistics.

AP selection method Umax = 4
UEs per AP APs per UE LP-MMSE SE P-MMSE SE

Proposed method 3.98 19.94 3.26 bit/s/Hz 5.92 bit/s/Hz
Algorithm 3 2.78 13.9 3.31 bit/s/Hz 5.57 bit/s/Hz
Algorithm 4 3.19 15.96 3.28 bit/s/Hz 5.89 bit/s/Hz
Algorithm 5 1.45 7.28 3.34 bit/s/Hz 4.77 bit/s/Hz

AP selection method Umax = 10
UEs per AP APs per UE LP-MMSE SE P-MMSE SE

Proposed method 9.98 49.94 3.09 bit/s/Hz 6.22 bit/s/Hz
Algorithm 3 7.55 37.78 3.15 bit/s/Hz 6.06 bit/s/Hz
Algorithm 4 7.76 38.8 3.14 bit/s/Hz 6.18 bit/s/Hz
Algorithm 5 2.38 11.9 3.32 bit/s/Hz 5.24 bit/s/Hz
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Figure 15 – Average EE achieved by the MD LSFB scheme after fine-tuning the AP
clusters based on EE (Algorithm 5). Parameters setting: L = 100, N = 1 and K = 20.
Perfect knowledge of channel statistics.

The fine-tuning scheme of Algorithm 5 increases the EE by reducing the average
number of APs per each UE (Lk) from 30.38 to 8.7043 for Umax = 10 and from 19.12 to
4.38 for Umax = 4, when the MD LSFB scheme is employed. Moreover, it also reduces the
average number of UEs per AP (Kl). It decreases from 6 to 1.74 when Umax = 10 and
from 3.81 to 0.87 for Umax = 4. These low values indicate that the Algorithm 5 turned
off several APs to improve EE. Nevertheless, Algorithm 5 can decrease the SE in the
P-MMSE scheme, as Table 5 illustrates. On the other hand, Algorithm 5 can slightly
increase the SE of the LP-MMSE as depicted in Table 5. Therefore, it is more suitable
for a distributed implementation. Similar results are observed in the other AP selection
methods. For instance, the EE can increase up to 40% for Umax = 10 in the LP-MMSE
precoding when the scalable CF scheme is employed.
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6.1.4 Impacts of Imperfect Knowledge of Channel Statistics

The impacts of imperfect knowledge of the correlation matrices are illustrated in
Fig. 16, with R representing the correlation matrices. It is possible to observe that the
scalable CF scheme is the most affected by the imperfect Ψ̂tl and R̂kl when Umax = 4. In
this scenario, the proposed method can offer gains of up to 315 % in the SE of the 95 %
likely UEs compared to the scalable CF strategy. Nonetheless, both strategies are not
greatly affected when Umax = 10.
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Figure 16 – Comparison of SE considering imperfect knowledge of channel statistics in
the P-MMSE precoding. Parameters setting: L = 100, N = 1, and K = 20. The letter R
represents the correlation matrices.

The evaluation of imperfect knowledge of channel statistics was carried out for all
AP selection schemes on all precoding vectors previously described. However, we showed
only the results of P-MMSE precoding in two AP selection schemes to avoid redundancies.
In general, although not shown in the figures, all AP selection methods presented only
small performance losses when Ψ̂tl and R̂kl are imperfect. The most degraded one was the
scalable CF for all precoding techniques when Umax = 4, implying that this method may
demand greater estimation accuracy. One can possibly solve it by increasing the number
of observations NR, NΨ or adopting a more robust technique for estimating Ψ̂tl and R̂kl.
In the next section, we will consider only the perfect knowledge of channel statistics to
evaluate the scalable CF scheme in its full performance. Regarding the fine-tuning schemes,
they were not also greatly affected by the imperfect knowledge of channel statistics.

6.1.5 Average Spectral Efficiency

From now on, we compare the performance of our proposed AP selection method
with the only one that is also a scalable solution, the scalable CF scheme [26]. To compute
the average SE, we consider only the LP-MMSE and P-MMSE since they provide the best
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interference mitigation for the distributed and centralized implementations, respectively.
Besides, we are considering the perfect knowledge of channel statistics.

Fig. 17 shows the average achievable SE per UE as a function of the maximum
number of UEs that each AP can serve (Umax) by varying Umax from 1 to 10. Higher
values for Umax are not considered since it is limited to τp = 10. As can be observed in
Fig. 17, the proposed method can improve the average SE up to 96.4% for the distributed
implementation when Umax = 1 and achieves the highest average SE when Umax = 2.
One can note that for small values of Umax (such as Umax = 2) the additional amount of
interference generated by the final AP cluster is still easily mitigated by the LP-MMSE.
However, for Umax > 6, the interference levels increase even more, and the scalable CF has
slightly better results. Despite this, Fig. 17 shows that the proposed method outperforms
the scalable CF for all considered values of Umax in P-MMSE, improving up to 44.6%
the average SE. Besides, Fig. 17 demonstrates that a proper Umax allows the network to
achieve the best SEs for LP-MMSE and P-MMSE, in which case one should set Umax = 2
and Umax = 8, respectively. In Fig. 17, one can also note that the scalable CF scheme
needs to employ APs with greater values of Umax to achieve similar results than ours with
smaller Umax.
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Figure 17 – Average DL SE versus Umax. Parameters setting: L = 100, N = 1, and K = 20.
Perfect knowledge of channel statistics.

Fig. 18 shows the average SE versus the number of antennas per AP, N . Note that
the SE of our solution overcomes the scalable CF scheme when both use Umax = 4 and
match the scalable CF when Umax = 10. However, the proposed method slightly loses
performance for N ≥ 4, when Umax = 10 is employed. The explanation for the results in
Fig. 18 is similar to those given for the previous ones. That is, a suitable Umax allows the
proposed solution to generate less interference and increase SE, but an inappropriate Umax
can degrade performance and make baseline solutions perform slightly better.

Fig. 19 presents the analysis regarding achievable average SE versus the number of
UEs, K. For LP-MMSE, the proposed method improves the average SE for all values of K
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Figure 18 – Average SE as a function of the number of antennas per AP N . Parameters
setting: L = 100 and K = 20. Perfect knowledge of channel statistics.

by at most 17% compared to the scalable CF scheme with Umax = 4. Besides, our scheme
performs better with Umax = 4 than Umax = 10, being outperformed by the scalable CF
scheme with Umax = 10 and K = 80, but the difference is negligible. For P-MMSE, the
proposed method improves the average SE up to 47% when K = 70 and Umax equal to 4.
Moreover, one can note that Umax = 10 is more suitable for our solution for K > 25, i.e.,
when the massive MIMO condition (M/K > 4) is lost. This happens because the number
of interfering UEs increases, while the number of APs in each AP cluster (Lk) decreases.
Thus, for K > 25 and Umax = 4, our solution could not provide gains compared to the
scalable CF method with Umax = 10. This is because in addition to the clusters decrease,
more UEs are partially served by the same APs, worsening the P-MMSE performance.

20 40 60 80 100

K

1

2

3

4

5

6

7

A
v
er

ag
e 

S
E

 [
b
it

/s
/H

z]

Proposed method: U
max

= 4

Scalable CF: U
max

= 4

Proposed method: U
max

= 10

Scalable CF: U
max

= 10

P-MMSE

LP-MMSE

Figure 19 – Average SE versus the number of UEs K. Parameters setting: L = 100 and
N = 1. Perfect knowledge of channel statistics.

Fig. 20 presents the average SE versus the number of APs, L, where Umax is equal
to 4 or 10, and N decreases with L in order to keep M = 100. It is possible to observe
that for small values of L the SEs are not too high due to the low macrodiversity, as the
APs can serve only a few UEs in a coverage area of 1 × 1 km. However, as L increases and
N decreases, the SE improves, with the behavior of the SEs for Umax = 4 and Umax = 10
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Figure 20 – Average SE versus the number of APs L. Parameters setting: K = 20 and N
varies in order to keep M fixed at 100, where M = NL.

following the same explanation of previous results. In Fig. 20 (a), one can observe that the
SE achieves a maximum value between L = 20 and L = 25. In this interval, the LP-MMSE
could find the best balance between the strength of the received signal and interfering ones.
However, for L > 25, the AP clusters are made up of more APs, consequently increasing
interference and reducing the effectiveness of the LP-MMSE precoding. Additionally,
Figs. 19 and 20 demonstrate that even if a system utilizes higher processing capacity
APs, one can adapt Umax according to the network conditions to improve SE and reduce
computational cost in some scenarios if it is used jointly with our solution.

6.2 Simulation Results: Chapter 4

This section presents the numerical results of a UC system utilizing the proposed
method to reduce the effects of inter-CPU coordination, discussed in Chapter 4. The same
parameters and assumptions discussed previously are adopted in this section but with
some specificities, which are: the total transmission powers per UE and AP are 100 mW,
200 mW, respectively, and we have set Umax = τp. The AP selection scheme that jointly
performs pilot assignment and AP clustering, described in Subsection 3.2.1 is utilized,
which we have named as scalable cell-free (SCF) in this section. Besides, when it is used
with the proposed method, we call it by SCF + CPU lim. We also compare the results
with [10], where we adapted [10] to the proposed scenario. Specifically, it is considered
that the primary CPU computes the UE channel sum gain regarding all APs linked to the
primary CPU by fronthaul. If more than Λ% of the channel sum gain of the UE comes
from the master AP, the UE is considered a cell edge UE. It is assumed that Λ = 90%,
and that [10] uses the SCF scheme to associate UEs and APs. In this section, only the
perfect knowledge of channel statistics is considered.
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Figs. 21, 22 and 23 depict the impacts of reducing inter-CPU coordination with
the proposed method in a UC system composed of L = 100 APs and a variable number
of UEs K. In Fig. 21, the proposed method ensures that the average SE is kept under
small degradation, even if it limits the number of inter-coordinated UEs that each CPU
can serve. The most significant decrease is observed for the LP-MMSE scheme, which is
about 2.8% for K = 50. The SE is kept under small degradation because decreasing the
number of inter-coordinated UEs per CPU also reduces the number of UEs that some
APs serve (Kl). Hence, even though the UEs connect to fewer APs, they can also suffer
less interference in the DL direction, helping precoding techniques with more modest
interference mitigation capabilities, such as MR and LP-MMSE. Besides, although not
shown in the figures, the SE of the 95% likely UEs (i.e., those presenting the minimum SE
in the network) has been analyzed, and the proposed method revealed to affect the SE of
the 95% likely UEs negligibly.
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Figure 21 – Average DL SE achieved by varying the number of UEs K. Parameters setting:
L = 100, N = 1, J = 4, and Kint = τp, where τp = 10.
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Figure 22 – Average DL EE achieved by varying the number of UEs K. Parameters setting:
L = 100, N = 1, J = 4, and Kint = τp, where τp = 10.

In Fig. 22, the proposed method was able to slightly improve EE compared to the
SCF scheme, reaching up to 4% improvement for K = 25. This is because decreasing Kl
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allows the network to reduce the power consumption in each fronthaul link [24]. That
is, the system achieves almost the same SE while consuming less power and increasing
EE. On the other hand, the approach of [10] presented more SE losses than the proposed
scheme and also losses in EE. This means that considering a hybrid approach between
UC and a network-centric approach may lead the system to reduce its macro-diversity,
resulting in performance losses.

In Fig. 23, observe that the average number of inter-coordinated UEs that each
CPU serves grows with the number of UEs in a traditional UC system. On the other hand,
it remains constant when using the proposed method, demonstrating that our solution
allows UC systems to operate under a controlled inter-CPU coordination regime since it
prevents the number of inter-coordinated UEs from growing with the number of UEs in
each CPU. The approach proposed in [10] also reduces the number of inter-coordinated
UEs in each CPU. However, it also grows with the number of UEs K, but slower than a
traditional UC system.
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Figure 23 – Average number of inter-coordinated (IC) UEs per CPU. Parameters setting:
L = 100, N = 1, J = 4, and Kint = τp, where τp = 10.

Additional results also reveal that the proposed method not only reduces Kl, but
also decreases the number of APs connected to each UE (Lk). For instance, the fine-tuning
strategy performed at the CPUs reduces the average Lk from 22.56 to 17.52, and the
average Kl from 5.6 to 4.38, when K = 25. These quantities (Kl and Lk) are crucial in
the CC of performing channel estimation and computing the precoding vectors [26]. They
can also impact the traffic dependent power in 2.32, since it is proportional to Kl in the
distributed implementation.

Fig. 24 shows that the proposed method also keeps the SE under minor degradation
when the number of APs L varies. Furthermore, although not shown in the figures (to
avoid redundancies), the EE was analyzed, and we can confirm that it is also improved
when L varies. It is also possible to prevent the SE losses generated by the proposed
method by employing fewer APs equipped with more antennas, as Fig. 25 illustrates. One
can note that the proposed method does not impair the system’s SE when L ≤ 25. This is
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because the fewer APs in the coverage area, the further away the APs will be from the
UE. Consequently, the AP cluster of the UE can comprise several APs with poor channel
gains. Therefore, disconnecting some of these APs will not impact the UE’s performance.
A similar result is observed for L ≤ 60 in Fig. 24. One can note that the approach proposed
in [10] also presents performance losses in Figs. 24 and 25.
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Figure 24 – Average DL SE achieved by varying L. Parameters setting: K = 25, N = 1,
J = 4, and Kint = τp.
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Figure 25 – Average DL SE achieved by varying L and N , while keeping M = 100.
Parameters setting: K = 25, J = 4, and Kint = τp.

Fig. 26 depicts the CDF of the DL SE by varying the number of UEs that each
CPU can inter-coordinate, Kint. One can note that the variation of Kint does not affect
the SE when Kint > 10, for K = 25. However, for Kint ≤ 10, the system performance is
compromised, specially by setting Kint = 0, which corresponds to a UC system without
inter-CPU coordination. On the other hand, the variation of Kint has a negligible impact
for a larger number of UEs, such as K = 100. This shows that the proposed method
can maintain the network’s performance under small degradation even if inter-CPU
coordination is reduced significantly.
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Figure 26 – Comparison of DL SE for different values of Kint using the LP-MMSE precoding
scheme. Parameters setting: L = 100, J = 4, and N = 1.

6.3 Simulation Results: Chapter 5

This section presents the numerical results associated with the proposed methods
to limit UC systems’ processing capacity and adjust AP clusters according to each network
implementation, discussed in Chapter 5. This section also follows the same parameters
and assumptions discussed previously but with some particularities, which are: the total
transmission powers of the UEs and APs are 100 mW and 200 mW, respectively. We utilize
a modified version of the SCF AP selection scheme in these simulations. Essentially, it is
the same method, but the non-master APs do not require the UE to present a channel
gain above a threshold value as in Section 3.2.1. Thus, the non-master APs serve the UE
presenting the greatest channel gain in each pilot [27]. This approach makes the number
of users the AP serves equal to the maximum value allowed, Kl = Umax. Therefore, it
is possible to analyze how much the CC of the network can be reduced when using the
proposed solutions since the CC is proportional to Kl. In this section, only the perfect
knowledge of channel statistics is considered. The CC is computed in terms of the number
of complex multiplications required to compute the precoding schemes for each UE in each
coherence block, as depicted in Table 2.

6.3.1 Impacts of Limiting the Processing Capacity

We start by evaluating a network composed of K = 25 UEs and L = 100 APs
equipped with N = 1 antenna. Fig. 27 presents the CDFs of the SE of UC systems with
and without processing capacity limitation. It considers different processing capacity
limitations, i.e., several values of Cmax, and the system is compared with a traditional UC
scheme (i.e., Lk is not restricted) that utilizes the AP selection strategy of [27], which we
also have denoted as SCF. Besides, when the AP selection scheme of [27] is used with the
proposed method, we call it by SCF + Cmax.
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In Fig. 27a, the SE is not as reduced by the variations of Cmax. The SE even increases
slightly for 10 ≤ Cmax ≤ 20. This is because decreasing Lk also reduces Kl, helping
precoding techniques such as LP-MMSE (of local processing) to mitigate interference.
Still, this improvement has a limit since the SE decays about 9% when Cmax goes from 40
to 5. In Fig. 27b, the SE can suffer significant losses when Cmax is as small as 5. Hence,
reducing the AP cluster sizes (Lk) may lead the centralized implementation to not exploit
its full potential in mitigating interference and improving SE. Therefore, it is essential for
this implementation to utilize more processing capacity, such as Cmax ≥ 20.
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Figure 27 – CDF of SE by varying Cmax from 5 to 30. Parameters setting: L = 100,
K = 25, and N = 1.

Fig. 28 presents the SE and CC when the number of APs varies and by setting
K = 25, and Cmax = 20. In Fig. 28a, the average SE grows with L for UC systems
with and without processing capacity limitation. Despite this, limited systems have a
significant advantage, as their CC does not always increase with L, starting to decay from
L = 60. This behavior occurs because Kl reduces as L increases. Therefore, even if Lk
remains constant, there will be a reduction in Kl, as Table 6 demonstrates. Additionally,
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it is possible to observe that the CC decreases by about 96, 4% when the processing
capacity limitation is employed together with the P-MMSE for L = 200. However, a
centralized implementation may require more processing capacity to be feasible compared
to the distributed implementation. For instance, the P-MMSE scheme has a CC similar
to LP-MMSE (without processing limitation) even limiting the processing capacity, when
L is as large as 200.
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Figure 28 – Average DL SE (a) and CC (b) achieved by varying the number of APs L.
Parameters setting: K = 25, N = 1, and Cmax = 20.

Fig. 29 presents the EE achieved in the distributed implementation considering
different values of Cmax and a UC system without processing capacity limitation. Note
that the processing capacity limitation can provide a considerable improvement in the
EE, especially for small values of Cmax. For instance, the processing capacity limitation
guarantees an increase of about 10% in EE for Cmax < 30. Besides, the EE grows by
about 61% in the LP-MMSE and 36% in the MR, when Cmax decreases from 40 to 5. This
happens because reducing Kl also decreases the power consumption in each fronthaul link.
Thus, even though the system presents SE losses when Cmax = 5, the reduction of power
consumption in each fronthaul link compensates them, increasing the EE.

Table 6 – Average number of APs per UE (Lk) and UEs per AP (Kl) without and with
AP cluster control. Parameters setting: K = 25, N = 1, and Cmax = 20.

Method L = 95 L = 200
Kl Lk Kl Lk

SCF 10 38 10 80
With Cmax 5.25 19.98 2.5 20

6.3.2 Impacts of AP Cluster Adjustment

From now on, we will investigate the impacts of adjusting the AP clusters in UC
systems. We will focus on UC systems without processing capacity limitation to assess the
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full benefits of the AP cluster adjustment in reducing CC. Furthermore, we will consider
only the P-MMSE and LP-MMSE schemes as they provide the best interference mitigation
in centralized and distributed implementations.
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Figure 29 – Average EE achieved by varying Cmax. Parameters setting: L = 100, K = 25,
and N = 1.

Fig. 30 presents the average SE and CC versus the number of UEs K in a network
composed of L = 100 APs equipped with N = 1 antenna. It can be noted that the proposed
method causes a tiny reduction in the SE of P-MMSE. Despite this, the losses are not as
expressive as in Fig. 27b. This is because the proposed method does not decrease Lk to a
small value such as 5, as Table 7 indicates. One can also note that the proposed method
causes a slight increase in the SE of LP-MMSE. Moreover, the AP cluster adjustment
also reduces the CC of both network implementations, decreasing by up to 60% in the
P-MMSE scheme for K = 25. Finally, the proposed method decreases Kl from 10 to 3.95
and Lk from 40 to 15.80, as illustrated in Table 7, indicating that the proposed strategy
can also increase the EE in distributed implementation.
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Figure 30 – Average DL SE (a) and CC (b) achieved by varying the number of UEs K,
when the proposed AP cluster adjustment is employed. Parameters setting: L = 100,
N = 1.
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Table 7 – Average number of APs per UE (Lk) and UEs per AP (Kl) without and with
AP cluster adjustment. Parameters setting: L = 100 and N = 1.

Method K = 25 K = 50
Kl Lk Kl Lk

SCF 10 40 10 20
Distributed adjustment 4.32 17.3 4.38 8.75
Centralized adjustment 6.23 24.92 6.17 12.35
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Figure 31 – Average DL SE (a) and CC (b) achieved by varying L and N , while keeping
M = 100, when the proposed AP cluster adjustment is employed. Parameters setting:
K = 25.

Fig. 31 presents the average SE and CC versus the number of UEs L and N for
a fixed total number of antennas M = LN = 100 and setting the number of UEs to
be K = 25. One can note that the same discussions about decreasing CC apply to this
case. The difference is the SE behavior. When L = 25 and N = 4, the LP-MMSE scheme
achieved the best balance regarding the amount of interference and desired signal, leading
the average SE to its maximum value. Meanwhile, the P-MMSE presents better SE when
the AP clusters are adjusted for L < 100. This is because the fewer APs in the coverage
area, the further away the APs will be from the UE. Hence, the AP clusters can have
many APs presenting poor channel gains. Therefore, disconnecting some of these APs
will not impact the UE’s performance. Additionally, it can be noticed that CC reduces
as L increases and N decreases. The reduction is stronger in systems with AP cluster
adjustment. At L = 100, the proposed method reduces the CC by about 63% and 78% for
the P-MMSE and LP-MMSE schemes, respectively. Therefore the AP cluster adjustment
can strongly reduce CC, especially for a large number of APs.



87

7 Conclusions and Future Works

This thesis presented solutions for enhancing the performance of UC CF massive
MIMO systems, focusing on AP selection techniques. The first solution was a new scalable
AP selection framework, which is an algorithm that exploits a matched-decision among
the UEs and APs while guaranteeing connection for all UEs. The method consists of two
stages, where the UEs first connect to an intermediate subset of APs and then form a
final cluster. These steps aim to make the UEs and APs establish the best connection
for both and then make the UEs expand their AP clusters intending to improve their
SE. The method can improve the system’s performance and afford scalability for baseline
AP selection strategies. Three fine-tuning algorithms to be applied after the AP selection
were also proposed. The first two fine-tuning algorithms are based on allocated power
and SE. Results indicate that they can enable UEs to achieve almost the same SE as
before while reducing the number of APs serving each UE. The third one aims to improve
the total EE, and the results indicate that it can enhance the EE up to 43% for the
LP-MMSE precoding method. Besides, AP selection schemes and fine-tuning algorithms
were evaluated under perfect and imperfect knowledge of channel statistics. It is worth
mentioning that all results achieved in this thesis were obtained under the assumptions
and models presented in the document. Therefore, they present the network performance
under specific conditions such as Rician fading and and error-free fronthaul.

The achievable SE in centralized and distributed network implementations were
analyzed by varying the numbers of UEs K, APs L and antennas N per AP. Each AP
could serve up to Umax UEs, and the APs could deal with different values for Umax. The
results indicate that the proposed method (i.e., the matched-decision) can outperform
baseline solutions and improve the SE of the worst UEs. For instance, the matched-decision
can increase the SEs of the 95% likely UEs up to 163% and 100% in distributed and
centralized implementations, respectively. The results also indicated that the scalable AP
selection baseline method requires that the APs serve more UEs than our solution to enable
the network to achieve similar SEs. Additional results revealed that Umax has to be set
appropriately to the network condition, e.g., number of UEs and network implementation.
Therefore, although an AP can serve more UEs, it can reduce Umax to improve the SE
while reducing computational costs.

The second improvement is a novel method for reducing inter-CPU coordination in
UC systems. The method considered that the number of inter-coordinated UEs that each
CPU can serve is limited. Furthermore, it was assumed that the CPUs can drop inter-
coordinated UEs presenting the weakest channel gains to reduce inter-CPU coordination.
The proposed method was compared with two baseline schemes: a UC system without
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inter-CPU coordination reduction and a baseline scheme presenting it. The comparisons
were carried out in terms of SE, EE, and the average number of inter-coordinated UEs
that each CPU can serve. The results demonstrated that the proposed method allows
the network to keep the SE under minor degradation, of at most 2.8%, even reducing
inter-CPU coordination, compared to a traditional UC system. Our findings also indicated
that the proposed method can provide slight improvements in EE while avoiding the
number of inter-coordinated UEs per CPU becoming a function of the number of UEs. The
same conclusions remain valid for networks with more APs and CPUs. We also observed
that a small number of inter-coordinated UEs per CPU allows the system to provide SEs
as high as a UC system without inter-CPU coordination control. Besides, the proposed
method outperformed the baseline scheme that reduces inter-CPU coordination.

This thesis also investigated the performance of scalable UC CF massive MIMO
systems whose processing capacity requirements do not increase with the number of
APs. We analyzed UC systems whose AP clusters can have only a finite number of APs
serving each UE. Furthermore, a method that adjusts the AP clusters to the network
implementation was proposed. The results demonstrated that restricting the network
processing capacity can improve the EE by up to 61%. However, it can degrade the SE of
centralized implementation when the maximum number of APs serving the UE is small.
On the other hand, AP clusters comprising just a few APs almost do not harm the SE of
the distributed implementation. Simulation results also reveal that the proposed AP cluster
adjustment can slightly improve the SE of distributed implementation while reducing the
CC in both network implementations. For instance, the CC can decrease by up to 96%
in centralized implementation. Finally, it is noteworthy that the results presented in this
thesis are novel, useful for researchers working with AP selection methods, and can inspire
new thesis and research papers on the theme.

7.1 Future Works

Some future works that can be derived from this thesis are described below:

• Expand our analyses to consider aspects such as limited fronthaul/backhaul capacity,
non-reciprocity and hardware impairments. Besides, it is worthwhile to optimize the
number of UEs that each AP can serve, and power allocation.

• Extending the analyzes regarding the effects of reducing inter-CPU coordination in
centralized implementations, since the analyzes carried out in this thesis considered
the impacts of inter-CPU coordination only in distributed implementation.

• Generate a model that quantifies the impacts of signaling demands on backhaul
links due to inter-CPU coordination. This thesis presented the impacts of inter-CPU



Chapter 7. Conclusions and Future Works 89

coordination in UC CF massive MIMO systems, but only in terms of the average
number of inter-coordinated UEs per CPU. Thus, one can calculate the backhaul
traffic as a function of CSI and data sharing.

• Calculate the CC by considering other network aspects such as reciprocity calibration,
and discrete Fourier transform operations.

• Improve the EE modeling by considering other aspects of the network such as CC
(in CPUs and APs) and backhaul traffic.

• Investigate the impacts of UE mobility and latency in UC CF massive MIMO. The
analysis carried out in this thesis did not consider the effects of channel aging and
the time required to exchange signals between CPUs and APs.
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