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ABSTRACT

Peptides comprise a versatile class of biomolecules with diverse physicochemical and structural
properties, in addition to numerous pharmacological and biotechnological applications. Some
groups of peptides can cross biological membranes, such as the cell membrane and the human
blood-brain barrier. Researchers have explored this property over the years as an alternative to
developing more powerful drugs, given that some peptides can also be drug carriers. Although
some machine learning-based tools have been developed to predict cell-penetrating peptides
(CPPs) and blood-brain barrier penetrating peptides (B3PPs), some points have not yet been
explored within this theme. These points encompass the use of dimensionality reduction (DR)
techniques in the preprocessing stage, molecular descriptors related to drug bioavailability, and
data structures that encode peptides with chemical modifications. Therefore, the primary pur-
pose of this thesis is to develop and test two frameworks based on DR, the first one to predict
CPPs and the second to predict B3PPs, also evaluating the molecular descriptors and data struc-
ture of interest. The results of this thesis show that for the prediction of penetration in the cell
membrane, the proposed framework reached 92% accuracy in the best performance in an in-
dependent test, outperforming other tools created for the same purpose, besides evidencing the
contribution between the junction of molecular descriptors based on amino acid sequence and
those related to bioavailability and cited in Lipinski’s rule of five. Furthermore, the prediction
of B3PPs by the proposed framework reveals that the best model using structural, electric, and
bioavailability-associated molecular descriptors achieved average accuracy values exceeding
93% in the 10-fold cross-validation and between 75% and 90% accuracy in the independent
test for all simulations, outperforming other machine learning (ML) tools developed to predict
B3PPs. These results show that the proposed frameworks can be used as an additional tool in
predicting the penetration of peptides in these two biomembranes and are available as free-to-
use web servers.

Key-words: Peptides, Biomembranes, CPPs, B3PPs, Framework, Machine Learning.



RESUMO

Peptídeos compreendem uma classe versátil de biomoléculas com diversas propriedades físico-
químicas e estruturais, além de inúmeras aplicações farmacológicas e biotecnológicas. Alguns
grupos de peptídeos podem cruzar membranas biológicas, como a membrana celular e a bar-
reira hematoencefálica humana. Pesquisadores tem explorado esta propriedade ao longo dos
anos como uma alternativa ao desenvolvimento de novos medicamentos mais poderosos, tendo
em vista que alguns peptídeos são carreadores de fármacos. Embora existam ferramentas base-
adas em aprendizado de máquina desenvolvidas para prever cell-penetrating peptides (CPPs) e
blood-brain barrier penetrating peptides (B3PPs), alguns pontos ainda não foram explorados
dentro deste tema. Estes pontos abrangem o uso de técnicas de redução de dimensionalidade
(RD) na etapa de pré-processamento, de descritores moleculares relacionados à biodisponibili-
dade de drogas, e de estrutura de dados que codificam peptídeos com modificações químicas.
Portanto, a proposta principal desta tese é desenvolver e testar dois frameworks baseados em
RD, o primeiro para prever CPPs e o segundo para prever B3PPs, avaliando também os descri-
tores moleculares e estrutura de dados de interesse. Os resultados desta tese mostram que para
a predição de penetração na membrana celular, o framework proposto atingiu 92% de acurácia
no melhor desempenho em um teste independente, superando outras ferramentas criadas para o
mesmo propósito, além de evidenciar a contribuição entre a junção de descritores baseado em
sequência de aminoácidos e os relacionados a biodisponibilidade e citados na regra dos cinco de
Lipinski. Além do mais, a predição de B3PPs pelo framework proposto revela que o melhor mo-
delo que utiliza descritores moleculares estruturais, elétricos e associados a biodisponibilidade
de compostos alcançou valores que superam 93% de acurácia média no 10-fold cross-validation
e acurácia entre 75% e 90% no teste independente para todos as simulações, superando outras
ferramentas de machine learning (ML) desenvolvidas para predizer B3PPs. Estes resultados
mostram que os frameworks propostos podem ser usado como ferramenta adicional na predição
de penetração de peptídeos através dessas duas biomembranas e estão disponíves como web
servers gratuitos para uso.

Palavras-chaves: Peptídeos, Biomembranas, CPPs, B3PPs, Framework, Aprendizado de Má-
quina.
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1 INTRODUCTION

1.1 The challenge and the importance of peptide’s permeability prediction

Penetration into biological membranes is a desired characteristic for several bioactive
molecules to reach the target site related to their molecular mode of action (DAINA; ZOETE,
2016; DOAK et al., 2014). The selective control through biomembranes has protected living or-
ganisms against the undesired and harmful effects of other organisms and exogenous molecules.
However, these barriers have also been the main challenge to developing new potent compounds
with therapeutic activity, and several strategies have been developed to overcome this obstacle
(AHLAWAT et al., 2020).

Peptides are a class of bioactive molecules applied in several biological functions that
contribute to human health. Since the discovery of oxytocin as a therapeutic agent in 1953, the
biotech and pharmaceutical industries have invested time and money in discovering and devel-
oping new peptides with therapeutic effects (BAIG et al., 2018). Nowadays, there is a range
of peptides with therapeutic effects, such as antioxidant (e.g., 𝛽-alanyl-l-histidine), antimicro-
bial (e.g., Defensins, Dermicidin, Melittin, and LL-37) (SONG; GROOT; SANSOM, 2019;
MEMARIANI; MEMARIANI, 2019; NAGAOKA; TAMURA; REICH, 2020), and inhibitors
for some neurodegenerative disorders (NDs) as Alzheimer’s disease (e.g Neurotrophins, Va-
soactive Intestinal Peptides, A𝛽(16-20) KLVFF, and Humanin) and Parkinson’s disease (e.g.,
NAP, Neurotrophins, and Vasoactive Intestinal Peptides) (BAIG et al., 2018; ICHIM; TAUSZIG-
DELAMASURE; MEHLEN, 2012; MATSUOKA, 2011). The use of peptides has become
a crucial alternative to treat NDs since traditional therapies with commercial drugs have no
high efficacy in crossing the blood-brain barrier (BBB), which hampers the transport of some
molecules from blood vessels to brain parenchyma (DAI et al., 2021; ZHOU; SMITH; LIU,
2021).

Concerning small molecule drugs, the peptides have some advantages when used as a
therapeutic agent, such as high biological activity, high specificity, and better membrane per-
meability, having the ability to enter into eukaryotic cells in a non-disruptive way (KUMAR;
AGRAWAL, et al., 2018). Furthermore, peptides have the ability of cargo delivery, i.e., they
can be used as drug carriers, which is a great strategy to overcome one of the most significant
problems in drug development: the uptake of drugs through biological membranes (KARDANI
et al., 2019).

Cell-penetrating peptides (CPPs) are molecules capable of crossing the cell membrane
and achieving its interior and can be used to transport drugs, nucleic acids, and nanoparti-
cles. They are essential to fulfill therapeutic effects against several diseases (MANAVALAN
et al., 2018; LEE; HARRIS, et al., 2019). The prediction of new CPPs aided by artificial in-
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telligence (AI) algorithms has become the aim of several pharmaceutical and biotechnological
researchers due to their high throughput and low cost in the screening of large databases (LEE;
HARRIS, et al., 2019; RÖCKENDORF; NEHLS; GUTSMANN, 2022). Some machine learn-
ing (ML) algorithms were designed to predict uptake across cell membranes using both primary
structure (FASTA) or tertiary structure (PDB) of peptides as possibilities. FASTA format con-
sists of a single-line description of a molecule based on a sequence of amino acid and nucleic
acid codes standardized by IUB/IUPAC (INSTITUTE, 2020), while PDB format represents the
three-dimensional structures of macromolecules, which generally are proteins or peptides ag-
gregated with other molecules or ions (NAYARISSERI et al., 2014). Section 2.1.2 will provide
more information about these file structures.

Similarly, peptides that can be uptaken by the BBB, also known as BBB-Penetrating
Peptides (B3PPs), also have been explored by AI due to their essential applications in NDs
treatments. However, the validated databases used to train the ML algorithms in each work
were not so large in terms of validated peptides with BBB activity, which impacts the learning
process of the techniques and compromises the results due to the phenomenon of underfitting
(DAI et al., 2021; ZOU, 2021).

The machine learning tools applied in CPPs and B3PPs prediction have explored some
properties such as physicochemical, structural-, and sequence-based descriptors as input infor-
mation. They evaluated how these descriptors can affect the pharmacokinetics1 properties re-
garding penetration of these molecules through cell membrane (PANDEY et al., 2018; DAMIATI
et al., 2019), and through BBB (KUMAR; PATIYAL, et al., 2021; DAI et al., 2021; ZOU,
2021). Although these works have studied the impact of many features in biomembrane perme-
ability, no previous research focused on how molecular descriptors related to the oral bioavail-
ability2 are correlated to the permeability of the peptides in comparison to others descriptors.
These descriptors are used by industry as an auxiliary mechanism to define the drug-likeness of
molecules. These properties have been researched over the years and had the first significant ad-
vance in 1997 with the works of Christopher Lipinski and colleagues, whose results are known
as Lipinski’s rule of five (RO5) (LIPINSKI et al., 2012)3. Over the years, other researchers
as Veber et al. (2002)4 and Lovering (2013)5 complemented this theory with other molecular
descriptors.

While some studies have explored the use of ML techniques for predicting these two
classes of peptides, understanding which molecular descriptors have a direct correlation with
the permeability of these molecules across the two biomembranes remains a challenge. From

1Pharmacokinetics is the path that the drug follows in the body of living beings.
2Oral bioavailability is the fraction of a drug orally administered that reaches systemic circulation.
3Descriptors related to the Lipinski’s rule of five are: molecular weight (MW); calculated octanol-water parti-

tion coefficient (LogP); the number of hydrogen bond acceptors (HBA); and the number of hydrogen bond donors
(HBD).

4Veber et al. (2002) evaluated the number of rotable bonds (NRB) and topological polar surface area (TPSA).
5Lovering (2013) evaluated the fraction of sp3-hybridized carbon atoms (Fsp3).
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a computational point of view, performing data mining to investigate the correlation between
hundreds of molecular descriptors available in softwares and programming language packages
and the peptide permeability across the cell membrane or BBB can be a hard task that impacts
both the exploratory data analysis time and the ML performance, since the initial set of analyzed
descriptors may not have a clear correlation with this pharmacokinetic property. Furthermore,
there is a challenge in selecting molecular descriptors that simultaneously provide relevant in-
formation for the performance of ML models and have a biochemical explanation for how their
calculated values for a peptide correlate with its penetration into biomembranes. This is cru-
cial for pharmaceutical and biotechnological development, as investigating these descriptors is
of greater relevance. However, many molecular descriptors available for computational calcu-
lation lack clear explanations or have never been experimentally investigated regarding these
biomembranes’ permeability.

In addition, only one published work until present regarding the prediction of CPPs in-
vestigated how a dimensionality reduction (DR) algorithm employed in preprocessing stages
can improve accuracy in classifying peptides according to permeability, while for B3PPs pre-
diction, no work has reported this type of investigation. Therefore, this work aims to propose
the development of two architectures of frameworks based on ML to predict CPPs and B3PPs,
exploring the use of supervised DR algorithm to preprocess the high-dimensional (high-d) pep-
tide data, and evaluating how this strategy can help to visualize the molecules that can cross
or not the biomembranes using physicochemical, structural- and sequence-based properties as
input information, including the molecular properties related to oral bioavailability.

1.2 Motivation

Peptides are a group of molecules that can act as direct therapeutic agents or as drug
carriers, reaching regions inside the cell or in the central nervous system (CNS) that typically
several drugs could not achieve, and performing this prediction can be a great ally to the discov-
ery and development of new drugs and other biotechnological applications, mainly with appli-
cation in neurodegenerative diseases, microbial infection, and gene therapy (ZHOU; SMITH;
LIU, 2021; BAIG et al., 2018). The development of new therapies against neural diseases is cru-
cial for the coming years of humanity, as the drugs approved so far are not as efficient to treat
disorders such as Parkinson’s and Alzheimer’s, as well as the unregulated use of antibiotics
is escalating a severe global crisis, providing the emergence of new strains of super-resistant
bacteria and fungi.

According to a study conducted by Feigin et al. (2019), neurological disorders stood
out as the primary contributor to disability-adjusted life years and emerged as the second most
prevalent cause of global mortality, resulting in nine million deaths annually. Out of the nine
million global deaths reported in 2016, the study evaluated 15 neurological disorders and iden-
tified the top three neurological causes as stroke (67.4%), Alzheimer’s disease, and other related
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dementias (20.3%), along with meningitis (3.7%). Parkinson’s disease, encephalitis, traumatic
brain injuries, multiple sclerosis, central nervous system cancers, and neuroinfectious diseases
are other common neurological disorders explored in this investigation (FEIGIN et al., 2019;
OWOLABI et al., 2023).

The World Health Organization (WHO) recognizes antimicrobial resistance as one of
the top three significant threats to public health. According to WHO, antimicrobial-resistant
infections rank third as the leading cause of mortality, following cardiovascular diseases. A
substantial study published in January 2022 revealed that approximately 1.27 million deaths
were attributed to antimicrobial-resistant infections in 2019 alone. Additionally, nearly 5 mil-
lion deaths were associated with drug-resistant infections. Some projections indicate that this
number may soar to 10 million per year by 2050, surpassing deaths from cancer (MURRAY
et al., 2022; SALAM et al., 2023).

Therefore, the motivation of this thesis is the desire to contribute to the scientific and
industrial community through the development of more efficient computational tools to predict
the penetration of peptides into both biomembranes, which can contribute to the development
of new therapeutic agents against several diseases more quickly and less expensively.

1.3 Related works

This section reviews of state-of-art related to the development of ML algorithms to
predict the uptake of peptides across the cell membrane and BBB. Additionally, this proposal
reviews some advances and applications of dimensionality reduction techniques in chemoinfor-
matics problems. Furthermore, some works exploring the chemical space of peptides for oral
bioavailability in drug discovery will be presented. The purpose here is to explore the main char-
acteristics of algorithms and molecular descriptors approached over the years by researchers in
this theme.

1.3.1 Review of ML application in CPPs prediction

The first statistical tools were developed to predict CPPs in 2005 by Hällbrink and col-
laborators (HÄLLBRINK et al., 2005) and posteriorly in 2008 by Hansen and collaborators
(HANSEN; KILK; LANGEL, 2008). They used z-descriptors, representing the average of a
group of physicochemical properties calculated from peptides. Since then, some improvements
have been raised by using machine learning tools with different architectures of algorithms
capable of learning nonlinear patterns from different kinds of peptides’ features.

Each work aimed to use different classifiers to not only predict CPPs but also to explain
how physicochemical, sequence-, and structural properties increase the information regarding
the uptake of these molecules by the cell membrane, providing biochemical insights about these
descriptors. Some of the first published works on this topic are cataloged below with a brief
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explanation:

• (A. DOBCHEV et al., 2010): This was the first work approaching the use of a machine-
learning algorithm to categorize if a peptide can translocate. The authors used an artificial
neural network (ANN) to classify 101 peptides using 250 molecular features. The prin-
cipal component analysis (PCA) was also employed to select the best descriptors to be
used in ML. The results showed that descriptors as the topographic electronic index for
all bonds and charged partial surface area have a high correlation with the intake of these
molecules into cells, and the best-trained model achieved 83% of accuracy.

• (SANDERS et al., 2011): In this paper, the authors approached the use of support vector
machine (SVM) to predict CPPs. Four datasets of peptides were evaluated with differ-
ent groups of molecular descriptors, such as physicochemical and amino acid composi-
tion (AAC). The results proved that SVM achieved the best performance with the fourth
dataset composed of 111 CPPs and 111 non-CPPs with redundancy, reaching an accuracy
of 95.94% in 10-fold cross-validation. Furthermore, the work concluded that descriptors
such as negative charge, isoelectric point, percent hydrophobic, water-octanol partition
coefficient (LogP), percent negative, hydrophobicity, and AAC have a better correlation
to this pharmacokinetic property.

• (GAUTAM et al., 2013): Similar to previous work, this paper explored the use of SVM
as ML classifier to differentiate 708 CPPs from non-CPPs. The authors also investigated
descriptors AAC, dipeptide composition (DPC), binary profile of patterns, and physico-
chemical properties as input to train the model. The results were evaluated by 5-fold cross-
validation, leave one-out cross-validation, and independent test. The proposed method
outperformed the accuracy of the models developed by Dobchev et al. and Sander et al
using three datasets. Moreover, the result also concluded that DPC provides more infor-
mation to SVM than other descriptors. The authors also developed CellPPD, a webserver
based on trained SVM to perform CPP prediction.

• (CHEN, Lei et al., 2015): This paper investigated CPPs and non-CPPs encoded by pseudo-
amino acid composition (PseAAC), which was used as features to train a random forest
(RF) to predict cell penetration of peptides. The authors also employed minimum re-
dundancy maximum relevancy (mRMR) to select the best features, and used incremental
feature selection (IFS) to evaluate the performance of the ML model based on a sub-
set of these selected features. The results showed that the proposed model outperformed
Sander et al.’s method. Furthermore, this work also concluded that the encoded AAC,
polarity, secondary structure, molecular volume, codon diversity, and electronic charge,
all grouped by PseAAC, are more relevant to classify CPPs correctly.

• (DIENER et al., 2016): This work investigated the performances of SVM and RF to pre-
dict cell penetration by peptides using AAC and physicochemical properties, such as:
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mean charge; sliding window range of charge; hydrophobicity; isoelectric point; sliding
window range of the hydrophobic moment; LogP; and an approximation of the alpha-
helical content in the sequence. The ML performances were evaluated according to 4-
fold cross-validation and showed that the RF performed better and achieved accuracy
near 90%. The proposed method is available in a webserver called DCF.

• (TANG et al., 2016): The authors developed in this work the C2Pred, an SVM-based
webserver to predict CPPs using DPC as input features. The results showed that based
on feature selection using ANOVA, the best model with 164 features achieved 83,5%
accuracy in 5-fold cross-validation. The authors also compared the C2Pred with Sander
et al.’s and Chen et al.’s method, and it outperformed the prediction capacity using 10-fold
cross-validation as the metric.

• (WEI; XING, et al., 2017): This work focused on exploring the representation capability
of 4 groups of features still not sufficiently explored: parallel correlation pseudo amino
acid composition (PC-PseAAC), series correlation pseudo amino acid composition (SC-
PseAAC), adaptive skip dipeptide composition (ASDC), and physicochemical properties.
These features were applied in two feature selection algorithms to improve the represen-
tation of each class of peptide. To perform the prediction, the authors also proposed the
CPPred-RF, a random forest-based framework with two layers to classify peptides in
CPPs and non-CPPs, and measure the uptake efficiency of CPPs, respectively. The ac-
curacies achieved in the jackknife test were 91.6%, and 71.1% in CPPs prediction and
uptake efficiency.

• (WEI; TANG; ZOU, 2017): This work proposed the SKIPCPP-Pred, a framework based
on RF and adaptive k-skip-2-gram algorithm, a technique developed to integrate distance
information of amino acids into the traditional n-gram model. k-skip-2-gram extracts a
400-dimensional feature vector from peptides used by RF to classify the molecule in CPPs
or non-CPP. The work results showed that the framework outperformed some state-of-art
predictions, achieving 90,6% in the jackknife test.

Although the previously selected works have explored not only several molecular de-
scriptors (mainly sequence-based ones) but also several machine learning techniques, more re-
cent work (from 2018 to the present) has focused on developing tools dedicated both to using
improved sequence-based features and exploring new descriptor selection strategies.

Qiang et al. (2018) proposed CPPred-FL, a tool that uses RF to predict CPPs using nine
groups of features: Composition–Transition–Distribution (CTD); AAC; Parallel correlation-
based pseudo-amino-acid composition (PC-PseAAC); Series correlation-based Pseudo-Amino-
Acid Composition (SC-PseAAC); G-gap dipeptide composition; Adaptive skip dipeptide com-
position (ASDC); N+C-terminal approach; Twenty-bit features (BIT20); Twenty-one-bit fea-
tures (BIT21); and overlapping property features. The method developed in this work has two
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steps before defining the best-trained RF model. The first step is to use all the features and sub-
divide them to train 45 RF models (one model by feature). The second step ranks the trained
models based on the mRMR algorithm, filtering only the best classifiers. The results show that
CPPred-FL achieved superior results in 10-fold cross-validation based on the area under the
curve (AUC), which reached 0.445, a higher value than other frameworks such as CPPRed-RF,
SkipCPP-Pred, and CellPPD. This work is essential for being a pioneer in the development of
more sophisticated mechanisms for selecting ML models and representative features within the
line of research on CPPs prediction. However, the CPPred-FL model and feature selection steps
lack clarity regarding some method characteristics, such as how the 45 subgroups of features
were separated to train the same number of RFs.

Pandey et al. (2018) developed a tool called Kelm-CPPred was proposed, which uses an
extreme learning machine (ELM) to predict the permeability of peptides in the cell membrane.
This work focused on using AAC, DPC, PseAAC, and a hybrid approach of these three feature
sets. The authors extensively analyzed the level of information that each feature provided to the
model and compared the best one with other developed frameworks. The results showed that
Kelm-CPPred reached accuracies between 85.20% and 86.64% in the 10-fold cross-validation
and 87% in the independent test using the hybrid-AAC composition, and outperformed existing
prediction models in almost all group of features using their datasets. Although this work is the
first one to explore the use of ELM in this research field, which is efficient and computationally
less expensive when compared with models previously used in other frameworks to predict
CPPs, such as SVM and ANN, the authors do not add new information regarding the features
that describe the peptides.

Kumar, Agrawal, et al. (2018) was the first to introduce the use of tertiary peptide struc-
tures in the study of penetration prediction of peptides through the cell membrane using ML. In
this work, the SVM, RF, Naive Bayes (NB), J48, and SMO algorithms were evaluated for the
predictive capacity of CPPs using structural molecular descriptors, such as atomic composition;
diatomic composition; 2D descriptors; 3D descriptors; and molecular fingerprints. In addition
to these structural descriptors, the authors also evaluated models with sequence-based features,
such as AAC, DPC, and composition-based terminus. The results show that the SVM reached
accuracies of 91.67% and 89.67% for the 5-fold cross-validation and the external validation,
respectively. In summary, this work has a differential compared to the others, as it uses the ter-
tiary structure of the peptides and evaluates the prediction of these molecules with chemically
modified residues, differing from other tools that use only the primary structure of the peptides
as features. Also, as a contribution, the authors developed CellPPDMod, a webserver to predict
CPPs based on the best model developed. However, only one peptide at a time can be predicted
by this tool.

In Manavalan et al. (2018), the authors proposed the MLCPP, a framework of two layers
to predict whether a peptide can cross the cell membrane. The first layer predicts if a peptide
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is a CPP and the second one predicts the level of CPP uptake (high or low). In this study, the
algorithms RF, SVM, ERT, and kNN were independently selected to compose the two layers
based on the Matthews Correlation Coefficient (MCC) index. The databases used in this work
were collected from CPPsite 1 and C2PRed, and the features used were AAC, AAI, DPC, and
physicochemical properties. The results showed that ERT and RF achieved better performance
in cross-validation and were selected to construct the first- and second layers, respectively.
Furthermore, the framework outperformed the state-of-art methods on the independent test,
reaching 89.6% and 72,5% of accuracy in CPPs prediction and uptake efficiency, respectively.
The differential of this work is that, in addition to surpassing the performance of other tools
already developed, it is the second framework after the development of CPPred-RF that also
evaluates the efficiency of capturing CPPs, resulting in an ML framework of 2 layers. The
layers of the best MLCPP model were structured using sequence features like AAC and DPC,
simpler and more interpretive than those applied in CPPred-RF.

In 2019, the SVM algorithm was again explored and evaluated for its ability to predict
cell membrane penetration. In Fu et al. (2019), the authors use SVM to predict CPPs based
on sequence properties such as Grouped Amino Acid Composition (GAAC); k-Spaced Amino
Composition Acid Group Pairs (CKSAAGP); Grouped Di-Peptide Composition (GDPC); and
Composition-transition-distribution (CTD). A resource selection process was also carried out to
improve representative capacity using SVM recursive feature elimination (RFE) and correlation
bias reduction (CBR). This research shows that the proposed method reached 92.3% accuracy
in the knife test for the four resources used, a value superior to other state-of-the-art techniques.
In addition, the authors concluded that the CTD feature exhibited the best effect on prediction
performance. Although this work has achieved good results and proposed a straightforward
methodology, it only contributes to using some features not previously explored in this context.
In contrast, the algorithm used still fits into a technique widely studied, and the features were
not employed to investigate the performance of other algorithms in CPPs prediction. Another
disadvantage is that the developed tool was not used in an easy-to-use web application, as with
other recent works.

1.3.2 Review of ML application in B3PPs prediction

Since 2002, some works have been published to disclose results of using machine learn-
ing techniques to predict the permeability of compounds through the BBB. In Doniger, Hof-
mann, and Yeh (2002) was used ANN and SVM to predict the penetration of 324 compounds
across this barrier, and more recently, Plisson and Piggott (2019) applied gradient RF and logis-
tic regression (LR) to predict the permeability of 471 marine products on the same membrane.
Until 2019, 24 articles have been published on the topic of using machine learning to predict the
penetration of compounds through the blood-brain barrier (SAXENA et al., 2019). However, it
was only in 2021 that the first works related to using ML to predict the penetration of peptides
through this biomembrane were published.
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The first work on the use of ML to predict the penetration of B3PPs was published by
Dai et al. (2021). This work uses peptide sequences from Brainpeps, SATPdb, PepBank, and
other curated bases. The authors explored 16 sequence-based molecular descriptor classes. The
3-stage feature selection process was: F1-score classification obtained by ERT models trained
for each descriptor individually; excluding redundant resources using Spearman’s coefficient
greater than 0.7; and selecting the best trait subgroup using direct sequential search (SFS). The
machine learning models trained and evaluated were ERT, RF, SVM, multilayer perceptron
(MLP), extreme gradient boosting (XGBoost), and LR. This last one obtained the best per-
formances with accuracies of 77.5% and 78.95% for 10-fold cross-validation and independent
tests, respectively. The difference in accuracies reached by the best model in each scenario can
be explained by a possible distinction in the distribution of the molecular descriptors between
the training and test datasets since the number of samples for the independent test is relatively
much smaller compared to the training samples and the model may have suffered overfitting
for a subset of training data with a feature distribution profile similar to that of the test. Fur-
thermore, this work provides an essential contribution to this field of research as it is the first
tool dedicated to predicting B3PPs. However, the training and test datasets raise questions about
the quality of the models since the relatively small amount of samples may have induced the
overfitting of the techniques.

Similarly, Kumar, Patiyal, et al. (2021) proposed B3Pred, a RF-based computational
tool to predict BBB penetration of peptides using an optimized subset of sequence-based fea-
tures from a total of 15 different feature classes. A subset of these descriptors was selected in
two steps, the first using the SVC-L1 algorithm to select the most correlated features and the
second step ranking the features based on their importance in classification using a light gra-
dient boosting machine (LightGBM). The decision tree (DT), RF, LR, kNN, Gaussian naive
bayes (GNB), XGBoost, and SVM algorithms were evaluated as classifiers using the selected
features for three datasets of peptides. The results show that the RF obtained the best perfor-
mance with 85.08% of correct answers using 80 selected descriptors. Compared to the previous
work, B3PRed is a tool built with a slightly more extensive database and has evaluated many
more features, and the final model is based on a smaller number of selected descriptors. How-
ever, this work does not discuss the biochemistry correlation of each selected feature with the
BBB permeability.

Unlike other works published in this same line of research, Zou (2021) used several
techniques to select the best descriptors among the ten based on the physicochemical properties
analyzed: hydrophobicity; hydrophilicity; side-chain mass; pK1 (C𝛼-COOH); pK2 (NH3); PI
(25 ºC); average buried volume; molecular weight; side-chain volume; and mean polarity. The
author used Pearson’s and the maximum correlation coefficients to select the best descriptors.
Selecting features based on these two criteria is then merged using the similarity network fusion
algorithm. Then, a new subgroup of descriptors is chosen by applying Fisher’s algorithm. The
classifiers used in this work to predict the B3PPs are DT, RF, kNN, NB, and SVM, and the
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results show a better performance achieved by the SVM with an accuracy of 89.47% for the
independent test, indicating pK2 (NH3) as the most relevant property to predict the penetration
of peptides through the BBB concerning all ten analyzed features. One of Zou’s main contri-
butions is that it is the first to focus on physicochemical properties and expand new feature
selection strategies. However, some points in its methodology could be more transparent, such
as how the variables are used in Pearson’s correlation selection.

Xue Chen et al. (2022) published a paper proposing the BBPpredict, an ML-based web-
server to predict the permeability of peptides across the BBB. The authors used a dataset of
652 sequences equally distributed in positive and negative samples, while for the independent
test, 198 sequences were distributed equally. The features used to predict the peptides were
AAC, DPC, PseAAC, CKSAAGP, and GAAC, and F-score method was implemented to select
the most informative descriptors among all the properties extracted. The Ml classifiers trained
and tested were DT, RF, SVM (with linear and radial basis function), kNN, adaptive boosting
(AdaBoost), gentle adaptive boosting (GentleBoost), adaptive logistic regression (LogitBoost),
and long-short term memory (LSTM). This paper shows that for five-fold cross-validation, the
RF achieved the best performance with an accuracy of 81.90%. At the same time, the RF also
outperformed the other techniques with 77.78% accuracy for the independent test. This work
contributed to one more available web tool to predict B3PPs and outperformed the BBPpred
and B3Pred with the independent test dataset. However, there is no significant contribution in
terms of mechanism to preprocess the dataset before training or chemical space relating the
most informative sequence-based descriptors and the classes BBB+ and BBB-.

Most recently, Charoenkwan et al. (2022) developed the SCMB3PP, a computational
tool used to predict B3PPs. SCMB3PP uses a scoring card method-based predictor (SCM) for
generating propensity scores of amino acids and dipeptides and a genetic algorithm for opti-
mization of the propensity scores. The peptides are classified as B3PPs and non-B3PPs accord-
ing to a threshold established for SCM scores. The results achieved in this work indicated that
SCMB3PP achieved accuracies between 83% and 95.1% for 10-fold cross-validation analysis
and accuracies between 88% and 94.4% for independent testing. The contribution of this work
relies on an alternative web tool to predict B3PPs. Furthermore, SCMB3PP also outperformed
other state-of-art tools such as BBPpred, B3PPred, iBBP, and MIMML. However, this work
does not contribute to ML development for predicting B3PPs, since the proposed method only
uses a unique value to differentiate B3PPs from non-B3PPs. Furthermore, the work is unclear
in explaining how physicochemical properties were extracted from analyzed peptides.

1.3.3 Review of dimensionality reduction application in computational chemistry

The review’s works presented above focused on how supervised classifiers predict CPPs
and B3PPs. However, these works did not explore dimensionality reduction algorithms as a
strategy to process the high-d datasets composed of many molecular descriptors. DR algorithms
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can be a powerful tool to overcome issues related to high-d datasets, mapping the original
data on a low-dimensional (low-d) space and making it possible to explore the features most
correlated to the sample classes, or even improve the modeling of the problem Chao, Luo, and
Ding (2019).

Although these DR algorithms have not been explored explicitly in the context of the
problem approached in this thesis, some works related to computational chemistry used this
tool. Nasser et al. (2022) used the autoencoder to reduce the dimensionality of a dataset of
small molecules to perform a similarity search. This method outperforms traditional methods
such as the Tanimoto Similarity Method, Adapted Similarity Measure of Text Processing, and
Quantum-Based Similarity Method. The three autoencoder architectures proposed achieved bet-
ter recall metrics in almost all cases evaluated, proving that dimensionality reduction can be
auxiliary in virtual screening using low dimensional representation.

In the same field, Mostafa, Salem, and Mohamed (2022) proposed an ML-based frame-
work composed of a feature selection algorithm and a DR technique, where these two stages
are responsible for filtering the best descriptors and mapping the result onto a low-d space, re-
spectively, before the stage of classification. The authors tested principal component analysis
(PCA), uniform manifold approximation and projection (UMAP), and Neighborhood Com-
ponents Analysis (NCA) as DR algorithms and SVM, kNN, and LR as classifiers to predict
inhibitors (antidepressant medicines) and inducers molecules. The results proved that feature
selection with UMAP achieved the best accuracy with the value of 99% for SVM.

Similarly, Jinuraj et al. (2018) explored virtual screening to select molecules for ex-
perimental tests against Leishmania Mexicana. Here was proposed the use of PCA to reduce
the number of molecular descriptors to apply in a self-organizing map (SOM) and in the Eli
Lilly MedChem rule filter to refine the screening of molecules. Using PCA improved results’
accuracy and helped select two molecules for experimental tests.

Dimensionality reduction has also been applied in molecular dynamics to represent the
molecular structures more simply. Zhou, Wang, and Tao (2018) evaluated how t-distributed
stochastic neighbor embedding (t-SNE) could construct low-d descriptors to represent the free
energy landscape of Vivid (a photosensitive circadian clock protein) related to the switching
between the dark and light states. The results show that even for one dimension, t-SNE outper-
forms the PCA and Time-Structure Based Independent Component Analysis (t-ICA) according
to RMSD metrics. Furthermore, t-SNE could retain the structural and dynamical information
with minimum information loss compared to other commonly used DR methods.

In summary, supervised and unsupervised dimensionality reduction algorithms have
been used as an alternative to overcome high-d problems pertinent to many issues in various
chemical informatics fields and theories. Mainly, virtual screening of molecules makes the prob-
lem easier to solve and more interpretative, allowing advances in drug design.
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1.3.4 Review of bioavailability properties in peptide

Until this point, some papers related to the application of ML in CPPs and B3PPs were
reviewed, focusing mainly on the techniques and some aspects of molecular descriptors used
as features to predict the uptake of peptides. Nevertheless, it is essential to highlight that some
molecular descriptors are desirable for a molecule to be more drug-like, whose properties are
related to oral bioavailability. This thesis will also explore these descriptors as features to predict
peptides’ permeability.

Although many published works approached the use of descriptors related to oral bioavail-
ability, few works explored how these features affect the peptides. Santos, Ganesan, and Emery
(2016) evaluated the chemical space for all FDA-approved drugs from 2012 to 2016 accord-
ing to MW, NRB, LogP, HBA, HBD, TPSA, and Fsp3, noting that only Fsp3 fits the criteria
described by the literature (average < 0.47), while the remainder descriptors broke the rules of
oral availability. Similarly, Díaz-Eufracio et al. (2018) explored the chemical space of pentapep-
tides of six datasets over the effect of cyclization and N-methylation. The descriptors analyzed
were MW, NRB, LogP, HBA, HBD, and TPSA, and the result shows that N-methylation and
cyclization change the peptides’ chemical space toward the FDA-defined one, representing a
promising source to explore novel and biologically relevant intervals of these descriptors.

1.4 Contributions

Over the years, many works have been published approaching the development of new
ML tools for CPPs prediction and some for B3PPs prediction. These tools have become a great
ally in drug discovery and development against several diseases due to decreased costs- and
time-related to research.

The problem of how peptides can cross the cell membrane and blood-brain barrier can
involve many variables related to physicochemical and structural molecular properties, turning
this into a high-dimensional challenge. In terms of framework architecture, all the ML-based
tools developed until this moment to predict this permeability focused on pipelines involving di-
rect feature selection according to classes of molecular descriptors (MANAVALAN et al., 2018;
PANDEY et al., 2018) or using some statistical strategies, such as remotion of redundancy (FU
et al., 2019; PANDEY et al., 2018), information gain from tree-based ML (DAI et al., 2021),
performance by minimal Redundancy Maximum Relevance (WEI; XING, et al., 2017), Pear-
son’s correlation coefficient (WEI; XING, et al., 2017), and maximal information coefficient
(ZOU, 2021). However, dimensionality reduction algorithms have not been explored until now
by research in the context of these two applications as a mechanism of data preprocessing. The
DR can reduce the number of features to a low-d representation of the peptides’ chemical space
that can be used as reduced data in machine learning classifiers. Therefore, the use of DR algo-
rithms can increase the performance of CPPs and B3PPs prediction with ML models. They can
reveal how different and most significant molecular descriptors can cluster the peptides, which
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constitutes trivial information to design new pharmaceutical and biotechnological applications
with these molecules.

Among the types of DR algorithms, there are supervised manifold techniques, which
have been gaining prominence due to their ability to preserve discriminative information in the
projection into low-d based on the labels of each sample class, in addition to their ability to
process non-linear information among the samples (CHAO; LUO; DING, 2019). These two
characteristics are essential in the process of classifying molecules based on various molecular
properties, which usually do not have a linear relationship with their classes. However, the use
of some of these algorithms has limitations because their canonical structure is not capable of
generating a mathematical model that can be reused with new samples, preventing the use of
these techniques in classification pipelines. Therefore, developing strategies capable of learning
the projection pattern of these DR algorithms is an essential step to overcome this problem,
besides contributing to the performance of ML-based pipelines in predicting new CPPs and
B3PPs.

Analyzing the correlation that the penetration of these two classes of peptides has with
the molecular properties involved in compound bioavailability, especially those described in
Lipinski’s Rule of 5, is essential for the planning of potential therapeutic agents by the pharma-
ceutical industry (BENET et al., 2016; MULLARD, 2018). However, a comprehensive analysis
on a statistical level or of the information gain that these molecular descriptors have for predict-
ing CPPs or B3PPs using machine learning models has not been conducted. Since the publica-
tion of A. Dobchev et al. (2010) up to the work by Fu et al. (2019)6 regarding the prediction
of CPPs using ML algorithms, the works concentrated majority on investigating features based
on the amino acid residue sequence, except the works by Manavalan et al. (2018) and Kumar,
Agrawal, et al. (2018) that assessed some physicochemical properties. Furthermore, studies re-
garding the use of ML to predict B3PPs published from 2021 up to the writing of this thesis7

also focused on the use of sequence-based descriptors, except the work by Zou (2021), which
also investigated some physicochemical properties. However, no one of these published works
investigated and compared the benefits of using the molecular descriptors associated with the
bioavailability of compounds.

Another essential aspect that has been underexplored in this research field is the devel-
opment of tools for predicting the permeability in the cell membrane or the BBB of non-natural
peptides or those with chemical modifications. These molecules occur naturally in nature or
can be obtained through synthesis, and they have various biotechnological applications. Un-
like natural peptides, there is no canonical way to represent such molecules solely based on

6Fu et al. (2019) was the last work published before the paper Predicting Cell-Penetrating Peptides Using
Machine Learning Algorithms and Navigating in Their Chemical Space, which was published by the author
of this thesis and collaborators in 2021.

7In 2023, the author of this thesis and collaborators published the paper BrainPepPass: A Framework Based
on Supervised Dimensionality Reduction for Predicting Blood-Brain Barrier-Penetrating Peptides.
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their primary structure, making the investigation of these molecules challenging using only
sequence-based molecular descriptors. This necessitates obtaining and processing the tertiary
structure of the peptide. Among the published works on the prediction of CPPs, only the tool
CellPPd-Mod utilized the tertiary structure of peptides (KUMAR; AGRAWAL, et al., 2018).
However, this tool has a practical limitation in its web version to predict the permeability of one
structure at a time. Regarding the prediction of B3PPs with chemical modifications, no work
published before the writing of this thesis has investigated the use of ML to predict this class of
molecules.

The use of a curated and validated database is essential for the analysis of phenomena
and the development of reliable prediction models. Many works involving the development of
machine learning models to predict CPPs have utilized samples from CPPSite 2.0, one of the
largest curated and validated databases for this class of peptides (AGRAWAL et al., 2016). On
the other hand, although there is a curated database for peptides with BBB penetration activity,
named BrainPeps (VAN DORPE et al., 2012), investigations into the creation of ML models
capable of predicting B3PPs have predominantly used computationally synthesized molecules.
Many of these lack experimental validation of penetration into the blood-brain barrier, compro-
mising the model’s reliability for testing real molecules.

Therefore, this thesis aims to contribute to this research line’s state of the art, addressing
some unexplored points. The main contributions of this thesis are highlighted below:

• Development of a ML-based framework to predict natural or chemically modified CPPs
and B3PPs using supervised manifold dimensionality reduction as a preprocessing strat-
egy.

• Investigation of the structural and physicochemical properties associated with the oral
bioavailability of compounds described in Lipinski’s rule of five.

• Use of experimentally validated database related to uptake of peptides by the blood-brain
barrier.

• Development of free-to-use web servers to predict CPPs and B3PPs based on the best
models.

1.5 Objectives

The general thesis proposal is the development of machine learning-based tools to pre-
dict the permeability of CPPs and B3PPs, investigating how physicochemical, structural- and
sequence-based descriptors influence the process of penetration of these molecules in each
biomembrane. Some specific objectives were designed and listed below to fulfill the general
proposal of this thesis:
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a) Collect the database of peptides tested to cell membrane permeability in servers as CPP-
Site 2.0 and C2Pred and from some published works, and construct datasets in PDB and
FASTA format. Also, collect samples of peptides tested to BBB penetration from Brain-
Peps in the MDL format.

b) Extract the physicochemical, structural-, and sequence-based descriptors using computa-
tional tools to construct the datasets according to feature compositions (FC), where for
cell membrane case, the descriptors will be calculated from both PDB and FASTA format,
and for BBB problem they will be extracted from MDL file.

c) Develop two machine learning based frameworks using sLE in preprocessing stage, and
XGBoost regression and classifier. The first framework is dedicated to predicting CPPs
and the second to predicting B3PPs.

d) Evaluate the proposed frameworks according to 10-fold cross-validation and compare
with voting classifiers (Vcf) grouping baseline algorithms ANN, SVM, and GPC in the
prediction of CPPs and B3PPs, respectively.

e) Perform independent test for cell membrane case and compare the proposed framework
with the voting classifier and other state-of-art tools according to metrics of accuracy,
sensitivity, specificity, F1-Score, area under the curve (AUC), and Matthews Correlation
Coefficient (MCC).

f) According to the metric results, investigate how the descriptors in each FC impact the
permeability prediction of peptides in both biomembranes. Besides, evaluating how the
molecular descriptors related to bioavailability affect the permeability prediction.

1.6 Thesis Organization

The subsequent sections of this thesis are structured in the following manner. Chapter
2 approaches the theoretical background about the pharmacokinetics and biochemistry aspects
of cell membranes and the blood-brain barrier, and how peptides can cross them. Also, this
chapter explains the theory of the machine learning algorithms used in our methodology.

Chapter 3 describes the database of CPPs and B3PPs used in each case study, besides
the feature extraction from the peptides’ structures. Furthermore, this chapter approaches the
architecture of the voting classifier used to solve the CPPs problem and the architecture of the
framework used to solve the B3PPs problem.

Chapter 4 presents the result of applying each designed framework to predict the per-
meability of CPPs and B3PPs, showing the performance of each tool and some aspects of
the impact of each descriptor. Finally, Chapter 5 presents the conclusions about the results
achieved. In addition, this chapter also explains the next steps of this research and the published
works during the doctorate period.
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2 THEORETICAL BACKGROUND

This chapter presents general aspects of the biochemical subjects related to this thesis,
covering the structure of a peptide, the cell membrane, and the blood-brain barrier. The chapter
also approaches some fundamental aspects of machine learning to understand this thesis’s pur-
pose, which encompasses dimensionality reduction and the sLE algorithm up to the architecture
of a voting classifier and the algorithms ANN, GPC, SVM, and XGBoost.

2.1 On biochemical and computational aspects of peptides

2.1.1 Biochemical aspects of peptides

Peptides are organic molecules formed by linking two up to 50 amino acids through
a peptide bond. Amino acids are the fundamental structures that constitute a peptide and are
represented by the formula R-CH(NH2)COOH. These structures comprise an amino group, a
carboxyl group, hydrogen, an asymmetric carbon, and an R group representing a side chain, as
shown in Figure 1. The peptide bond links two amino acids using a covalent bond, where the
carbon of carboxyl groups of one amino acid links to the nitrogen of the amino group of the other
amino acid by a dehydration reaction (LANGEL et al., 2009; FORBES; KRISHNAMURTHY,
2021), as shown in Figure 2.

Figure 1 – Amino acid structure.

Source: Author’s own.

There are 20 naturally occurring amino acids that make part of the structure of almost
all peptides and proteins. These amino acids can be divided into two large groups, polar and
non-polar. The amino acids aspartate (D)1, glutamate (E), arginine (R), lysine (K), serine (S),
threonine (T), cysteine (C), methionine (M), asparagine (N), and glutamine (Q) constitute the
polar group. The group of non-polar amino acids encompasses the following residues: glycine
(G), alanine (A), valine (V), leucine (L), isoleucine (I), proline (P), phenylalanine (F), tyro-
sine (Y), histidine (H), tryptophan (W). These amino acids are considered natural because

1The letter beside the residue name represents the one-letter codification of amino acid.
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the human genome encodes them. Other residues such as 5-hydroxylysine, selenocysteine, 4-
hydroxyproline, and 6-N-metil lysine are non-natural amino acids that can be found in peptides
(VERLI, 2014).

Figure 2 – Peptide bond schematic.

Source: Author’s own.

A peptide has two ends: the end with a free amino group (NH2) is called the N-terminal
amino acid residue. The end with a free carboxyl group (COOH) is called the C-terminal amino
acid residue. These groups are protonated2 when the peptide is in an aqueous solution (OUEL-
LETTE; RAWN, 2018). Peptides are named from the N-terminal acid residue to the C-terminal
amino acid. Figure 3 illustrates the Glycilalanine peptide with its N- and C-terminal.

Figure 3 – Schematic representation of the N- and C-terminal in a Glycylalanine peptide.

Source: Author’s own.

Bioactive peptides play an essential role in physiological and biochemical processes
related to human health, mainly affecting metabolic functions and the digestive, endocrine,
cardiovascular, immune, and nervous systems (Sanchez, 2016). These molecules also display
hormone and drug-like activities such as antimicrobial, anti-inflammatory, antihypertensive,

2Loss or gain of a proton H+.
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antithrombotic, opioid, immunomodulatory, antioxidative, and can be used as drug-delivery
(BHANDARI et al., 2019; BAIG et al., 2018).

Peptides must reach their molecular target to perform their therapeutic effect as com-
mercial drugs. It is not a simple task because organisms have several biological membranes that
constitute physical barriers to cells, organelles cells, tissues, and solid organs (CHANTEMAR-
GUE, 2018). These structures have different functions such as protecting cells and organs from
xenobiotics, maintaining their biochemical integrity; hosting bioactive molecules such as re-
ceptors, enzymes, ion channels, functional proteins, or even groups of cells with specific bio-
logical functions; controlling the traffic of molecules between the two sides of a cell or organs’
barrier (PIGNATELLO, 2013). The interaction of peptides with biomembranes is a complex
phenomenon, and some characteristics of both structures can affect the penetration of these
molecules.

2.1.2 Computational coding of peptides

The computational coding of a molecule represents how this structure can be stored,
read, and processed by computers, based on a set of chemical information that is desired to
be stored (OLIVEIRA, 2018). Currently, there are some possibilities for coding peptides in
computational files, such as FASTA, SDF, PDB, MDL, SMILES formats, and others. Each file
structure has its particularities regarding the type of information it encodes in the molecule.
It is essential to highlight this information because, among the formats mentioned, FASTA is
the only one that uses the representation of the primary structure of the molecule, that is, the
structure that depends only on the chain of natural amino acid residues. Figure 4 shows an
example of a FASTA file containing four peptides, where each peptide in this file is represented
by a header and the sequence of amino acid residues.

Figure 4 – FASTA file example containing the header and the sequence of peptides Opiorphin, Neurotensin,
Arginine vasopressin 1-7, and PepH1.

Source: Author’s own.

On the other hand, PDB and MDL are some file formats that encode the tertiary struc-
ture of the peptide, that is, the three-dimensional conformation of the molecule, taking into
account the position of the amino acid atoms in 3D space, including non-natural amino acids
and chemical modifications. Panel A of Figure 5 shows an example of part of the PDB file of
the peptide Transportan (GWTLNSAGYLLGKINLKALAALAKKIL). The red line indicates
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the atom number, atom type, amino acid residue, chain, and residue number, respectively. The
green line indicates the XYZ coordinates of the respective atom, and the blue line highlights the
occupancy3, beta factor4, and the atom element, respectively. Panel B of Figure 5 shows the 3D
conformation of the Transportan according to its PDB file.

Figure 5 – PDB file of Transportan peptide. A) PDB file containing information about the arrangement of atoms
in 3D space. B) Visualization of the 3D conformation of Transportan using the PDB file.

Source: Adapted from Protein Data Bank (PDB ID: 1SMZ).

Figure 6 shows a part of the MDL file of the Transportan. The red line indicates the XYZ
coordinates of the atoms, the green line indicates the atom symbol, and the blue line indicates
other information of the atoms such as nonstandard isotope, charge valence, etc.

Figure 6 – MDL file of Transportan peptide.

Source: Author’s own.

3Fraction of atoms that appear at that location.
4Avarege displacement of atom.
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2.2 Cell membrane and cell-penetrating peptides

The cell membrane, also known as the cytoplasmic membrane, separates the cell from
the exterior environment (YANG; HINNER, 2015). This biomembrane consists of a phos-
pholipid bilayer that contains cholesterol between phospholipids that maintain their fluidity
(SZLASA et al., 2020). Figure 7 illustrates the structure of the cell membrane better.

Figure 7 – Schematic representation of cell membrane showing its main chemical lipidic and protein components.
surface.

Source: Author’s own.

The cell membrane controls the passage of organic molecules and ions inside the cell,
maintaining its homeostasis (DERAKHSHANKHAH; JAFARI, 2018). This membrane con-
tains several transmembranes, peripheral, and lipid-anchored proteins that perform various molec-
ular functions, including ion transportation, cell adhesion, cell signaling, and catalysis (YANG;
HINNER, 2015). This biochemical structure is crucial to protect the cytoplasm and intracellular
components from invading organisms and xenobiotics.

Cell-penetrating peptides (CPPs), also known as peptide transduction domains (PTD),
is a class of positively charged short peptides with 5–30 amino acids that have been reported to
traverse the cell membrane (DERAKHSHANKHAH; JAFARI, 2018; YANG; HINNER, 2015;
MANAVALAN et al., 2018). In 1988 and 1991 were identified the first CPPs TAT and Pen-
etratin, which were derived from the transactivator protein (Tat) of human immunodeficiency
virus type 1 (HIV-1) and the Drosophila antennapedia homeobox protein (pAntp), respectively
(KARDANI et al., 2019). Regarding their application, these peptides can as much act directly
as is the case with antimicrobial peptides (ANNUNZIATO; COSTANTINO, 2020), as cargo-
delivery, binding to other drugs or molecules that have difficulty of crossing the cell membrane
(e.g., DNA, siRNA, protein, and peptide) (GUIDOTTI; BRAMBILLA; ROSSI, 2017).

The exact transport mechanism of cell-penetrating peptides through the membrane is
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still a subject much studied by scientists, despite descriptions in the literature. Currently, the
studies describe three ways for a peptide to enter the cell: direct penetration, endocytosis, and
translocation by forming a transitional structure, as shown in Figure 8. Each of these routes
has factors that influence the level of uptake, such as the level of concentration of peptides,
the sequence of amino acids, the lipid components in each membrane, and physicochemical
properties (BOLHASSANI, 2011; GUIDOTTI; BRAMBILLA; ROSSI, 2017).

Figure 8 – Schematic representation of endocytosis and direct penetration mechanisms for cell-penetrating
peptide internalization.

Source: Guidotti, Brambilla, and Rossi (2017)

2.3 Blood-brain barrier and blood-brain barrier penetrating peptides

The blood-brain barrier (BBB) is a selective biomembrane that acts as a physical and
chemical barrier of molecules of the central nervous system (CNS), controlling the homeostasis
of the brain (OLLER-SALVIA et al., 2016). This biomembrane acts as a functional barrier be-
tween the brain’s interstitial fluid and blood, maintaining a controlled biochemical environment
necessary for neural function (LEE; JAYANT, 2019).

The BBB is mainly composed of endothelial cells on the brain capillary walls forming
tight junctions among adjacent cells. Other cell types present in the BBB include astrocytes
and pericytes (ZARAGOZÁ, 2020). The BBB restricts the passage of pathogens and toxins
while allowing the diffusion of some solutes present in the blood to the cerebrospinal fluid
(DANEMAN; PRAT, 2015). Figure 9 illustrates the structure of the blood-brain barrier.

Blood-brain barrier penetrating peptides (B3PPs), also known as brain-penetrating pep-
tides or BBB shuttle peptides, represent oligopeptide chains with permeability into the BBB
that represent interesting biotechnological applications due to their favoring the increase in the
brain uptake of large molecular cargoes in a non-selective way (DÍAZ-PERLAS et al., 2018;
OLLER-SALVIA et al., 2016). These peptides have been extensively investigated, aiming for
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Figure 9 – Schematic representation of the blood-brain barrier, showing its main cell components (pericytes,
astrocytes, and endothelial cells) and localization in the brain capillary wall.

Source: Author’s own.

the development of new chemotherapeutic compounds due to their antiviral (JACKMAN et al.,
2018), anticancer (CHEN, Long et al., 2019), and neuroprotective activities (MELONI et al.,
2014; BAIG et al., 2018). B3PPs have some interesting characteristics, such as a strong affinity
toward a specific receptor that is often expressed in the luminal side of brain vasculature to
trigger internalization; the capacity to mediate transcytosis; and the ability to facilitate cargo
transport into brain parenchyma via a noninvasive way without affecting the integrity of the
BBB (ZHOU; SMITH; LIU, 2021).

The BBB is a very complex organic structure that selectively allows the passage of
molecules from the blood to the brain parenchyma. Currently, the literature describes penetra-
tion mechanisms in this barrier, such as passive diffusion, carrier-mediated transport, receptor-
mediated transcytosis, adsorptive-mediated transcytosis, and cell-mediated transcytosis (ZHOU;
SMITH; LIU, 2021; BAGCHI et al., 2019). Figure 10 illustrates these mechanisms. These
mechanisms have complex particularities, making it difficult to understand which properties
contribute more to the uptake of peptides.

2.4 Molecular descriptors and their influence on biomembranes uptake

The molecular descriptors are properties calculated computationally or experimentally
from molecules and can describe them according to structural and physicochemical features.
Some of these descriptors have been studied and used by industry as a filter to select oral
druggable compounds, relating their pharmacokinetics properties with bioavailability (DOAK
et al., 2014), and posteriorly were investigated specifically for peptides (DÍAZ-EUFRACIO et
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Figure 10 – Schematic representation of penetration mechanisms for peptides internalization across the BBB.

Source: Zhou, Smith, and Liu (2021)

al., 2018; MANAVALAN et al., 2018; QIANG et al., 2018; PANDEY et al., 2018).

The structural and physicochemical descriptors approached in the cell membrane case
are: molecular weight (MW), topological polar surface area (TPSA), water-octanol partition
coefficient (LogP), Number of hydrogen bond acceptors (HBA) and donnors (HBD), number
of aromatic rings (NAR), number of rotable bonds (NRB), Fraction of sp3-hybridized carbon
atoms (Fsp3), number of guanidinium groups (NG), net charge (NetC), number of negatively
charged amino acids (NNCAA) at pH = 7.4.

MW is a measure of the sum of the atomic weight values of the atoms in a molecule.
TPSA is a 2-dimensional approximation of the surface sum over all polar atoms in molecules,
primarily oxygen and nitrogen, also including their attached hydrogen atoms (VEBER et al.,
2002). The LogP represents the partition coefficient, which is the ratio of the concentration of
the compound in octanol to its concentration in water (ARNOTT; PLANEY, 2012). HBA is
a measure of the hydrogen-bonding ability of a molecule expressed in terms of the number of
possible hydrogen-bond acceptors, while HBD is the same measure for possible hydrogen-bond
donors (ARUNAN et al., 2011). The NAR counts the number of benzene rings, while NRB is the
number of bonds that allow free rotation around themselves (VEBER et al., 2002). Fsp3 is the
relation of sp3-hybridized carbon atoms by total carbon atoms (LOVERING, 2013). NG is the
count of guanidine molecules HNC(NH2)2 (HANNON; ANSLYN, 1993). NetC and NNCAA
represent the charge of a molecule and the sum of glutamic acids, aspartic acids, respectively,
and c-terminals, which are negatively charged residues at pH 7.4.

The other group of molecular descriptors approached in the cell membrane case is
the sequence-based descriptors such as amino acid composition (AAC), dipeptide composi-
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tion (DPC), and pseudo-amino acid composition (PseAAC). The AAC is the percentage of an
individual amino acid in the given sequence, this study focuses on the composition of arginine
(f(Arg)) and lysine (f(Lys)), which can be computed respectively by

f(Arg) =
number of arginine residues

total residues count
, (1)

f(Lys) =
number of lysine residues

total residues count
. (2)

The DPC comprises the total number of 𝑖-th dipeptide normalized against all possible
combinations of dipeptides in a given peptide sequence. DPC can be computed by

DPC(i) =
total number of dipeptides (i)

total number of all possible dipeptides
. (3)

The PseAAC encompasses the relation between the frequency of a given amino acid
residue and physicochemical properties such as hydrophobicity, hydrophilicity, and side-chain
mass along with the local sequence order (CHOU, 2001). PseAAC can be computed by

PseAACj =
1

𝐿− 𝑗

𝐿−𝑗∑︁
𝑖=1

𝜃(𝑅𝑖, 𝑅𝑖+𝑗), (4)

where L is the total residues content in peptide, 𝑅𝑖 is the i-th amino acid residue, and j ∈ [1;
20+𝜆𝑝] is the j-th descriptor of PseAAC. 𝜆𝑝 is the correlation factor that reflects the sequence
order of all the most contiguous residues along a protein chain. The correlation function 𝜃(.) of
the amino id residues can be calculated by

𝜃(𝑅𝑖, 𝑅𝑖+𝑗) =
1

3

{︀
[𝐻1(𝑅𝑖)−𝐻1(𝑅𝑖+𝑗)]

2 + [𝐻2(𝑅𝑖)−𝐻2(𝑅𝑖+𝑗)]
2 + [𝑀(𝑅𝑖)−𝑀(𝑅𝑖+𝑗)]

2}︀ ,
(5)

where 𝐻1 is the hydrophobicity of the 𝑖-th residue, 𝐻2 represents the hydrophilicity of the
residue, and M is the side-chain mass of the residue.

Some of the physicochemical and structural descriptors selected to evaluate the perme-
ation into the cell by peptides comprise a list of features investigated by other researchers in
oral drug design. The influence of molecular weight, TPSA, and lipophilicity in cell membrane
permeation of peptides by passive diffusion is reviewed in the work of Dougherty, Sahni, and
Pei (2019). The properties of RO5 also were investigated for cell permeability of drugs and clin-
ical candidates in the work of Doak et al. (2014). In many works, sequence-based descriptors
have been explored due to their association with peptide charge, which can be an interesting
property to correlate with the polarity of the cell membrane in permeation mechanisms. Fur-
thermore, to justify the choice of fractions of arginine and lysine in AAC, these two residues
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are predominant in cationic CPPs (GUIDOTTI; BRAMBILLA; ROSSI, 2017; KARDANI et
al., 2019). The descriptors used to predict the B3PPs also encompass physicochemical and
structural properties extracted from the peptides and can be divided into two groups. The first
group comprises molecular properties such as LogP, octanol-water distribution coefficient at
pH 7.4 (LogD), TPSA, HBA, HBD, oxygen count nO, nitrogen count nN, and nitrogen and
oxygen count n(N+O). The second group is composed of 1428 descriptors from Mordred pack-
age (MORIWAKI et al., 2018), where five descriptors are highlighted on the results of this
thesis: 12-or-greater-membered aromatic hetero ring count (nG12Ring), Geary coefficient of
lag 8 weighted by polarizability (GATS8p), Geary coefficient of lag 5 weighted by polariz-
ability (GATS5p), mean topological charge index of order 9 (JGI9), and MOE5 Charge VSA
Descriptor 4 (PEOE-VSA4).

The Mordred descriptors are composed of a variety of structural, physicochemical, and
topological descriptors, which also were used to evaluate the permeation of small molecules
across the BBB (LI et al., 2005) and correlated to cell membrane uptake of peptides (STAL-
MANS; WYNENDAELE, et al., 2013). The Geary coefficient (GATS) is a general index of
2D-autocorrelation applied to a molecular graph, which describes the topology of the peptide in
association with atomic masses, polarizabilities, and Sanderson electronegativities. This index
is calculated using the topological distance and the Kronecker delta (TODESCHINI; CON-
SONNI, 2000; STALMANS; WYNENDAELE, et al., 2013). Charge index (JGI) is a topologi-
cal descriptor with the ability to describe the molecular charge distribution. It was proposed to
evaluate the charge transfer between pairs of atoms and, therefore, the global charge transfer
in the molecule (GALVEZ et al., 1994). PEOE-VSA represents the partial charge descriptor
calculated by the sum of the proximate accessible van der Waals surface area (VSA) for each
atom over all the atoms (REDDY; KUMAR; GARG, 2010).

The first group of descriptors selected to investigate their correlation to BBB uptake
encompasses features tested as a chemical filter to predict the permeability of a range of small
molecules across this biomembrane using the LogBB6 as indicator (DICHIARA et al., 2020).
Other studies also tried to establish a general filter to predict this pharmacokinetics property for
small molecules evaluating intervals for MW, weak hydrogen bond, LogP, and TPSA (ABRA-
HAM, 2004; LALATSA; SCHATZLEIN; UCHEGBU, 2014; DAINA; ZOETE, 2016). The de-
scriptors from the second group were explored recently in the work of Plisson and Piggott
(2019), whose features TPSA and PEOE-VSA achieved the best values of importance in the
prediction of blood-brain barrier permeability of marine-derived kinase inhibitors.

5MOE is the acronym for Molecular Operating Environment software.
6LogBB is the concentration of drug in the brain divided by the concentration in the blood
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2.5 Machine learning algorithms

Artificial intelligence is a branch of computer science that explores the automation of
human intelligent behavior to perform tasks (CHOWDHARY, 2020). Currently, AI a variety of
subfields dedicated to solving specific problems by developing computer algorithms based on
human cognitive aspects. These aspects include the ability to learn from past experiences, rec-
ognize patterns, perform reasoning, make decisions, understand natural language, and interact
adaptively in diverse contexts (RUSSELL; NORVIG, 2021).

Machine learning (ML) is one of the fields covered within the study of AI. This field can
be defined as the automatic process of extracting patterns through observation of data (KELLE-
HER; MAC NAMEE; D’ARCY, 2020). In other words, machine learning is a field of study that
aims to develop computational models capable of learning patterns through data observation
and using these models to solve problems (RUSSELL; NORVIG, 2021). The use of ML models
has considerably increased in the last decades and can be used in problems for which some
solutions require a very extensive set of rules, for complex problems for which there is no good
solution using traditional approaches, in problems that require adaptation of the model depend-
ing on the variability of the problem, or even a search for insights into the problems addressed
and large amounts of data (GÉRON, 2019; GARG; MAGO, 2021).

The field of machine learning can be divided based on the form of learning that will be
used in the model, which is directly related to the nature of the problem and the type of data
used in the learning process (CHOWDHARY, 2020; MÜLLER; GUIDO, 2016). The subfields
covered in the study of ML models can be divided into the following categories according to the
type of learning process: supervised learning, unsupervised learning, semi-supervised learning,
and reinforcement learning.

In supervised learning the ML model observes input-output pairs aiming at learning a
mapping that properly correlates them (RUSSELL; NORVIG, 2021). In other words, a set of
descriptive features from a database is used as input, and their corresponding target feature (la-
bel) is used as output for training a model. After this learning process, the trained model can be
used for predicting the output generated by other samples using the same set of features. Clas-
sification and regression are the two major classes of problems approached in the supervised
machine learning field (MÜLLER; GUIDO, 2016).

Unsupervised learning encompasses the learning process of ML with data based ex-
clusively on the input information without supporting a target feature. In essence, the class of
algorithms learns a pattern from the data without making an association with targets (JAMES
et al., 2013). Clustering, anomaly detection, dimensionality reduction, and association learn-
ing are the main classes of problems approached by unsupervised learning models (MÜLLER;
GUIDO, 2016; PATEL, 2019).

Semisupervised learning is the field of machine learning that approaches strategies us-
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ing a combination of supervised and unsupervised learning models to deal with partially la-
beled data, usually with few labeled data and many unlabeled data. The ML are trained with la-
beled and unlabeled data to learn the pattern and perform predictions. Classification, regression,
constrained clustering, and dimensionality reduction are examples of problems approached in
semisupervised learning (ZHU; GOLDBERG, 2009).

Reinforcement learning is a field distinct from supervised and unsupervised learning.
This learning process is based on an agent that can observe the environment, select and perform
actions, and get rewards or penalties to learn a pattern (RUSSELL; NORVIG, 2021; MOREIRA,
2022). The agent must then learn by itself what is the best strategy to get the most reward over
time in a given situation (GÉRON, 2019).

Different computational problems have been approached and solved by ML algorithms
based on the type of learning. Classification, time series regression, natural language process-
ing, optimization, clustering, and dimensionality reduction (DR) are the main classes of prob-
lems approached by machine learning. For example, classification and regression problems
can be solved with artificial neural network (ANN), deep learning (DL), k-nearest neighbors
(kNN), support vector machine (SVM), decision tree (DT), and random forest (RF) (T.K.;
ANNAVARAPU; BABLANI, 2021). Clustering problems can be treated using k-means, hi-
erarchical cluster analysis (HCA), and DBSCAN. Visualization and dimensionality reduction
problems can be solved using principal component analysis (PCA), locally-linear embedding
(LLE), and t-distributed stochastic neighbor embedding (t-SNE) (ROOHI et al., 2020; USAMA
et al., 2019). Figure 11 illustrates some of the aforementioned problems approached and solved
by ML models.
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Figure 11 – Representation of main categories of problems approached by ML, such as classification, regression,
clustering, and dimensionality reduction.

Source: Author’s own.

2.5.1 Dimensionality reduction

Dimensionality reduction can be defined as a subfield of machine learning that addresses
the development of algorithms dedicated to reducing the number of features in a database
to a smaller number of features. In summary, DR algorithms are capable of mapping an 𝑛-
dimensional dataset into an 𝑚-dimensional subspace, i.e., R𝑛 → R𝑚 {𝑛,𝑚 ∈ Z+ | 𝑛 > 𝑚}
(GHOJOGH et al., 2023). Figure 12 illustrates an example of the DR process and the visualiza-
tion of the low-dimensional projected data.

Figure 12 – Schematic of dimensionality reduction process and low-dimensional data visualization.

Source: Author’s own.
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Dimensionality reduction is very useful in extracting the most relevant characteristics
from high-dimensional data, besides enabling projection into a subspace capable of being visu-
alized. DR is employed in many fields of quantitative science to obtain a representative feature
space that, by being more susceptible to the problem domain, best describes data and preserves
important structural properties such as dissimilarities, cluster shapes, probability distributions,
and neighboring relationships, besides allowing better visualization (FLEXA et al., 2019). Cur-
rently, there are some algorithms that perform DR, i.e., PCA, kernel PCA, LLE, multidimen-
sional scaling (MDS), and linear discriminant analysis (LDA) (GÉRON, 2019).

Manifold learning is a subfield of dimensionality reduction that involves the develop-
ment of DR algorithms capable of exploring the geometric properties of data projected into low
dimensions. Unlike the algorithms mentioned above, which focus on preserving variance, mani-
fold learning assumes that high-d data has a low-d projection. Therefore, its algorithms attempt
to find a low-d representation of the data that is representative and preserves the geometric
and nonlinear characteristics of the high-d data (CHAO; LUO; DING, 2019; LUNGA et al.,
2014). Isomap, LLE, t-SNE, Laplacian eigenmaps, and Hessian eigenmaps are some examples
of algorithms approached in studying manifold learning (FU, 2011).

2.5.2 Artificial neural network

Artificial neural network (ANN) is a ML model introduced in 1943 by the neurophysi-
ologist Warren McCulloch and the mathematician Walter Pitts, where they proposed a computa-
tional model based on the functioning of biological neurons to perform complex computations
using propositional logic (MCCULLOCH; PITTS, 1943). In 1957, Frank Rosenblatt created
the artificial neuron called Perceptron, one of the simplest ANN architectures. An artificial neu-
ron is a basic unit of information processing in a ANN (HAYKIN, 1998). Figure 13 illustrates
the block diagram of the model of the artificial neuron, which can process the information by
performing the sum of the inputs associated with weights and passing this result through a
function.

Figure 13 – Schematic of the artificial neuron.

Source: Adapted from Haykin (1998)
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The output (𝑦𝑘 ∈ R) of a single neuron represented in Figure 13 can be computed by

𝑦𝑘 = 𝜑(
𝑚∑︁
𝑗=1

𝑤𝑘𝑗𝑥𝑗 + 𝑏𝑘), (6)

where 𝑤𝑘𝑗 ∈ R is the synaptic weight of the 𝑘-th neuron related to 𝑗-th input (𝑥𝑗 ∈ R), 𝑏𝑘 ∈ R
represents the bias and 𝜑(.) is the activation function. In summary, the synaptic weights are
responsible for weighting their respective input values, while the bias provides more flexibility
for the sum of the weighted inputs. The summation unit is responsible for creating a linear
combination of the weighted inputs and the activation function is employed for constraining the
output of a neuron.

Currently, there are many possibilities of activation functions to use in a neuron: hy-
perbolic tangent, sigmoid, ReLu, softmax, linear, hard limit (EMMERT-STREIB et al., 2020;
HAGAN et al., 2014). In general, these activation functions are responsible for limiting the
output of the neuron to the closed unit interval [0, 1] or the interval [-1, 1]. The bias is a mathe-
matical term used to increase or decrease the liquid value of the input to the activation function
(HAYKIN, 1998).

The multilayer perceptron (MLP) is one of the most famous ANN architecture and is
the structure selected to perform prediction of CPPs and B3PPs in this thesis. This architecture
is based on the connection of many single neurons in layers where the signals flow only from
the inputs to the outputs, so this architecture is an example of a feedforward neural network
(GÉRON, 2019). Figure 14 illustrates a schematic of a generic MLP, which is composed of
an input layer, hidden layers, and an output layer. The green circle represents an input of the
network, the yellow circle symbolizes an individual artificial neuron fully connected in a hidden
layer, and the red circle represents the output of the MLP.

Figure 14 – Schematic of a MLP architecture.

Source: Author’s own.

The adjustment of all synaptic weights and biases of each neuron present in a MLP
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is performed by a training algorithm. This is an iterative process capable of making a neural
network learn from its environment and adjusts its parameters with the objective of improv-
ing performance in solving a given problem. In 1986, Rumelhart, Hinton, and Williams intro-
duced the Backpropagation, the first algorithm capable of efficiently training multilayer net-
works (RUMELHART, DAVID E. HINTON; WILLIAMS, 1986). This algorithm uses gradient
descent to adjust the weights and biases of the network by minimizing the error signal generated
by the difference between the current output of the network and the desired output and back-
propagated against the direction of the network (HAYKIN, 1998). Currently, other algorithms
are also employed for training MLPs, such as the Newton method, quasi-Newton optimization,
and Levenberg-Marquardt (KINGMA; BA, 2015; CÖMERT; KOCAMAZ, 2017).

2.5.3 Gaussian process classifier

A Gaussian process is a conditional probability on a multivariate Gaussian distribution
used to solve regression and classification issues (OPPER; WINTHER, 2000). The Gaussian

process classifier (GPC) is a supervised ML algorithm based on Bayesian probability theory that
assumes that there is a relationship between the input samples and its label based on a Gaussian

distribution (EBDEN, 2015; RASMUSSEN; WILLIAMS, 2006). In summary, GPC models the
probability of a sample belonging to a class based on a conditional probability modeled by a
Gaussian distribution described by

𝑃 (𝑦|x) = 𝒩 (𝜂, 𝜎2), (7)

where 𝑃 (𝑦|x) represents the conditional probability of a sample x ∈ R𝑛 belonging to class 𝑦,
and 𝜂 ∈ R and 𝜎2 ∈ R are the mean and variance of the distribution, respectively. The mean of
the Gaussian distribution can be computed by

𝜂 = k*K−1𝑦, (8)

where k* ∈ R𝑁𝑠 and K ∈ R𝑁𝑠x𝑁𝑠 are the kernel vector and the kernel matrix, respectively. The
variance of the distribution can calculated by

𝜎2 = 𝑘** − k*K−1kT
* , (9)

where 𝑘** ∈ R is the prior covariance (RASMUSSEN; WILLIAMS, 2006). The vector k* stores
the information of similarity between a new sample x* ∈ R𝑛 related to all the training samples,
as shown in

k* = [𝑘(x*, x1), 𝑘(x*, x2), .., 𝑘(x*, x𝑁𝑠)], (10)
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where 𝑘(.) represents a kernel function and 𝑁𝑠 ∈ Z+ is the total of training samples. The
kernel matrix K stores the covariance among all the training samples using a kernel function,
as demonstrated by

K =

⎡⎢⎢⎢⎢⎣
𝑘(x1, x1) 𝑘(x1, x2) . . . 𝑘(x1, x𝑁𝑠)

𝑘(x2, x1) 𝑘(x2, x2) . . . 𝑘(x2, x𝑁𝑠)
...

... . . . ...
𝑘(x𝑁𝑠 , x1) 𝑘(x𝑁𝑠 , x2) . . . 𝑘(x𝑁𝑠 , x𝑁𝑠)

⎤⎥⎥⎥⎥⎦ . (11)

The prior covariance 𝑘** is computed using a kernel function for the new sample, as
shown by

𝑘** = 𝑘(x*, x*). (12)

Currently, there are many kernel functions employed in GPC algorithm, such as radial
basis function (RBF), Matérn, rational quadratic, exponential sine squared, polynomial of de-
gree 𝑑, dot product (LUNDERMAN et al., 2018; RASMUSSEN; WILLIAMS, 2006).

2.5.4 Support vector machine

The SVM algorithm is a supervised machine learning method used in classification and
regression problems. Specifically for classification problems, which is the focus of this thesis,
SVM can be understood as an extension of the maximal margin classifier algorithm, which com-
putes the farthest separating hyperplane that separates the training observations classes (JAMES
et al., 2013). SVM utilizes a kernel to generate a boundary function capable of separating groups
of samples that are not linearly separable in order to classify them. Figure 15 exemplifies a
group of samples belonging to two classes (blue and red), which cannot be linearly separated
by a hyperplane but can be separated by other non-linear functions. In summary, SVM is the
algorithm that provides an optimal boundary function capable of separating groups of samples
that normally can not be separated by hyperplane.
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Figure 15 – Example of non-linearly separable samples.

Source: Adapted from James et al. (2013)

Mathematically, given 𝑇 = {(x1, 𝑦1), ..., (x𝑁𝑠 , 𝑦𝑁𝑠)} as the training set with input sam-
ples and their respective labels, the SVM algorithm employed in classification problems can be
defined as an optimization problem described by

minimize 𝛼
1

2

𝑁𝑠∑︁
𝑖,𝑗=1

𝑦𝑖𝑦𝑗𝑘(x𝑖, x𝑗)𝛼𝑖𝛼𝑗 −
𝑁𝑠∑︁
𝑗=1

𝛼𝑗, (13)

subject to
𝑁𝑠∑︁
𝑗=1

𝑦𝑖𝛼𝑖 = 0, (14)

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, ..., 𝑁𝑠,

where x𝑖 ∈ R𝑛 represents the 𝑖-th input sample, 𝑦𝑖 ∈ {0, 1} is the class of the 𝑖-th sample, and
𝑁𝑠 ∈ Z+ represents the number of samples. The term 𝛼𝑖 is the 𝑖-th element of the Lagrange
multipliers vector 𝛼 = (𝛼1, ..., 𝛼𝑁𝑠)

T, 𝑘(.) is the kernel function that computes the similarity
between two samples x𝑖 and x𝑗 , and 𝐶 ∈ R+ is the penalty parameter that controls the trade-
off between maximizing margin and minimizing classification error (DENG; TIAN; ZHANG,
2013). The solution for the optimization problem expressed above is a boundary function (𝑔(x)),
as shown by

𝑔(x) =
𝑁𝑠∑︁

𝑖,𝑗=1

𝑦𝑖𝛼
*
𝑖 𝑘(x𝑖, x𝑗) + 𝑏*, (15)

where 𝛼* = (𝛼*
1, ..., 𝛼

*
𝑁𝑠
)T is a Lagrange multipliers vector chosen by the algorithm for calcu-

lating the term 𝑏* by
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𝑏* = 𝑦𝑗 −
𝑁𝑠∑︁

𝑖,𝑗=1

𝑦𝑖𝛼
*
𝑖 𝑘(x𝑖, x𝑗). (16)

The decision function (𝑓(x)) used to classify the sample according to the result obtained
by the boundary function can be expressed by

𝑓(x) =

{︃
1, 𝑔(x) ≥ 0;

0, 𝑔(x) < 0;
(17)

Currently, many kernel functions have been employed in SVM to improve the perfor-
mance in non-linear classification problems. Some examples of these functions are: polynomial
of degree 𝑝, sigmoid, Dirichlet, Gaussian RBF (GHOLAMI; FAKHARI, 2017). Figure 16 illus-
trates an example of applying the SVM with a polynomial kernel of degree 3 and RBF kernel
to generate the boundary function to classify the samples shown in Figure 15.

Figure 16 – Example of SVM using different kernels to classify non-linearly separable data. Left: SVM with a
polynomial kernel of degree 3. Right: SVM with RBF kernel.

Source: Adapted from James et al. (2013)

2.5.5 Extreme gradient boosting

Extreme gradient boosting (XGBoost) is a decision-tree-based ML ensemble7 technique
that uses a gradient-boosting framework for grouping estimators. This algorithm was proposed
by Chen and Guestrin (2016) as a scalable machine learning system for solving regression,
classification, and ranking problems. Figure 17 illustrates an example of XGBoost composed
of 𝑍 decision trees.

7Ensemble corresponds to techniques that combine multiple machine learning models to improve overall sys-
tem performance.
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In summary, XGBoost uses 𝑍 subsets of input information, which were generated by
bootstrap sampling8, for training its trees. However, starting from the second tree, each DT
consecutively uses the residual error from the previous tree’s prediction to optimize its training
in a known boosting process (ARIF ALI et al., 2023). In the end, in a classification problem,
the XGBoost prediction result is based on the majority class predicted among all decision trees.

Figure 17 – Schematic of XGBoost algorithm.

Source: Author’s own.

Mathematically, given 𝑇 = {(x1, 𝑦1), ..., (x𝑁𝑠 , 𝑦𝑁𝑠)} as the training set with input sam-
ples and their respective labels, the training process of each tree in the XGBoost algorithm can
be understood as an optimization problem that seeks to minimize the objective function based
on a set of leaf weights of the tree, as shown by

minimize 𝑤𝑚

𝑍∑︁
𝑗=1

𝑙(𝑦𝑗, ℎ𝑗(x𝑗) + ̂︀ℎ(𝑡−1)
𝑗−1 ) + Ω, (18)

where 𝑙(.) represents the convex loss function that measures the difference between the target
𝑦𝑗 ∈ R and the prediction ℎ𝑗(x𝑗) ∈ R from the 𝑗-th tree. The vector x𝑗 ∈ R𝑛 represents the
input information provided by the 𝑗-th subset for 𝑗=1,...,𝑍. The term ̂︀ℎ(𝑡−1)

𝑗−1 ∈ R represents
the previous tree prediction in the 𝑡-th iteration. Ω is the complement of the objective function
shown in Equation 18 and represents the regularization term used to penalize the complexity

8Bootstrap sampling is a statistical technique used to draw random samples with replacement from the original
dataset repeatedly.
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of the model, which helps to smooth the final learned weights to avoid over-fitting (CHEN;
GUESTRIN, 2016). Ω can be computed by

Ω =

𝐿𝑞∑︁
𝑞=1

(︂
𝛾𝑔𝐿𝑞 +

1

2
𝜆𝑔𝑤

2
𝑚

)︂
, (19)

where 𝛾𝑔 ∈ R and 𝜆𝑔 ∈ R are coefficients used to control the model complexity and the output
of the objective function. The number of leaf nodes in the tree is represented by 𝐿𝑞 ∈ Z+ and
𝑤𝑞 ∈ R is the leaf weight of the 𝑞-th leaf node in the tree for 𝑞 = 1, ..., 𝐿𝑞.

The XGBoost algorithm uses a second-order Taylor approximation of the loss function
and speeds up the process of searching for the global minimum through the first and second
derivatives of the loss function (LIANG et al., 2021). This approximation helps to find the
optimum value for the 𝑞-th leaf weight of the 𝑗-th tree, which can be computed by

𝑤𝑞 =

∑︀𝑗
𝑞=1 𝐺𝑞∑︀𝑗

𝑞=1 𝐻𝑞 + 𝜆𝑔

, (20)

where 𝐺𝑞 ∈ R and 𝐻𝑞 ∈ R are the first and the second derivative of the loss function (𝑙(.)),
which can be respectively calculated by

𝐺𝑞 =
𝜕𝑙(𝑦𝑞,̂︀ℎ(𝑡−1)

𝑞−1 )

𝜕̂︀ℎ(𝑡−1)
𝑞−1

, (21)

𝐻𝑞 =
𝜕2𝑙(𝑦𝑞,̂︀ℎ(𝑡−1)

𝑞−1 )

𝜕2̂︀ℎ(𝑡−1)
𝑞−1

. (22)

Finally, after the training of the XGBoost algorithm using the steps described above,
the predicted output (̂︀ℎ(x)) for a given input can be computed for each tree. In a classification
problem, the XGBoost algorithm classifies the sample according to the majority class label
predicted by all the trees.

Other important XGBoost parameters that can be highlighted are the learning rate, the
number of trees, and the depth of each tree. The learning rate is a factor applied to each tree and
performs as a step-size shrinkage used in the update to prevent overfitting. The number of trees
is the count of the model’s decision tree, and the depth is related to the number of consecutive
nodes in a tree (WADE, 2020).

2.5.6 Voting classifier based on machine learning

The voting classifier (Vcf) is a ML architecture to group classifiers to improve the clas-
sification task, using a majority vote or the average predicted probabilities (soft vote) to predict
the class labels (GÉRON, 2019). Figure 18 illustrates the general architecture of the Vcf.
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Figure 18 – General structure of voting classifier.

Source: Author’s own.

In summary, the final result for the prediction by Vcf is the statistical mode of the set of
predicted labels by individual classifiers. For instance, considering five binary classifier groups
in a voting classifier, if three models predict the data as belonging to class 1, while the other
two classifiers predict label 0 for the same data, the voting classifier considers as the final result
the most frequent result, that is, the final result is label 1.

2.5.7 Supervised Laplacian eigenmaps

The supervised Laplacian eigenmaps (sLE) is a supervised manifold dimensionality re-
duction technique proposed by Raducanu and Dornaika (2012). This algorithm uses class labels
to guide the non-linear mapping of the high-dimensional data to the embedded space by large
margin concept. The labels in this algorithm allow splitting the graph Laplacian associated with
the data into two components: within-class and between-class graphs. This proposal provides
important properties when compared with canonical Laplacian eigenmaps, such as adaptive
estimation of the local neighborhood surrounding each sample based on data density and sim-
ilarity, besides maximizing the local margin between heterogeneous samples and pushing the
homogeneous samples closer to each other simultaneously by the objective function. In sum-
mary, the sLE perform the dimensionality reduction of labeled data, clustering closer data with
the same labels and distancing samples from different labels. All the steps of this algorithm are
described below.

Mathematically, given the training set 𝑇 = {(x1, 𝑦1), ..., (x𝑁𝑠 , 𝑦𝑁𝑠)} with input samples
and their respective labels, the first step of sLE is the calculation of average similarity (𝐴𝑆(x)).
This coefficient indicates the level of proximity of an input sample in relation to the other
training samples in 𝑛-dimensional space. 𝐴𝑆(x) can be calculated by

𝐴𝑆(x𝑖) =
1

𝑁𝑠

𝑁𝑠∑︁
𝑗=1

𝑒𝑥𝑝

(︃
−‖x𝑖 − x𝑗‖2

𝛽

)︃
, (23)
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where x𝑖 ∈ R𝑛 is the 𝑖-th input sample, 𝑁𝑠 ∈ Z+ is the number of samples in the training set
and 𝛽 ∈ R is the average of squared distances between all pairs of samples.

The second step encompasses the great contribution of this algorithm, where two subsets
of samples are computed using the similarity between pairs of samples. The first subset is the
𝑁𝑤(x𝑖), which represents the set of within-class neighbors samples in relation to the x𝑖. This
subset can be expressed by

𝑁𝑤(x𝑖) =

{︃
x𝑗|𝑦𝑗 = 𝑦𝑖, 𝑒𝑥𝑝

(︃
−‖x𝑖 − x𝑗‖2

𝛽

)︃
> 𝐴𝑆(x𝑖)

}︃
, (24)

where 𝑦𝑗 represents the class label of the 𝑗-th sample. In summary, 𝑁𝑤 represents the subset of
neighbors of the x𝑖, which is composed of all the samples x𝑗 that belong to the same class of x𝑖

(𝑦𝑗 = 𝑦𝑖) and have similarity with this sample greater than 𝐴𝑆(x𝑖).

The second subset is the 𝑁𝑏(x𝑖), which represents the set of between-class neighbor
samples in relation to the x𝑖. In summary, 𝑁𝑏 is composed of all the samples that do not belong
to the same class of x𝑖 (𝑦𝑗 ̸= 𝑦𝑖) and have similarity with this sample greater than 𝐴𝑆(x𝑖). This
subset can be expressed by

𝑁𝑏(x𝑖) =

{︃
x𝑗|𝑦𝑗 ̸= 𝑦𝑖, 𝑒𝑥𝑝

(︃
−‖x𝑖 − x𝑗‖2

𝛽

)︃
> 𝐴𝑆(x𝑖)

}︃
. (25)

Figure 19 illustrates an example of the process for constructing the subsets 𝑁𝑤(x𝑖) and
𝑁𝑏(x𝑖), where the sample P1 (blue ball) has an average similarity equal to 0.4. The other blue
balls inside the dashed circle have similarities greater than 𝐴𝑆(P1). Therefore, these samples
are included in 𝑁𝑤(x𝑖), while the red square samples, which also have a similarity greater than
average similarity and have distinct labels from the blue ball, are included in the subset 𝑁𝑏(x𝑖).
This process exemplifies how the neighborhoods are formed in this algorithm according to each
label.
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Figure 19 – Schematic representation of sample-based neighbor computation in sLE.

Source: Raducanu and Dornaika (2012)

The construction of 𝑁𝑤 and 𝑁𝑏 in the previous step is essential to calculate the weight
matrices W𝑤 ∈ R𝑁𝑠x𝑁𝑠 and W𝑏 ∈ R𝑁𝑠x𝑁𝑠 , which represent how the similarity weighting is
distributed for each subset and are used in the equation of sLE algorithm. W𝑤 and W𝑏 can be
respectively computed using by

W𝑤,𝑖𝑗 =

{︃
𝑒𝑥𝑝

(︁
−‖x𝑖−x𝑗‖2

𝛽

)︁
if x𝑗 ∈ 𝑁𝑤(𝑦𝑖) or x𝑖 ∈ 𝑁𝑤(x𝑗), 𝑖, 𝑗 = 1, ..., 𝑁𝑠

0 otherwise,
(26)

W𝑏,𝑖𝑗 =

{︃
1 if x𝑗 ∈ 𝑁𝑏(x𝑖) or x𝑖 ∈ 𝑁𝑏(x𝑗), 𝑖, 𝑗 = 1, ..., 𝑁𝑠

0 otherwise.
(27)

The next step of supervised Laplacian eigenmaps relies on calculating the Laplacian
matrices L𝑤 ∈ R𝑁𝑠x𝑁𝑠 and L𝑏 ∈ R𝑁𝑠x𝑁𝑠 according to

L𝑤 = D𝑤 − W𝑤, (28)

L𝑏 = D𝑏 − W𝑏, (29)

where D𝑤 ∈ R𝑁𝑠x𝑁𝑠 and D𝑏 ∈ R𝑁𝑠x𝑁𝑠 are the diagonal weight matrices and are formed by the
sum of column (or row) of W𝑤 and W𝑏, respectively.

The final mathematical expression of the sLE that calculates the low-d data in 𝑚-
dimensional space (𝑚 < 𝑛) is shown in
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BZ𝐷 = 𝜆D𝑤Z𝐷, (30)

where Z𝐷 ∈ R𝑁𝑠x𝑚 and 𝜆 ∈ R𝑚 are the eigenvectors matrix and their respective eigenvalues
vector calculated for the matrices B ∈ R𝑁𝑠x𝑁𝑠 and D𝑤. In summary, each eigenvector of the ma-
trix Z𝐷 = (z1, z2, ...., zm) computed by Equation 30 represents each dimension of the desired
low-d data in the embedded space. The matrix B represents a filter between the contribution of
L𝑏 and W𝑤 and can be calculated by

B = 𝛾𝑠L𝑏 + (1− 𝛾𝑠)W𝑤, (31)

where 𝛾𝑠 is a real scalar hyperparameter that belongs to [0, 1], and the terms L𝑏 and W𝑤 are the
matrices calculated by Equations 29 and 26, respectively.

2.6 Conclusion

This chapter presented the main biochemical and computational aspects of peptides,
addressing their composition and representation computation and covering some theoretical as-
pects related to the structure of the cell membrane and the BBB. The chapter also addresses
the theoretical aspects related to the molecular descriptors used to predict the penetration of
peptides, besides discussing their biochemical relationship with permeability in biomembranes.
Another point covered in this chapter is the machine learning techniques, covering some general
aspects of classifiers and dimensionality reduction models, besides focusing on the explanation
of each of the algorithms used as well in the proposed framework for predicting CPPs and
B3PPs as in the other comparable models. The next chapter addresses the methodology of this
thesis, describing the construction of the datasets and the architecture of the proposed frame-
work.
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3 PROPOSED METHOD

This chapter presents general aspects related to the proposed ML-based framework to
predict CPPs and B3PPs. The origin and the preprocessing stages for peptide databases as the
molecular descriptors used in the cell membrane and BBB problems are described here. In
addition, this chapter also displays the general pipeline for the proposed ML-based framework
to predict the CPPs and B3PPs.

3.1 Peptides databases

Databases with experimentally validated information on biomembrane-penetrating pep-
tides are a valuable source for obtaining structure- and sequence-based data for developing
computational models to predict these structures’ permeability. The present section exhibits the
databases of CPPs and B3PPs used in this thesis, besides the preprocessing steps applied to
them.

3.1.1 Database for CPPs

For the problem of cell membrane penetrating prediction, this thesis proposes using
datasets of peptide structures obtained from curated CPP databases. The CPP structures were
obtained from CPPsite2.0, a chemo-structural database with more than 1800 validated ex-
perimental CPPs with different structural properties (linear/cyclic; and modified/non-natural
residues) and a wide range of applications for cargo transportations into the cell (AGRAWAL
et al., 2016). Moreover, 411 CPPs and 411 non-CPPs were obtained from the C2Pred server
(TANG et al., 2016). Additionally, 31 CPP and 21 non-CPP structures were obtained from pre-
viously published works and pharmaceutical catalogs (SANDERS et al., 2011; PONNAPPAN;
CHUGH, 2017; ANASPEC, 2010). Figure 20 illustrates better this stage, where it is possible
to see how the peptides were divided according to the labels (CPPs and non-CPPs) and prepro-
cessed before their use in ML models for training and test.

This thesis uses peptides in FASTA and PDB formats, which correspond to primary and
tertiary structures, respectively. There is an importance in the use of both FASTA and PDB
since the first one encompasses only natural and more accessible peptides’ structures. On the
other hand, PDB includes information about chemical modifications, although their structure
is more complex to obtain. All the peptides from CPPsite2.0 have both primary and tertiary
structures, while the remainder has only a primary one. For these molecules that do not have
a tertiary structure, their PDB files were obtained using the PEP-FOLD3 server (LAMIABLE
et al., 2016).

Figure 20 summarizes the steps related to the construction of the datasets of this case
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study. After joining the databases from CPPSite 2.0, C2Pred, and published works according
to the peptide labels, the molecular descriptors (features) are extracted from the peptides to
compose the datasets of CPPs and non-CPPs.

Figure 20 – Diagram of CPPs and non-CPPs datasets construction. The first step represents the unification of
CPPs and non-CPPs in their respective groups. The second step is the extraction of molecular

descriptors

. The third step is the filters based on peptide chain length, duplicated structures, and peptides
containing descriptors with outliers. Random sampling is employed to select an equivalent

number of CPPs regarding non-CPPs.

Source: Author’s own.

The next step of the dataset construction relies on filtering the peptides according to
some criteria, which is represented by the yellow box in Figure 20. Each dataset is filtered re-
garding peptide length in the preprocessing stage, limited to 5 up to 30 amino acid residues,
besides removing the duplicates among CPPs and non-CPPs (GAUTAM et al., 2013; QIANG
et al., 2018). Another filter used in preprocessing was the removal of outliers structures using
z-score > 3. This technique calculates the normalized distribution of each feature using the av-
erage and the standard deviation of the feature distribution (COUSINEAU; CHARTIER, 2010).
According to this criterion, all the peptides with at least one feature with z-score > 3 were
removed from the dataset.

After applying the filters, the number of selected CPPs hl(1570) is greater than non-
CPPs (375). To balance the two datasets and avoid overfitting of the ML hlmodels, random
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sampling is applied to 1570 CPPs hlsamples to select from them 375 peptides. Finally, the
evaluation setup has the training dataset with 300 CPPs and 300 non-CPPs and an independent
test with 75 CPPs and 75 non-CPPs for PDB format. Specifically for FASTA format experi-
ment, only natural peptides were considered from the same sample space, and the peptides with
chemical modification or non-natural residues were removed from the training and test datasets,
resulting in a training dataset with 241 CPPs and 300 non-CPPs and test samples with 60 CPPs
and 75 non-CPPs. These datasets are available in Appendix A. The division of the number of
samples for training and independent test datasets by type of structure is summarized in Table
1.

Table 1 – Dataset division of peptide samples according to cell membrane permeability and file format.

PDB FASTA
Training Independent Test Training Independent Test

CPPs 300 75 241 60
non-CPPs 300 75 300 75

Source: Author’s own.

In summary, the flowchart of Figure 20 shows that all individual databases were col-
lected and grouped, and their descriptors are extracted to be evaluated according to some filters,
which encompass the limit for amino acids, removal of duplicates, and outliers. Finally, us-
ing random sampling, the final number of CPPs is equalized to the number of non-CPPs. This
equalization balances the training and test dataset for the ML framework.

3.1.2 Database for B3PPs

For the problem of blood-brain barrier penetrating prediction, this thesis proposes us-
ing the Brainpeps database, a comprehensive data obtained from literature information about
B3PPs, which includes primary structure, sequence, physicochemical properties, and infor-
mation related to the experimental method applied in the validation of the penetration (VAN
DORPE et al., 2012).

Unlike CPPs database, Brainpeps does not provide clear information about whether each
peptide can cross or not the BBB, i.e., no labels are referencing the penetration of each peptide
available in this database. Some experimental researches established classification for peptide
permeability across the BBB using numerical limits for pharmacokinetic indicators.

Stalmans, Gevaert, et al. (2015) established five BBB penetration classes according to
the level of influx rate constant (𝐾𝑖𝑛) and BBB permeability (𝑃 ). The indicator 𝐾𝑖𝑛 repre-
sents the clearance of blood from the peptides after a single passage of the brain, expressed in
mL/(g.min), while 𝑃 indicates the permeability of a peptide acquired using a brain microvessel
endothelial cell culture model (BMEC), expressed in cm/s (STALMANS; GEVAERT, et al.,
2015; VAN DORPE et al., 2012). Stalmans and collaborators defined the five classes for in-
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flux using a box and whisker plot, where classes 1 to 4 were determined by the 25, 50, and
75 percentiles as well as the lower and higher whiskers. BBB influx class 5 comprised the
peptides with outlying BBB influx data. This method was used to classify the penetration into
brain parenchyma for peptide as conotoxin cVc1.1 (POTH et al., 2021); somatropin, NOTA-
conjugated somatropin, and gallium-labeled NOTA-conjugated somatropin (BRACKE et al.,
2020); PapRIV (JANSSENS et al., 2021). The classes and limit values for each indicator are
shown in the table available in Appendix B.

Another experimental parameter used to classify the penetration of peptides across the
BBB is the endothelial effective permeability coefficient obtained with the parallel artificial
membrane permeability assay (PAMPA) (𝑃𝑒), expressed in 10−6 cm/s. Di et al. (2003) proposed
the high penetration for molecules that has 𝑃𝑒(10

−6) > 4.0, low penetration for 𝑃𝑒(10
−6) < 2.0,

and permeation uncertain 2.0 < 𝑃𝑒(10
−6) < 4.0. These ranges were derived empirically from

experiments to investigate high-throughput assay for BBB permeation prediction using porcine
polar brain lipid. This method and its analogue on a logarithmic scale were used to classify the
permeability of compounds in the brain, such as 3-hydroxy-2-pyridineal doxime compounds
(ZORBAZ et al., 2018); furosemide, ranitidine, donepezil, and tacrine (ROSSI et al., 2021);
platyphyllenone and alnusone (FELEGYI-TÓTH et al., 2022); gingerol and shogaol derivatives
(SIMON et al., 2020).

As mentioned above, several works that experimentally investigated the penetration of
peptides and other compounds into the blood-brain barrier also used the classification by the
permeability level of the molecules based on established limits for 𝐾𝑖𝑛, 𝑃 , or 𝑃𝑒. For exam-
ple, Rossi and colleagues used the criterion of 𝑃𝑒 to discover multi-target-directed ligands for
Alzheimer’s Disease (ROSSI et al., 2021). Based on the criteria and evidence highlighted in the
works above, this thesis suggests a preliminary classification of the peptides of the Brainpeps
database using the influx and permeability metrics.

Regarding the classes established by Stalmans and collaborators using 𝐾𝑖𝑛 and 𝑃 val-
ues, it is proposed to classify the peptides of groups 1 and 2 (very low and low influx) as BBB-,
while the other classes (medium, high, and very high influx) are defined as BBB+. Concerning
the 𝑃𝑒 metric, the same criterion created by Di and collaborators was used to classify the pep-
tides, where high penetration compounds were labeled as BBB+, low penetration as BBB-, and
uncertain penetration was classified according to the proximity to each threshold, i.e., 𝑃𝑒(10

−6)

> 3.0 is BBB+ and 𝑃𝑒(10
−6) < 3.0 is BBB-. Figure 21 summarizes the process of previous clas-

sification according to the threshold values and type of experiment (MRT1, perfusion, in vitro,
or in vivo) for each parameter.

The implementation of the proposed criteria for classifying peptides based on their per-
meability in the BBB using pharmacokinetic indicators in this thesis yielded a database con-
taining 231 BBB+ and 97 BBB- peptides. However, the database needed to be more balanced

1Multiple-Time Regression method.
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regarding the number of peptides belonging to each class, necessitating the division of the data
into three balanced datasets to avoid issues associated with overfitting. Each dataset comprised
the same 97 BBB- peptides and 97 randomly sampled BBB+ peptides.

Figure 21 – Diagram of B3PPs and non-B3PPs datasets construction based on the employment of experimental
pharmacokinetic indicators regarding the penetration of peptides into BBB to classify them into

BBB+ or BBB-.

Source: Author’s own.

To solve this problem of unbalanced datasets regarding the BBB+ and BBB- samples,
three datasets were constructed with an equal number of 97 peptides in the BBB+ dataset and 97
samples in the BBB- dataset, as illustrated in the diagram of Figure 22. The dataset composed
of 97 BBB- samples is the same for the three datasets (Dataset 1, Dataset 2, and Dataset 3)
for training and testing the models, where ten samples were randomly selected to constitute
the test samples of non-permeable molecules (TSN) and the 87 remaining samples are defined
as the training set (TRN). Similarly, ten samples of BBB+ peptides were randomly selected
to constitute the test samples of permeable molecules (TSP), and the remaining 221 peptides
were divided to compose the training set of the three datasets. The training set of the Dataset 1
(TRP-1) is composed of 87 peptides randomly selected. The training set of Dataset 2 (TRP-2)
contains 87 peptides selected randomly from the remaining samples. The training set of Dataset
3 (TRP-3) is composed of 87 peptides, of which 57 samples came from the remaining BBB+
samples, 15 are peptides randomly selected from TRP-1 and 15 were randomly selected from
TRP-2.
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Figure 22 – Construction of the three balanced datasets. TRP-[1,2,3]: training samples of BBB+ peptides, TSP:
test samples of BBB+ peptides, TRN: training samples of BBB- peptides, TSN: test samples of BBB-

peptides.

Source: Author’s own.

In summary, the three datasets comprised a balanced number of samples from both
classes, with 97 BBB+ and 97 BBB- peptides. In each dataset, 174 peptides (87 BBB+ and 87
BBB-) were dedicated to training, while 20 peptides (10 BBB+ and 10 BBB-) were used for
testing. This approach ensured that each dataset could be utilized for training and testing and
that the models developed using these datasets were adequately trained and tested. Appendix C
provides information regarding the peptides used in each dataset.

3.2 Molecular Descriptors

The molecular descriptors are the chemical features used to describe the peptides’ struc-
ture, composition, and physicochemical properties. These features are used to train and test the
ML models besides characterizing the chemical space of the molecules. The following sections
describe the molecular properties proposed to predict CPPs and B3PPs.

3.2.1 Molecular descriptors for CPPs prediction

The properties selected to investigate the permeability of peptides across the cell mem-
brane are divided into structural and physicochemical properties and sequence-based properties.
The first group encompass: MW, NRB, TPSA, Fsp3, LogP, number of aromatic rings (NAR),
HBD, HBA, number of primary amino groups (NPA), number of guanidinium groups (NG), net
charge (NetC), and number of negatively charged amino acids (NNCAA) at pH = 7.4. These
descriptors are used because some are related to the oral bioavailability of compounds, some
are approached in RO5, and others are associated with improving penetration in cell membrane
(SANTOS; GANESAN; EMERY, 2016; SANDERS et al., 2011).
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The second group encompasses the two AAC descriptors: fraction of arginine and lysine
residues (f(Arg) and f(Lys)). This group also encompasses the 40 DPC descriptors (dipeptides:
RR, KK, KR, RQ, RK, WR, WK, NR, KW, WF, RS, FQ, RW, RI, QR, GR, RM, IW, RL,
QN, ET, CN, PG, PL, GI, TV, FC, FG, GP, LS, SE, CV, GT, FL, CC, VC, GA, LG, GF, and
GL) and 22 features from the PseAAC (CHOU, 2001). These sequence-based descriptors were
selected because they were evaluated in previous studies and presented relevance in predicting
cell membrane uptake (MANAVALAN et al., 2018; PANDEY et al., 2018; SANDERS et al.,
2011). Section 2.4 of this thesis discusses in more detail the biochemical characteristics that led
these physicochemical, structural, and sequence-based descriptors to predict CPPs.

The prediction of CPPs is analyzed according to feature composition FC to investigate
which subgroup of features gives more discriminating information to classify the molecules
correctly. Table 2 shows how all the descriptors were grouped into four different feature compo-
sitions, FC-1 to FC-4. FC-1 grouped only amino acid composition and sequence-based descrip-
tors (f(Lys), f(Arg), 40 most correlated DPC, and PseAAC), which are important to evaluate the
framework performance using only primary structure information of peptides. FC-2 comprises
the twelve physicochemical and structure-based properties related to the oral bioavailability of
compounds. FC-3 is the grouping of all analyzed descriptors, i.e., this feature composition com-
bines FC-1 and FC-2. Finally, FC-4 encompasses the combination of the fraction of arginine
and lysine, all the descriptors from PseAAC, the nine most well-correlated physicochemical and
structure-based properties, and the ten most well-correlated DPCs. It is important to highlight
that DPC descriptors in FC-1, FC-3, and FC-4 were selected using Kendall’s correlation, as well
as the nine physicochemical and structural descriptors in FC-4. The selection of 40 descriptors
from 400 DPCs aimed to minimize the dimension of the original dataset, using only the dipep-
tides with more correlation to the labels. Regarding the selection applied in FC-4, the purpose
was to construct a feature composition optimized concerning FC-3. The results of Kendall’s
correlation for the descriptors employed in CPPs prediction can be seen in Appendix D.

Table 2 – Feature composition for CPPs prediction analysis.

Molecular DescriptorsFeature
Composition Structural AAC DPC PseAAC

Number of
Descriptors

FC-1 - f[Lys], f[Arg] 40 DPCs 22 PseAACs 64

FC-2 MW, cLogP, tPSA, Fsp3, NRB, HBD, HBA, NAR,
NPA, NG, NetC, NNCAA - - - 12

FC-3 MW, cLogP, tPSA, Fsp3, NRB, HBD, HBA, NAR,
NPA, NG, NetC, NNCAA f[Lys], f[Arg] 40 DPCs 22 PseAACs 76

FC-4 MW, cLogP, Fsp3, HBA, NAR, NPA, NG, NetC,
NNCAA f[Lys], f[Arg] 10 DPCs 22 PseAACs 43

All the molecular descriptors displayed in Table 2 were extracted using Python pack-
ages. RDKit package (LOVRIĆ; MOLERO; KERN, 2019) was used to calculate the physic-
ochemical and structure-based descriptors, besides the f(Lys) and f(Arg). PyBioMed package
(DONG et al., 2018) was applied to extract the features from DPC and PseAAC. Net charge
(NetC) of the peptides was calculated from structures using Biopython package (COCK et al.,
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2009). All these properties were extracted from CPPs and non-CPPs libraries using both PDB
and FASTA format. Figure 23 summarizes the feature extraction process explained here, relat-
ing the descriptors to their respective Python package used to calculate.

Figure 23 – Diagram of molecular descriptors extraction to compose the four FCs in cell membrane case study
using RDKit, PyBioMed, and Biopython packages.

Source: Author’s own.

3.2.2 Molecular descriptors for B3PPs prediction

The molecular properties selected to investigate the permeability of peptides across the
blood-brain barrier are divided into four FCs. The first feature composition (FC-1) comprised
several key descriptors including molecular weight (MW), calculated water-octanol partition
coefficient (cLogP), calculated octanol-water distribution coefficient (LogD) at pH 7.4, topo-
logical polar surface area (tPSA), number of hydrogen bond acceptors (HBA), donors (HBD),
nitrogen count (nN), oxygen count (nO), and nitrogen plus oxygen count (nN+nO). Previous
studies have highlighted the importance of these descriptors in filtering molecules that are likely
to reach the central nervous system (CNS) (GELDENHUYS et al., 2015; MIKITSH; CHACKO,
2014; DICHIARA et al., 2020). Some of these descriptors are also related to the oral bioavail-
ability of compounds approached in RO5 (LOVERING, 2013; LIPINSKI et al., 2012; DOAK
et al., 2014).

The second feature composition (FC-2) comprised 749 Mordred’s molecular descrip-
tors, which consist of a combination of structural and physicochemical descriptors. Mordred is
a Python library for molecular descriptor calculations encompassing 2D, 3D, constitutional, and
electronic descriptors (MORIWAKI et al., 2018). The third feature composition (FC-3) was con-
structed by selecting the ten best-correlated molecular descriptors from FC-2 using Kendall’s
correlation coefficient. The fourth feature composition (FC-4) was obtained by combining FC-1
and FC-3. The Table 3 summarizes the molecular descriptors by FC, and the complete list of
Mordred’s descriptors modules can be seen in Appendix E.
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Table 3 – Feature composition for 3BPPs prediction analysis.

Feature
Composition Origin Descriptors Number of

descriptors
FC-1 Dichiara’s MW, cLogP, LogD, tPSA, HBA, HBD, nO, nN, n(N+O) 9
FC-2 Mordred 2D, 3D, constitutional, and electronic descriptors 749

FC-3 Mordred selection
by Kendall

JGI5, JGI6, JGI7, JGI9, EState-VSA5, GATS3d,
nAcid, RotRatio, Lipinski, GhoseFilter 10

FC-4 FC-1 + FC-3
JGI5, JGI6, JGI7, JGI9, EState-VSA5, GATS3d,

nAcid, RotRatio, Lipinski, GhoseFilter, MW,
cLogP, LogD, tPSA, HBA, HBD, nO, nN, n(H+O)

19

Source: Author’s own.

Unlike the cell membrane problem, the prediction of B3PPs proposed in this thesis does
not use sequence-based descriptors because approximately 94.81% of the Brainpeps database
used in this work comprises chemically modified peptides or the amino acid sequence is miss-
ing. These two factors make it infeasible to use sequence information as an input feature to a
predictor.

All descriptors described in this section were calculated using Python packages Mor-
dred, RDKit, and Instant JChem software. LogD descriptor was calculated using Instant JChem,
while the remaining Dichiara’s descriptors were calculated using RDKit. The peptide file for-
mat used in this analysis is MDL format. This format was selected firstly due to its capability to
aggregate information about molecular conformation and chemical modifications, and secondly
due to its availability in the Brainpeps repository.

3.3 Proposed framework to predict CPPs and B3PPs

The ML-based framework proposed in this thesis to predict CPPs and B3PPs is a generic
pipeline that is also flexible regarding the choice of internal algorithms. This tool is composed
of supervised Laplacian eigenmaps (sLE), a manifold dimensionality reduction algorithm used
to reduce the high-d molecular descriptors dataset to three dimensions (3D) aiming as much to
visualize the peptides in low-d as clustering the molecules according to their classes, CPP and
non-CPP for cell membrane problem and BBB+ and BBB- for blood-brain barrier case.

The sLE algorithm was chosen to compose the pipeline of the proposed framework due
to its ability to perform dimensionality reduction in a supervised manner, adding information
from the classes of molecules in the process of projecting dimensions into 3D space. In addition,
sLE is capable of dealing with non-linear distribution data. Another decisive point for choosing
this algorithm is that sLE is entirely based on deterministic equations and does not require an
iterative training process, which could increase the computational cost of the framework.

However, the original sLE does not perform dimensionality reduction in an independent
dataset, since this algorithm does not generate a model, which makes it infeasible to use this
algorithm in the framework to predict the permeability of new peptides. Then, it is proposed



3.3. PROPOSED FRAMEWORK TO PREDICT CPPS AND B3PPS 66

the use of a XGBoost regression (XGBr) algorithm to overcome this issue. Figure 24 illustrates
the first stage of the proposed framework, where the n-dimensional dataset, based on molecular
descriptors by FC, is reduced to 3D. The same n-dimensional data and its 3D reduction are
respectively used as input and target in XGBr present in DR pattern learning stage. The XGBr
model is trained and optimized by grid-search2 to learn the reduction pattern generated by sLE.
The DR pattern learning is an important step to overcoming the problem of reducing new pep-
tides’ data dimension. After this step, the next one is the training of a XGBoost classifier XGBc
using the output from XGBr and the peptides’ labels, as shown in panel A of Figure 25.

The final pipeline of the proposed framework to predict the penetration across the
biomembranes is a pipeline with XGBr and XGBc, where the first algorithm learns the DR
pattern from sLE and the second one is responsible for predicting if the molecule can penetrate
or not the biomembrane, as shown in panel B of Figure 25. Furthermore, the framework can
provide the 3D visualization of new data, which is essential for analyzing how distant the pep-
tide is from its original cluster. Also, it is important to highlight that the proposed tool is trained
and tested separately for cell membrane and BBB.

Figure 24 – Fluxogram of dimensionality reduction and pattern learning stages in the proposed framework. The
DR stage represents the projection of n-dimensional data to 3D using sLE algorithm. The pattern

learning stage encompasses the use of XGBr to learn and generalize the sLE projection for new data.

Source: Author’s own.

2Grid-search is a method applied for optimization of hyperparameters using cross-validation over exhaustive
search in a parameter grid.
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Figure 25 – Proposed framework for CPPs and B3PPs prediction. Panel A) shows the stage of XGBc training
with 3D data as input and peptides’ labels as output. B) Illustrates the final pipeline of the proposed

framework.

Source: Author’s own.

The range of the searching hyperparameters adjusted for XGBr, XGBc, and sLE are
shown in Appendix F.1. All the algorithms incorporated in the framework and their config-
uration processes were implemented using the scikit-learn and XGBoost package (CHEN;
GUESTRIN, 2016) for Python language.

3.4 Voting classifier to predict CPPs and B3PPs

The voting classifier described in Section 2.5.6 is used in this thesis as a ML archi-
tecture to group classifiers to improve the prediction of CPPs and B3PPs and compare with
the results achieved by the framework described in the previous section. The proposed Vcf
groups ANN (MLP architecture), SVM, and Gaussian process classifier (GPC). Each classifier
receives descriptors according to each FC depending on the biomembrane. Figure 26 illustrates
the architecture of the voting classifier, where each ML model is trained separately using the
grid-search to find the best combination of hyperparameters according to the best accuracy in
10-fold cross-validation by feature composition.
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Figure 26 – Structure of voting classifier to predict peptides’ biomembrane penetration.

Source: Author’s own.

In summary, the proposed Vcf to predict CPPs and B3PPs is composed of three single
classifiers optimized and trained by FC. Like the framework, Vcf is trained and tested separately
for the cell membrane and BBB. The range of the searching parameters adjusted for each ML-
based algorithm is shown in Appendix F.2. All the algorithms incorporated in the framework
and their configuration processes were implemented using the scikit-learn package for Python
language.

It is essential to highlight that the BChemRF-CPPred, a free-to-use web server created
by the author of this thesis and collaborators to predict specifically CPPs is based on the archi-
tecture of voting classifier presented above Oliveira et al. (2021). More information about the
BChemRF-CPPred web server is provided in Appendix G.

3.5 Conclusion

This chapter presented the main aspects related to the proposed methods, approaching
the database used in both problems, prediction of CPPs and B3PPs, as the molecular descriptors
used as features to perform the classification. The chapter also approaches the general aspects
of the proposed framework, describing how the ML algorithms are linked inside the devel-
oped pipeline, and describes the voting classifier used to predict peptides’ permeability through
biomembranes. The next chapter describes and discusses the results of the frameworks and Vcf
in each problem.
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4 RESULTS AND DISCUSSIONS

This chapter presents the results achieved by the proposed methods to predict CPPs and
B3PPs in this thesis. The first section focuses on describing the performance of the developed
framework to predict peptides’ permeability across the cell membrane and comparing it with a
voting classifier and its classifiers using 10-fold cross-validation analysis and independent test.
The second section approaches the same analysis for predicting peptides’ permeability across
the blood-brain barrier. The final section summarizes the results presented in this chapter.

4.1 Prediction of CPPs

This section presents the cross-validation and independent test analysis for the proposed
framework with DR algorithm in CPPs prediction. The performance of this tool is compared
with the classifiers ANN, SVM, GPC, and with a voting classifier joining these three models,
as mentioned in the chapter on methods. The voting classifier to predict CPPs is referenced
in this thesis as Vcf-CPP (voting classifier for CPP prediction) and the proposed framework
is named as DPF-CPPred (dimensionality reduction and pattern learning framework for CPP
prediction).

In this thesis, the prediction of CPPs is analyzed using both PDB and FASTA format
according to sample distribution showed in Table 1 in the previous chapter. The use of PDB
aims to evaluate how the models perform in the prediction of permeability using peptides with
chemical modifications and non-natural amino acids, while FASTA focuses on investigating the
prediction capacity of the techniques using only natural peptides.

Regarding molecular descriptors, the prediction of CPPs in this thesis investigated two
class of molecular descriptors: (1) the structure-based descriptors that include structural and
physicochemical properties related to the permeation of molecules into the biological mem-
branes which are obtained from the molecular structures of peptides—MW, TPSA, Fsp3, LogP,
HBA, HBD, NAR, NRB, and NetC—, as well as, some properties related to the polar charged
groups—NPA, NG, NNCAA—that could influence in their permeability; and, (2) sequence-
based descriptors, i.e., information calculated from the primary structure of the peptide— AAC,
PseAAC, and DPC. Regarding the sequence-based descriptors, the amino acid compositions
f[Arg] and f[Lys] were applied in the framework. The sequence-based descriptors selected have
relation with the charge, hydrophobicity, and hydrophilicity of the peptides, which are important
properties related to interaction between these molecules and the cell membrane.

All the selected descriptors were divided into four FCs as mentioned in Section 3.2.1
for both PDB and FASTA. This division allows us to evaluate how different groups of descrip-
tors impact the performance of the algorithms. This segmented analysis is essential because
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physicochemical and structural descriptors are directly correlated with the oral bioavailability
of compounds. At the same time, those based on the sequence do not have a direct correlation
with this property. On the other hand, it is much easier to filter or develop peptides based on
sequence filters than to meet physicochemical and structural criteria.

4.1.1 Cross-validation analysis in CPPs prediction

The 10-fold cross-validation is applied to evaluate the generalization of the proposed
framework and other ML models using the training dataset with both data formats. The obtained
results for performance of the DPF-CPPred, Vcf-CPP, and its algorithms an ANN, GPC, and
SVM using the PDB dataset are shown in Figure 27 and for FASTA is presented in Figure 29.
The used hyper-parameters of all the algorithms by FC and for both file encoding are shown in
Appendix H.

4.1.1.1 Cross-validation analysis for PDB encoding

The performance of each estimator shown in Figure 27 indicates that the DPF-CPPred
achieved an average accuracy of 100% in cross-validation for all FCs using PDB, highlighting
how different the performance obtained by the framework is from the Vcf-CPP and its algo-
rithms, which achieved the best result by SVM in FC-3 with 89% of accuracy.

Figure 27 – Barplot of accuracy from 10-fold cross-validation of DPF-CPPred (purple), Vcf-CPP (orange), ANN
(red), GPC (blue), and SVM (green) using PDB format.

Source: Author’s own.

These results indicate that the XGBoost model trained in the pattern learning stage of
the framework reached good performance in generalizing the dimensionality reduction of the
training dataset. This performance can be explained by level of sample clustering provided by
sLE, which can accurately group the CPPs samples and differentiate them from non-CPPs,
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as shown in panels on Figure 28. As can be seen, the 3D reduced training dataset exhibits
significant differentiation between the two classes for the four FCs.

It is important to note that, for the four FCs, the framework segregated the training
dataset of peptides very well between those that can cross the cell membrane and those that can
not, using the sLE algorithm. Although encouraging, these results can not provide significant
information about which group of molecular descriptors offers more information to correctly
differentiate CPPs from non-CPPs, i.e., based only on cross-validation results, the DPF-CPPred
can not indicate if physicochemical and structure-based descriptors provide more correlated to
prediction than sequence-based features, or if the specific FC is more informative than other
because all the feature compositions reached the maximum performance. This differentiation
among the descriptors could contribute to designing new peptides capable of crossing the cell
membrane.

Figure 28 – The 3D plot of the reduced PDB training dataset by the DPF-CPPred in each FC.

Source: Author’s own.

Regarding Vcf-CPP, the results obtained with FC-3 had reached an average accuracy
of 0.17% greater than FC-4. However, the Kruskal–Wallis H test (p-value = 0.820) showed
no statistically significant difference between the accuracies obtained by these two FCs. Fur-
thermore, the voting classifier using the FC-4 (43 descriptors) is less complex than those that
use FC-3 (76 descriptors). It is also important to highlight that although the descriptors from
FC-1 (containing only sequence-based descriptors) and from FC-2 (only physicochemical and
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structure-based descriptors) have shown relevant correlation to CPPs’ prediction according to
Kendall’s correlation analysis, these descriptors isolated do not provide enough information to
predict the permeability of these peptides satisfactorily into the cell membranes, as shown by
the Vcf-CPP performance in Figure 27. These results are important not only to highlight the
differences among the feature compositions in the prediction of CPPs but also indicate that the
optimized combination of physicochemical, structure- and sequence-based descriptors (FC-4)
better predict natural and synthetic peptides than other analyzed FCs.

4.1.1.2 Cross-validation analysis for FASTA encoding

Different from PDB format, the dataset composed only of FASTA files is easier to obtain
and manipulate. However, until the writing of this thesis, there is no reliable representation of
chemically modified peptides using the FASTA format, i.e., this encoding can only represent
natural peptides. The performance of the proposed framework and other tools in natural CPPs
prediction is evaluated separately here for this file format. Figure 29 shows the result of 10-fold
cross-validation analysis in this case study.

Figure 29 – Barplot of accuracy from 10-fold cross-validation of DPF-CPPred (purple), Vcf-CPP (orange), ANN
(red), GPC (blue), and SVM (green) using FASTA format.

Source: Author’s own.

Like the previous experiment, the DPF-CPPred achieved 100% of average accuracy in
cross-validation analysis in predicting only natural peptides that can cross the cell membrane.
Figure 30 shows the result of 3D dimensionality reduction by the framework for each FC,
where it is possible to see that the proposed tool can segregate the two classes of molecules.
Regarding Vcf-CPP performance, the model that used the FC-3 reached the best performance
with an average accuracy of 86.9%, while FC-1, FC-2, and FC-4 achieved values between 84.13
and 86.71%, respectively. However, the Kruskal–Wallis H test (p-value = 0.675) again showed
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no statistically significant difference between the performance of FC-3 and FC-4, evidencing
the contribution of the optimized selection of physicochemical, structural, and sequence-based
features to predict the uptake of natural peptides by the cell membrane.

In a general analysis, all these results display, mainly for Vcf-CPP and its classifiers, the
difference between the use of PDB and FASTA format. The first one aggregates more chem-
ical information, and impacts in CPPs prediction as shown in average accuracy between the
two experiments. Another notorious difference is in feature composition, where the joining of
sequence- and structural-based descriptors (FC-3 and FC-4) provided more information to clas-
sify peptides correctly in both experiments. It reveals the importance of combining molecular
descriptors related to oral bioavailability and the composition and arrangement of amino acids
to predict the uptake of peptides by the cell membrane.

Figure 30 – The 3D plot of the reduced FASTA training dataset by the DPF-CPPred in each FC.

Source: Author’s own.

The proposed framework performed very well in cross-validation analysis, reaching
100% in average accuracy for all FCs, since it uses the ability of sLE to reduce the original
dimension of the dataset and cluster the samples into each class, outperforming the other com-
pared ML tools. However, as well as in the PDB experiment, it is impossible to confirm with
cross-validation results which FC impacts the prediction of peptides’ permeability across the
cell membrane using the proposed framework. Then, an independent test will evaluate the im-
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pact of each feature composition in correctly classifying CPPs using the DPF-CPPred.

4.1.2 Independent test analysis in CPPs prediction

This section approaches the independent test performed with the same ML tools de-
scribed in the previous section and with the independent dataset, as described in Table 1. Here
will be evaluated the performance of each model in predicting CPPs for both file formats (PDB
and FASTA).

The analyses revealed that the DPF-CPPred based on feature compositions with more
information (FC-3 and FC-4) and using PDB data, obtained an accuracy equal to 92%. At
the same time, for FC-1 and FC-2, the framework exhibited an accuracy of 90% and 88%,
respectively, as shown in Figure 31. These results indicate that the DPF-CPPred outperformed
the Vcf-CPP and its models for almost all metrics in this test since the best result achieved by
voting classifier was 90.6% in accuracy for FC-4 and the other three classifiers demonstrated
performance of less than 90%, as shown in Table 4.

Figure 31 – Accuracy of ANN (red), GPC (blue), SVM (green), Vcf-CPP (orange), and DPF-CPPred (purple) by
FCs evaluated in the independent test for PDB data format.

Source: Author’s own.

The results presented in Figure 31 also highlight some interesting points regarding fea-
ture composition and framework performance. Although the cross-validation analysis (see the
Section 4.1.1) revealed that the DPF-CPPred obtained 100% of average accuracy for all FCs, the
independent test proved that the molecular descriptors based on the fusion of physicochemical,
structure- and sequence-based properties contribute more to correctly classifying the peptides
than using the same descriptors isolated (FC-1 and FC-2). These findings corroborate with
previous works that associate the permeability of peptides across the cell membrane with the
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presence of a fraction of arginine and lysine (sequence-based descriptors) since these residues
provide a positive charge to a peptide that contributes to the intersection between the peptide and
the outer surface of the cell membrane, which is generally negatively charged due to the pres-
ence of phosphate groups in phospholipids. This interaction can facilitate the binding of pep-
tides to the membrane and promote their internalization (SU et al., 2009; COPOLOVICI et al.,
2014). These results also corroborate with the contribution of PseAAC that correlates a group
of residues with hydrophobicity and hydrophilicity of peptides, important properties in molec-
ular interaction between peptide and cell membrane. Furthermore, the results also highlight the
contribution of descriptors associated with bioavailability of oral drugs, when combined with
sequence-based descriptors, increase the capacity of prediction of CPPs by the DPF-CPPred, in-
dicating that these descriptors could be used as a molecular filter for discovery and development
of new potential CPPs.

Table 4 – Comparison of accuracy, sensitivity, specificity, F1-score, and MCC obtained for ANN, GPC, SVM,
Vcf-CPP, and DPF-CPPred in the independent test using FC-4 and PDB format.

Method Sensitivity Specificity Accuracy F1-score MCC AUC
ANN 0.880 0.906 0.893 0.891 0.786 0.950
GPC 0.853 0.893 0.873 0.870 0.747 0.934
SVM 0.853 0.893 0.873 0.870 0.747 0.943
Vcf-CPP 0.893 0.920 0.906 0.905 0.813 0.953
DPF-CPPred 0.920 0.920 0.920 0.920 0.840 0.920

Regarding the prediction of cell-penetrating peptides using FASTA format, the DPF-CPPred
achieved different performances compared to the model trained with peptides in PDB format.
Figure 32 summarizes the performance of the ML tools evaluated in this test. The best per-
formance was obtained by DPF-CPPred using FC-3, which reached an accuracy of 88.8% and
F1-score of 87.2%. While for FC-1 DPF-CPPred obtained 87.3% and 86%, for FC-2 85.8%
and 84%, and for FC-4 achieved 85.1% and 83.3% for accuracy and F1-score, respectively.
The Vcf-CPP obtained the best result using the FC-2 with 85.07% of accuracy and 86.2% of
F1-score, while the other feature compositions achieved inferior performance. These results in-
dicate that the proposed framework trained with only natural peptides did not achieve the best
performance for all FCs when compared with the other ML tools trained with the same data.
Furthermore, the results presented in table 5 also indicated that this version of DPF-CPPred also
did not outperform the version trained with chemically modified peptides.



4.1. PREDICTION OF CPPS 76

Figure 32 – Accuracy of ANN (red), GPC (blue), SVM (green), Vcf-CPP (orange), and DPF-CPPred (purple) by
FCs evaluated in the independent test for FASTA data format.

Source: Author’s own.

Table 5 – Comparison of the performance of DPF-CPPred frameworks that used only natural peptides in the
independent test. The comparison was performed between the frameworks based on the four feature

compositions (FC-1 to FC-4) that use FASTA as input with the framework based on the FC-4 that uses
the PDB as input.

Format FC Sensitivity Specificity Accuracy F1-score MCC
FASTA FC-1 0.881 0.867 0.873 0.860 0.745
FASTA FC-2 0.847 0.867 0.858 0.840 0.731
FASTA FC-3 0.864 0.907 0.888 0.872 0.773
FASTA FC-4 0.847 0.853 0.851 0.833 0.699
PDB FC-4 0.920 0.920 0.920 0.920 0.840

The proposed framework was also compared with some available state-of-the-art web
servers in CPPs prediction. This comparison was divided into two experiments according to
the nature of peptides using the same independent dataset described in Table 1. The choice of
the models was based on the FC that provides the best performance in terms of accuracy and
F1-score in the independent test showed previously for PDB and FASTA formats.

The first experiment corresponds to ML tools that process only peptides in FASTA for-
mat, i.e., they were trained with only natural peptides. This experiment compares the proposed
DPF-CPPred based on FC-3 with Vcf-CPP using descriptors from FC-2 and some other ML-
based tools previously mentioned in Section 1.3.1: the ML-based predictor of CPPs (MLCPP)
(MANAVALAN et al., 2018), the CPP predictor based on RF (CPPred-RF) (WEI; XING, et
al., 2017), and the adaptive k-skip feature CPP predictor (SkipCPP-Pred) (WEI; TANG; ZOU,
2017). The second experiment compares the proposed framework and the voting classifier, using
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FC-4, with the kernel extreme learning machine based CPP prediction model (Kelm-CPPpred)
(PANDEY et al., 2018). The models used in the second experiment were trained with natural
and non-natural peptides. Table 6 shows the results obtained in the first and second experiments.

The first experiment reveals that DPF-CPPred achieved the best performance in the pre-
diction of natural CPPs, outperforming the other state-of-the-art tools with 88.8% accuracy and
87.2% of F1-score, using a combination of molecular features provided by FC-3. The proposed
model also obtained the best specificity (90,7%), indicating its significative capacity to indicate
the non-CPPs correctly. The Vcf-CPP based on FC-2 also obtained superior results compared
to CPPred-RF and SkipCPP-Pred in the prediction of natural peptides that can cross the cell
membrane, achieving accuracy and F1-score of 85% and 86,2%, respectively.

Table 6 – Comparison of the performance of previous ML-based tools (MLCPP, CPPred-RF, and SkipCPP-Pred),
FC-2 based Vcf-CPP, and FC-3 based DPF-CPPred using only natural peptides from the independent

dataset (1𝑠𝑡 experiment); as well as, the evaluation of the performance of Kelm-CPPpred and FC-4
based DPF-CPPred and Vcf-CPP from all independent dataset (2𝑛𝑑 experiment).

Method Sensitivity Specificity Accuracy F1-score MCC
First Experiment
MLCPP 0.966 0.786 0.866 0.865 0.752
CPPred-RF 0.983 0.453 0.688 0.737 0.495
SkipCPP-Pred 0.966 0.520 0.625 0.753 0.525
Vcf-CPP (FC-2) 0.847 0.853 0.850 0.862 0.698
DPF-CPPred (FC-3) 0.864 0.907 0.888 0.872 0.773
Second Experiment
Kelm-CPPpred 0.906 0.866 0.886 0.888 0.773
Vcf-CPP (FC-4) 0.893 0.920 0.906 0.905 0.813
DPF-CPPred (FC-4) 0.920 0.920 0.920 0.920 0.840

Concerning the second experiment, the DPF-CPPred and the Vcf-CPP, both using FC-
4, also overcome the performance of Kelm-CPPpred in the prediction of chemically modified
CPPs. The proposed framework reached 92% of accuracy against 88.6% achieved by Kelm-
CPPpred. These results show that, for these two scenarios, the DPF-CPPred performed better
using a combination of all groups of molecular descriptors.

A general analysis of independent test results shows that the framework architecture
developed in this thesis involving DR with sLE and pattern learning performed better in the
penetration prediction of peptides across the cell membrane when compared with other ML
tools in almost all simulations. These results also corroborated with the hypothesis that the
combination of physicochemical, structure-, and sequence-based descriptors can increase the
prediction of the proposed framework, overcoming some state-of-the-art web servers dedicated
to predicting CPPs.
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4.2 Prediction of B3PPs

This section presents the performance analysis for the proposed framework DPF-3BPPred
(dimensionality reduction and pattern learning framework for 3BPP prediction) to predict the
penetration of peptides across the blood-brain barrier. The performance in this case study is
evaluated according to 10-fold cross-validation and in an independent test. The proposed tool is
also compared with Vcf-3BPP (voting classifier for 3BPP prediction) and its classifiers (ANN,
SVM, and GPC).

In this thesis, the file format of peptides used in this analysis is MDL, since this is the
original format provided by Brainpeps, whose structure can encode as much natural as chem-
ically modified peptides. The three datasets used in cross-validation analysis are balanced and
encompass 97 peptides that can cross the blood-brain barrier (BBB +) and 97 that can not (BBB
-). The descriptors used in this case study are divided into four feature compositions. The FC-1
is based on 2D molecular properties provided by the Mordred package. FC-2 comprises the five
best-correlated Mordred descriptors concerning peptides’ labels according to Kendall’s correla-
tion (see Appendix I). FC-3 encompasses the descriptors approached in Dichiara et al. (2020),
and FC-4 combines the descriptors from FC-2 and FC-3, as shown in Table 3 (see the Section
3.2.2). The division of these FCs is based on the concept of using a range of physicochemical
and structural molecular properties not investigated to correlation with BBB permeability yet,
where FC-1 comprises all these descriptors and FC-2 represents an optimized selection of these
features. The descriptors with proven association with blood-brain barrier penetration (FC-3)
are compared with the other unusual properties. FC-4 is used to evaluate the performance of the
models when trained with the combination of molecular descriptors.

4.2.1 Cross-validation analysis in B3PPs prediction

This section approaches the predictive capacity of DPF-3BPPred according to 10-fold
cross-validation. This metric was applied to the training portion of the three dataset samples and
the four FCs. Seventy-two simulations were performed for different values of the sLE gamma
parameter: 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5. The best models were selected based on the highest
accuracy values in the cross-validation for a fixed gamma, which was determined by filtering
among all simulations.
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Figure 33 – Barplot of accuracy achieved by DPF-3BPPred in 10-fold cross-validation analysis for all FCs and
datasets.

Source: Author’s own.

The results presented in Figure 33 demonstrate the contribution of each group of de-
scriptors in predicting B3PPs using the proposed ML-based framework. DPF-3BPPred achieved
values greater than 93% of average accuracy for all FCs. The FC-1 model exhibited the worst
performance, with average accuracy values between 93.6% and 96%, whereas FC-2, which
comprised the largest number of features, achieved an accuracy of 99.4% for the three datasets.
The FC-3 model obtained values between 97.68% and 98.86%, whereas the one based on FC-
4 merged both FC-1 and FC-3 descriptors, obtaining accuracy values ranging from 98.8% to
100%.

In order to evaluate the difference in predictive performance of DPF-3BPPred using
molecular properties related to bioavailability (FC-2) and the fusion with selected descriptors
from Mordred (FC-4), an ANOVA test was applied to the accuracy values obtained for each fold
of the 10-fold cross-validation performed on the three datasets. The ANOVA test showed no
statistically significant difference between the three datasets, yielding p-values of 0.526, 0.331,
and 0.541 for datasets 1, 2, and 3, respectively. However, from a computational perspective, a
significant difference exists between the models, as DPF-3BPPred trained with FC-2 requires
the calculation of 749 descriptors, whereas the framework based on FC-4 requires only 19.

The cross-validation analysis was also applied to compare the performance of the best
DPF-3BPPred model with the ANN, SVM, and GPC algorithms, in addition to the voting clas-
sifier composed of these last three models (Vcf-3BPP). Figure 34 shows the performance of
the best models by FC and the results reveal that the performance of the proposed framework
surpassed the other techniques for all FCs.
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Figure 34 – Barplot of accuracy achieved by the best model of each method in 10-fold cross-validation analysis
among all FCs and datasets.

Source: Author’s own.

The results of Figure 34 reveal that for FC-1, the ANN, SVM, GPC, and Vcf-3BPP
models achieved average accuracy values of 55.7%, 48.8%, 57%, and 58.7%, respectively. For
the FC-2 descriptors, the same models obtained average accuracy values of 60.33%, 48.24%,
56.33%, and 51.11%, respectively. The results for the selected Mordred descriptors (FC-3) show
that the ANN, SVM, GPC, and Vcf-3BPP models obtained average values accuracy of 59.12%,
54.38%, 50.26%, and 61.01%, respectively. Comparatively, the same models based on FC-4
descriptors achieved average accuracy values of 62.94%, 48.2%, 58.2%, and 60.16%. The used
hyper-parameters of all the algorithms by FC are shown in Appendix J.

The cross-validation analysis highlights some characteristics of the B3PPs prediction
with the proposed framework. From a computational perspective, DPF-3BPPred surpassed the
performance of the other evaluated models for all groups of molecular descriptors, which can
be explained by the capacity of the sLE to reduce and cluster the peptides in their respective
class (BBB+ or BBB-). Another important aspect revealed by this analysis is the contribution
of each FC. Based on the results shown in Figure 33, the physicochemical and structural de-
scriptors extracted using Mordred package (FC-2) provided more information in predict B3PPs
when compared with the descriptors approached in Dichiara’s work and that are associated with
bioavailability of the molecules and with the BBB penetration (FC-1).
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4.2.2 Independent test analysis in B3PPs prediction

This session covers the independent test performed by DPF-3BPPred and other ML
models in predicting B3PPs. Also presented in this section is a performance comparison of the
proposed framework with other tools developed and made available on web servers. The results
presented here originated from the best model by FC according to the average accuracy obtained
in cross-validation analysis.

Table 7 shows the outcomes obtained in independent tests for all algorithms evaluated.
Regarding the DPF-3BPPred, the accuracy outcomes obtained for each feature composition
indicate that the feature distribution between the training and test data in the three datasets,
which were constructed using random sampling, may have differed. This is particularly evident
when the performances of FC-2 and FC-4 are compared with the performance of FC-3. The ten
descriptors selected from Mordred demonstrated superior predictive performance, achieving
values ranging from 80% to 90% in predicting which peptides can penetrate the BBB. The
FC-4 model achieved an accuracy of 85% for one of the datasets.

Regarding other metrics, the best DPF-3BPPred based on FC-3 also yielded high F1-
score and Matthew’s correlation coefficient (MCC) values, along with the maximum recall value
for one of the three datasets. The area under the receiver operating characteristic curve (AUC)
values between 0.74 and 0.84 also indicate that the proposed framework can distinguish be-
tween the two classes of peptides (BBB+ and BBB-) with better performance than the other
analyzed ML tools, which obtained values between 0.45 and 0.81. These results suggest that
the DPF-3BPPred can accurately predict which peptides can penetrate the BBB among all rel-
evant instances using as much of the selected molecular descriptors grouped in FC-3 as the
properties included in FC-4, which maintained similar performance. Appendix K provides the
metric values obtained by DPF-3BPPred and their respective gamma values using the three
datasets in the 10-fold cross-validation and independent tests, respectively.
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Table 7 – Independent test analysis for the best DPF-3BPPred, ANN, SVM, GPC, and Vcf-3BPP models by each
FC.

FC-1 Method Accuracy F1-score MCC Precision Recall AUC
DPF-3BPPred 0.75 0.70 0.52 0.85 0.75 0.74
Vcf-3BPP 0.60 0.60 0.20 0.60 0.60 0.65
ANN 0.55 0.52 0.10 0.55 0.55 0.55
SVM 0.65 0.58 0.31 0.71 0.65 0.45
GPC 0.50 0.16 0 0.50 0.10 0.50

FC-2
DPF-3BPPred 0.80 0.81 0.61 0.75 0.80 0.75
Vcf-3BPP 0.55 0.57 0.10 0.54 0.60 0.47
ANN 0.65 0.58 0.31 0.71 0.65 0.69
SVM 0.55 0.52 0.10 0.55 0.55 0.50
GPC 0.55 0.57 0.10 0.54 0.60 0.47

FC-3
DPF-3BPPred 0.90 0.90 0.81 0.83 0.90 0.75
Vcf-3BPP 0.70 0.62 0.43 0.83 0.50 0.74
ANN 0.80 0.80 0.60 0.80 0.80 0.77
SVM 0.70 0.66 0.40 0.75 0.70 0.75
GPC 0.70 0.62 0.43 0.83 0.50 0.75

FC-4
DPF-3BPPred 0.85 0.84 0.70 0.88 0.85 0.84
Vcf-3BPP 0.70 0.66 0.40 0.75 0.60 0.81
ANN 0.65 0.69 0.31 0.61 0.65 0.77
SVM 0.65 0.58 0.31 0.71 0.65 0.55
GPC 0.50 0.16 0 0.50 0.10 0.50

The results of the independent test presented in Table 7 also demonstrate that, among
the analyzed ML classifiers, the Vcf-3BPP achieved its best performance using the descriptors
from FC-4, obtaining an accuracy, F1-score, and AUC of 70%, 66%, and 0.81, respectively.
The ANN model achieved its highest accuracy for FC-3 (80%); however, it did not surpass the
performance of the proposed ML-based framework for the same FC (90%). SVM also obtained
its best results with the descriptors from FC-3, achieving an accuracy, F1-score, and AUC of
70%, 66%, and 0.75, respectively. Comparatively, GPC also reached its highest performance
using FC-3, with values of 70%, 62%, and 0.75 for the same metrics. These results indicated
that, among the analyzed ML classifiers, the ANN outperformed the Vcf-3BPP, but did not
surpass the results of DPF-3BPPred.

The findings from the two analyses demonstrate the efficacy of the proposed ML-based
framework in accurately predicting B3PPs, with cross-validation accuracy values exceeding
90% and values between 75% and 90% for the external validation set. Furthermore, this study
highlights the contribution of the descriptors evaluated in terms of their association with BBB
permeability and their comparison with descriptors associated with the charge distribution of
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the molecules. However, the independent test step involved a limited number of samples, with
each erroneous prediction causing a 5% reduction in the accuracy of each model.

4.2.3 Leave-one-out cross-validation analysis

This study also employed leave-one-out cross-validation (LOOCV) as a complementary
analysis to evaluate the proposed framework to determine the optimal DPF-3BPPred configu-
ration. This analysis uses the three complete datasets (consisting of the training and testing
subsets) for each FC. Figure 35 presents the average accuracy obtained by the framework for
each dataset and FC.

Figure 35 – LOOCV analysis employed in DPF-3BPPred.

Source: Author’s own.

The results demonstrated that FC-2 enabled the DPF-3BPPred to attain a mean accu-
racy with a peak value in all datasets, whereas FC-4 displayed comparable efficacy only for
Dataset 2. Datasets 1 and 3 achieved accuracy scores of 99% and 98%, respectively. Comparing
the results of LOOCV with those obtained in the 10-fold cross-validation shows that the fea-
ture compositions that provided more information for predicting B3PPs were FC-2 and FC-4,
highlighting the importance of the molecular descriptors of both FCs in differentiating the two
classes of peptides. The accuracy values obtained by DPF-3BPPred using the three datasets in
LOOCV analysis are shown in Appendix L.

The outcomes from the LOOCV of the datasets belonging to FC-2 and FC-4 were ana-
lyzed through a pairwise comparison using an ANOVA test. The results indicate no statistically
significant difference between the means of Datasets 1 and 3, with p-values of 0.318 and 0.157,
respectively. Upon comparing the performance of the most effective models in LOOCV with
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that achieved in an independent test, FC-3 and FC-4 descriptors ranked among the highest in
their ability to predict B3PPs. Specifically, DPF-3BPPred, based on FC-3, exhibited only a sin-
gle misclassification in LOOCV and two misclassifications in the independent test. In contrast,
the model based on FC-4 achieved satisfactory classification in LOOCV but failed to classify the
three molecules correctly in the external validation. Although FC-2 obtained the third-highest
accuracy value in the independent test, it outperformed FC-3 by achieving the maximum clas-
sification value in the LOOCV experiment.

According to the three performance analyses employed in the proposed framework, FC-
4 predicted B3PPs with the highest accuracy. This descriptor group employed a less complex
model consisting of 19 descriptors in contrast to FC-2, which also displayed high accuracy
values. The success of FC-4 can be attributed to the efficacy sLE algorithm in reducing the
dimensionality of the molecular descriptors. Figure 36 shows the projection of the molecular
descriptors belonging to this feature composition in a 3D space after dimensionality reduction
was performed during the pattern learning phase of the proposed framework.

The dimensionality reduction using sLE revealed that Dataset 1 exhibits an overlap
between two peptides belonging to different classes (see the blue arrow in Figure 36a), whereas
Dataset 3 displayed an overlap between at least three peptides from distinct classes (see the blue
arrow in Figure 36c). This pattern is consistent with the results shown in Figure 35. Additionally,
the 3D projections of FC-4 reveal the potential for differentiation of BBB+ and BBB- peptides,
besides clustering both classes, through the integration of molecular descriptors investigated in
FC-1 and those selected from Mordred.

Figure 36 – Dimensionality reduction result of BrainPepPass in pattern learning stage for FC-4. (a) Dataset 1.
(b) Dataset 2. (c) Dataset 3.

Source: Author’s own.
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4.2.4 Performance comparison with web servers in B3PPs prediction

The performance of the DPF-3BPPred is also compared with previously developed tech-
niques for predicting B3PPs. While some ML-based tools, such as BBPpred, B3Pred, BBPpre-
dict, and SCMB3PP have been developed to predict the BBB permeability of peptides using ML
and other computational algorithms trained with properties extracted from the primary structure
of natural peptides encoded in FASTA format, the proposed ML-based framework employs a
distinct approach by incorporating the 3D structure of these molecules encoded in MOL for-
mat. Additionally, most peptides used for training and testing DPF-3BPPred contain chemical
modifications, further distinguishing this tool from those focusing on natural peptides.

A comparative analysis was conducted between DPF-3BPPred and the BBBPpred, BBBP-
predict, and SCMB3PP algorithms, which are available for public and free use. To assess the
performance of the proposed model against other tools in an independent test, the version based
on FC-4 and trained with Dataset 2, which achieved the best performance in LOOCV analy-
ses, was selected for this test. Seventeen natural BBB+ peptides extracted from Brainpeps were
selected to compare the performance of the models since none of these molecules were uti-
lized in any of the previously described training or independent testing steps for the selected
DPF-3BPPred version. This dataset was balanced with 17 natural BBB- peptides randomly ex-
tracted from the test dataset of the SCMB3PP tool, resulting in 34 structures for this analysis.
We also developed a DPF-3BPPred model with FC-4, named DPF-3BPPred-N, which was ex-
clusively trained using natural peptides collected from the same dataset that was used to train
the SCMB3PP model. Table 8 presents the values all algorithms achieved based on the key
metrics. Appendix M lists the peptide sequences used in this analysis.

Table 8 – Analysis of independent test comparing DPF-3BPPred and DPF-3BPPred-N with BBPpred,
BBPpredict, and SCMB3PP algorithms using natural peptides.

Algorithm Accuracy F1-score MCC Precision Recall
DPF-3BPPred 0.52 0.55 0.06 0.55 0.55

DPF-3BPPred-N 0.97 1.0 0.94 1.0 1.0
BBPpredict 0.64 0.71 0.33 0.60 0.88
BBPpredict 0.55 0.66 0.15 0.53 0.88
SCMB3PP 0.91 0.90 0.82 0.93 0.88

According to the results presented in Table 8, DPF-3BPPred-N achieved the best out-
comes, attaining an accuracy of approximately 97%, along with values exceeding 94% for
the other metrics. This indicates that the proposed method, trained only on natural peptides
and utilizing molecular descriptors from FC-4, can predict the permeability of natural peptides
across the BBB more accurately than the other tools. It is also important to highlight that the
DPF-3BPPred model that was not exclusively trained on natural peptides failed to outperform
the other tools. This could be attributed to the underfitting of this model concerning natural
peptide data, considering that it was predominantly trained on structures featuring chemical
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modifications.

Therefore, based on the results presented in this analysis, the proposed framework ex-
hibits exceptional performance in predicting peptide penetration across the BBB, surpassing
existing ML classifiers in this area of research. DPF-3BPPred achieved average accuracy values
exceeding 93% in the 10-fold cross-validation and between 75% and 90% in the independent
test (see the Table on Appendix K). For the FC-4 model, which exhibited a positive relationship
between efficiency and complexity, average accuracy values of 99.21% and 75% were achieved
in cross-validation and independent testing, respectively, across all three datasets (see the Table
on Appendix K). Based on the molecular descriptors examined, these outcomes demonstrate
that the proposed tool has predictive capabilities in determining whether natural or chemically
modified peptides can penetrate the BBB.

4.3 Conclusion

This chapter presented the results obtained by the proposed ML framework developed
to predict the permeability of peptides across the cell membrane and blood-brain barrier ac-
cording to cross-validation and an independent test for both biomembranes. The chapter also
explored how the groups of molecular descriptors contribute to the prediction of peptides. The
next chapter concludes the thesis by approaching the main points revealed by the results, besides
proposing future tasks.
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5 CONCLUSIONS AND FUTURE WORKS

5.1 Final remarks

The present thesis proposed a machine learning framework based on dimensionality
reduction and dimensional pattern learning to predict the permeability of peptides across the
cell membrane and blood-brain barrier and visualize the 3D distribution of the molecules ac-
cording to each class. The importance behind the prediction of penetration of peptides across
biomembranes, as well as the theory behind each topic of the proposed method was approached
in Chapter 1 and Chapter 2, respectively.

Chapter 3 addresses the proposed method in this thesis and its main contributions,
detailing how the peptide samples were obtained, processed, and divided between the appro-
priate FCs for both case studies. Regarding the problem of B3PPs classification, this chapter
approaches the proposal pre-classification of peptides from the Brainpeps database in terms of
BBB permeability based on experimentally validated markers. The methodology also scruti-
nizes the contributions regarding developing a framework architecture based on machine learn-
ing for predicting CPPs and B3PPs. Different from other state-of-the-art tools, the proposed
framework uses supervised manifold dimensionality reduction as one of its steps performed
by sLE algorithm, which contributes to visualizing the distribution of peptide samples in 3D
with a significant degree of separation and clustering by class, as well as to classifying these
molecules. Finally, the chapter also covers the other proposal within this framework, which is
the pattern learning of reduction data using XGBoost algorithm.

The results presented in Chapter 4 of this thesis reveal some interesting points about the
analyses carried out on the prediction of penetration of the peptides in the two biomembranes.
Regarding permeability across the cell membrane, it was shown that DPF-CPPred achieved in-
teresting results for as much in 10-fold cross-validation as in the independent test, where the
framework proved to be superior to Vcf-CPP and ANN, GPC, and SVM for both data struc-
tures. Comparatively, the cross-validation analysis indicated that the DPF-CPPred reached aver-
age accuracies 11% and 13.1% greater than the Vcf-CPP, which was the second-best classifier,
for PDB and FASTA, respectively. Furthermore, the proposed tool also achieved an accuracy of
1.4% greater than the Vcf-CPP in the independent test. The proposed framework also outper-
formed state-of-the-art tools such as MLCPP, CPPred-RF, SkipCPP-Pred, and Kelm-CPPred,
obtaining accuracies of 2.2% and 3.4% greater than the best web server in the experiments
involving FASTA and PDB format, respectively. These results show that this thesis’s main con-
tribution was developed and achieved satisfactory results in predicting cell-penetrating peptides
with the best performance with 92% accuracy in an independent test. It is also essential to
highlight the findings regarding the composition of features, where the comparison between
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descriptors based on amino acid sequence (AAC, DPC, and PseAAC) and the structural and
physicochemical properties, which related to the oral bioavailability of molecules, revealed that
the use of joint and optimized of these two groups promote a superior performance when com-
pared to isolated use. This finding is important because it highlights these descriptors’ contri-
bution to the cell membrane’s pharmacokinetic properties, facilitating the development of new
drugs and biotechnological applications.

Regarding the data structures used in the cell membrane problem (FASTA and PDB),
this thesis also brought significant contributions to the use of these file formats. First, the pro-
posed framework can receive the features extracted from both formats, which differs from previ-
ous published ML tools. Furthermore, the results of this thesis also revealed how much the com-
plexity of information coding can contribute to more accurate analysis since the DPF-CPPred
trained and tested with peptides in PDB format achieved results numerically superior to the
model trained and tested with FASTA. However, there is a counterpoint to conclude if FASTA-
based DPF-CPPred is better than PDB-based one. On its side, the PDB format can encode pep-
tide structures with chemical modifications and non-natural amino acids. On the other hand, the
FASTA file encodes primary peptide structures, encompassing only natural molecules without
chemical modifications. Although in Chapter 4 we see that the FASTA-based model performs
computationally smaller than the PDB-based model, in practical terms, the primary structure of
the peptides is simpler to obtain than the tertiary one, on the other hand, the PDB is more useful
in applications where modifications in the structure of the molecule are necessary. It is also im-
portant to highlight that during the development of this work, an open access web server1 was
developed with Vcf-CPP, which the scientific community has used to predict CPPs using both
data structures

Similar to the case of the cell membrane, the results for predicting peptide penetration in
the blood-brain barrier also reveal essential points. First, one of the highlights contributions of
this thesis is the classification of Brainpeps peptides as permeable or not across the BBB based
on the values of experimental parameters. This contribution was essential for constructing a re-
liable and experimentally validated dataset to train and evaluate the framework for this predic-
tion, differentiating from previous works that focused on using peptides without experimental
validation. Second, the results also show the good performance achieved by the DPF-3BPPred,
outperforming the predictive capacity of Vcf-3BPP and its classifiers when analyzed with 10-
fold cross-validation, where the framework reached average values ranging from 93% to 100%,
which are 30% greater than the result reached by the second-best classifier (ANN). In the inde-
pendent test, DPF-3BPPred obtained accuracy between 75% and 90%, which was 10% superior
to the value obtained by the ANN in the best scenario.

Still, concerning these results, it was evident that the FC based on the ten best molecular
properties from Mordred’s descriptors along with the descriptors evaluated by Dichiara and her

1The access to the web server is available in http://comptools.linc.ufpa.br/BChemRF-CPPred/
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collaborators (FC-4) provided higher performance for the framework than these groups of prop-
erties evaluated isolated (FC-1, FC-2, and FC-3). This finding is compelling and, at the same
time, controversial because Mordred’s descriptors, specifically JGI5, JGI6, JGI7, JGI9, EState-
VSA5, GATS3d, nAcid, RotRatio, and GhoseFilter, have never been experimentally evaluated
to have a high correlation with the ability of a molecule to penetrate the BBB. In contrast,
Diachara’s descriptors have this correlation evaluated for several classes of molecules.

Despite the encouraging results achieved so far for the BBB case study showing signi-
ficative performance for the proposed tool, there are still difficulties that prevent a more accurate
analysis of the performance of the DPF-3BPPred, mainly due to the input format of peptides.
Most ML-based tools to predict B3PPs use the FASTA format, while the original proposed
framework was trained with natural and chemically modified peptides using in MDL format.
Evaluating only the prediction of natural peptides across the BBB, a version of the proposed
framework trained with only natural peptides (DPF-3BPPred-N) demonstrated to overcome the
performance of other published tools, achieving 97% of accuracy in predicting natural B3PPs.

In a general analysis of this work, it can be concluded that the main objectives of this
thesis were achieved with good results, considering that the framework architecture planned and
developed to predict CPPs not only performed well in predicting these molecules but is also ca-
pable of processing peptides of both PDB and FASTA formats. The results also demonstrated
that the framework performed better than baseline ML models for B3PPs prediction, besides
indicating new possibilities for molecular filters to predict penetration into this barrier. There-
fore, the proposed framework can be used to help scientists in the process of virtual screening
of peptides for their permeability in the cell membrane and the blood-brain barrier.

5.2 Future works

Some relevant points can still be addressed regarding the contributions this work can
bring to the state of the art. These points are listed below.

The first point would be to obtain more samples of peptides with permeability exper-
imentally validated for BBB and retrain the DPF-3BPPred. It could improve the framework
performance based on data encompassing a wide variety of validated peptides with distinct
characteristics.

Another point that could be interesting to investigate would be the performance eval-
uation of the DPF-CPPred for predicting the permeability of the remaining CPPs samples in
an independent test. This evaluation can provide additional information regarding the capacity
of the proposed framework to correctly predictCPPs, which could have different characteristics
from the training dataset.

Develop a pipeline to sample the most balanced training and testing datasets for CPPs
and B3PPs concerning the distribution of descriptors to prevent distribution shift using Tani-
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moto similarity or Jaccard or Sørensen–Dice coefficients is another contribution to this research
field. This process could split the peptide data between these two datasets with more balance,
besides preventing overfitting of the ML models.

Evaluate the performance of DPF-CPPred and DPF-3BPPred by investigating under-
performing subpopulations in their training datasets is another aspect that can contribute to the
improvement of the frameworks. This investigation can identify the subgroup of peptide sam-
ples with molecular descriptors that contribute most significantly to accurately distinguishing
between the two permeability classes.

Another point that can be investigated for predicting CPPs and B3PPs using the pro-
posed frameworks is the extraction of Macromolecular Reactivity Descriptors provided by
PRIMoRDiA package. These descriptors are useful for understanding molecular interaction
mechanisms and designing new drugs.

Create a pipeline to generate synthetic peptides to evaluate their permeability across
the BBB using a generative neural network is a relevant contribution to constructing a robust
database that can refine the training of predictive ML models, besides providing synthetic sam-
ples that can be experimentally investigated.

Compare the performance of the DPF-CPPred and DPF-3BPPred with other ML mod-
els such as Logistic Regression, Deep Learning, Random Forest, Radial Basis Function Neural
Networks, and compare the performance of the frameworks substituting the sLE algorithm for
another supervised dimensionality reduction technique are two points of investigation that can
highlight the effectiveness of the proposed frameworks for predicting CPPs and B3PPs in com-
parison with other state-of-the-art predictive models.

Develop a generalist framework capable of predicting, at the same time, if a given pep-
tide is capable of crossing the cell membrane and the BBB is a contribution to this research field,
which can optimize research regarding the pharmacokinetics of these two classes of peptides.

Develop a pipeline to predict CPPs and B3PPs using Graph Neural Networks can con-
tribute to this research field since this kind of technique can incorporate information regarding
the distribution of the atoms in a graph and associate these distribution patterns with the perme-
ability of the peptides.

Select some predicted CPPs by DPF-CPPred and investigating the penetration mecha-
nism using molecular dynamics is another contribution to this research field and can provide
information regarding the penetration mechanism of these peptides into this biomembrane.
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A APPENDIX A

A.1 Training dataset of CPPs and non-CPPs

Sequences of CPPs and non-CPPs used in the training dataset with their origin (CPP-
Site 2, C2Pred, or DB1*) and their modelling origin: experimental (EXPR) or computational
(COMP).

Sequence (CPP) Reference Origin Model Sequence (non-CPP) Reference Origin Model
KETWWETWWTEWSQPKKRKV pep-1 DB1 COMP TERQIKIWFQNRRMK pAntp41-55 DB1 COMP
TRSSRAGLQFPVGRVHRLLRK Buforin DB1 COMP AHALCLTERQIKSNRRMKWKKEN pAntpHD 48S DB1 COMP
TAKTRYKARRAELIAERR Phi21 N (12-29) DB1 COMP FITKALGISYGRKKRRQC ptat7 DB1 COMP
KFHTFPQTAIGVGAP hCT18-32 DB1 COMP ILRRRIRKQAHAHSK pVEC(4-18) DB1 COMP
TRQARRNRRRWRERQR HIV-1 rev DB1 COMP AGCKNFFWKTFTSC Somatostatin 14 DB1 COMP
ALWKTLLKKVLKA K4-S4(1-13)a DB1 COMP GWTLNSAGYLLGPHAI Galanin (1-16) DB1 COMP
LLIILRRRIRKQAHAHSK pVEC DB1 COMP DFDMLRCMLGRVYRPCWQV HCM DB1 COMP
KLALKALKALKAALKLA MAP DB1 COMP WSYGLRPG [1] DB1 COMP
AAVALLPAVLLALLAKNNLKECGLY [1] DB1 COMP KKKQYTSIHHGVVEVD [1] DB1 COMP
KMTRAQRRAAARRNRWTAR [1] DB1 COMP GWTNLSAGYLLGPPPGFSPFR [1] DB1 COMP
LLIILRRPIRKQAHAHSK [1] DB1 COMP PVVHLTLRQAGDDFSR [1] DB1 COMP
LLIILRRRIRKQAHAHSA [1] DB1 COMP EILLPNNYNAYESYKYPGMFIALSK [1] DB1 COMP
SWLGRQLRIAGKRLEGRSK [1] DB1 COMP QNLGNQWAVGHLM [1] DB1 COMP
GAARVTSWLGRQLRIAGKRLEGRSK [1] DB1 COMP VPLPAGGGTVLNQDVPARQPLGG [3] C2Pred COMP
AAVALLPAVLLALLAPVQRKQKLMP [1] DB1 COMP AATAATPATAATPATAARA [3] C2Pred COMP
RQGAARVTSWLGRQLRIAGKRLEGR [1] DB1 COMP IIGAIAAALPHVINAIKNTFG [3] C2Pred COMP
GYGNCRXFKQKPRRD [2] CPPsite 2 COMP (CPPSite ID: 1266) PSCVCSGFETSGIHFC [3] C2Pred COMP
IGCRX [2] CPPsite 2 COMP (CPPSite ID: 1642) SCIKHGDFCDGDNDDCQCCRDNGF [3] C2Pred COMP
YGRKKRRQRRRGTALDWSWLQTE [3] C2Pred COMP YQLLQELCCQHL [3] C2Pred COMP
GRKGKHKRKKLP [3] C2Pred COMP IVQQCTSGICSLYQENYCN [3] C2Pred COMP
KFLNRFWHWLQLKPGQPMY [3] C2Pred COMP GIACGESCVFLGCFIPGCSCKSKVCYFN [3] C2Pred COMP
RRRRRRRRRGPGVTWTPQAWFQWV [3] C2Pred COMP HGVSGHGQHGVHG [3] C2Pred COMP
AEKVDPVKLNLTLSAAAEALTGLGDK [3] C2Pred COMP PVKVYPNGVQEETSEGFPLEF [3] C2Pred COMP
WIIFKIAASXKK [2] CPPsite 2 COMP (CPPSite ID: 1622) NPRWEFRGKFVGVR [3] C2Pred COMP
CXXRRRRXXC [2] CPPsite 2 COMP (CPPSite ID: 2125) LYISRQGFRPA [3] C2Pred COMP
GLKKLARLFHKLLKLGC [3] C2Pred COMP GSSGMIPFPRV [3] C2Pred COMP
VVLGKLYGRKKRRQRRR [2] CPPsite 2 COMP GWKSVFRKAKKVGKTVGGLALDHYLG [3] C2Pred COMP
TSPLNIHNGQKL [3] C2Pred COMP LGQGSFRPSQQN [3] C2Pred COMP
PSKRLLXNNLRR [2] CPPsite 2 COMP (CPPSite ID: 1655) WLSKTAKKLENSAKKRISEGIAIAIKGGSR [3] C2Pred COMP
NYTTYKSHFQDR [3] C2Pred COMP GVLSNVIGYLKKLGTGALNAVLKQ [3] C2Pred COMP
RKKRRQR Tat (49-55) CPPsite 2 COMP (CPPSite ID: 1008) SFHVFPPWMCKSLKKC [3] C2Pred COMP
LIIFAIAASXKK [2] CPPsite 2 COMP (CPPSite ID: 1631) GLLSKVLGVGKKVLCGVSGLC [3] C2Pred COMP
CGGKDCERRFSRSDQLKRXQRRXTGVKPFQ b-WT1-pTj CPPsite 2 COMP (CPPSite ID: 2303) CCSQDCLVCIPCCPN [3] C2Pred COMP
MIIYRIAASHKK [3] C2Pred COMP QATVGDVNTDRPGLLDLK [3] C2Pred COMP
RRQRRTSKLMKR [3] C2Pred COMP CGETCVTGTCYTPGCACDWPVCKRD [3] C2Pred COMP
LILIGRRRRRRRRGC LILIR8 (Alexa) CPPsite 2 COMP (CPPSite ID: 2691) LKLKDILGKIKVILSHLNK [3] C2Pred COMP
CRQIKIWFPNRRMKWKKC Reduced linear penetratin CPPsite 2 COMP (CPPSite ID: 1131) AFDHYGFTGGL [3] C2Pred COMP
CRWRWKSSKK Crot (27-39) derevative CPPsite 2 COMP (CPPSite ID: 1167) CKSKGAKCSKLMYDCCSGSCSGTVGRC [3] C2Pred COMP
SWAQHLSLPPVL [3] C2Pred COMP SENPSNSRNFIRL [3] C2Pred COMP
GRQLRIAGRRLRRRSR [3] C2Pred COMP KPNPERFYAPM [3] C2Pred COMP
LGTYTQDFNKFXTFPQTAIGVGAP EGFP-hcT(9-32) CPPsite 2 COMP (CPPSite ID: 2226) GSLTGLISMPRT [3] C2Pred COMP
QWQRNMRKVR M6 CPPsite 2 COMP (CPPSite ID: 1413) PDERRQLNKIFLWDFCNSDSI [3] C2Pred COMP
APWXLSSQYSRT CTP CPPsite 2 COMP (CPPSite ID: 2588) CCKVQCESCTPCC [3] C2Pred COMP
GLLEALAELLEGLRKRLRKFRNKIKEK [3] C2Pred COMP DLWNSIKDMAAAAGRAALNAVTGMVNQ [3] C2Pred COMP
AAVALLPAVLLALLAK MPS CPPsite 2 COMP (CPPSite ID: 1791) MPPSGLRLLPLLLPLPWLLVLTP [3] C2Pred COMP
NYQWRCKNQN ECP(32-41)R3Q CPPsite 2 COMP (CPPSite ID: 2024) FLSFLLGPLIDLISKG [3] C2Pred COMP
KFXTFPQTAIGVGAP hCT(18-32) CPPsite 2 COMP (CPPSite ID: 1461) LKKISQYYQKFAWPQYL [3] C2Pred COMP
XRLRXALAXLLXKLKXLLXALAXRLRX [2] CPPsite 2 COMP ISCQDVKQSLAPCLPYVTGRAPKPA [3] C2Pred COMP
KCRKKKRRQRRRKKPVVHLTLRQAGDDFSR [3] C2Pred COMP RGCREGGEFCGTLYEERCCSGWCFFVCV [3] C2Pred COMP
AGYLLGXINLXXLAXLXXILC TH peptide CPPsite 2 COMP (CPPSite ID: 2122) GSSGLIPFGRT [3] C2Pred COMP
KRIPNKKPGKKTTTKPTKKPTIKTTKK [2] CPPsite 2 COMP EEKMGFAKKCCAIGCSTEDFRMVC [3] C2Pred COMP
ANIIXPLLXPIC [2] CPPsite 2 COMP RKYVMGHFRWDRFGRRNSSSSGSSGAGQKR [3] C2Pred COMP
LNSAGYLLGKLKALAALAK [2] CPPsite 2 COMP SPANAQITRKRHKINSFVGLM [3] C2Pred COMP
EEEAAKKK [2] CPPsite 2 COMP AKWKEDVIKLCSRELVRTQIAICG [3] C2Pred COMP
RIKAERKRMRNRIAASKSRKRKLERIARGC [3] C2Pred COMP QYPLGQGSFRPS [3] C2Pred COMP
VLGQSGYLMPMR [3] C2Pred COMP FLPFLAKILTGVL [3] C2Pred COMP
RRKLSQQKEKK [3] C2Pred COMP KPSPDRFYGLM [3] C2Pred COMP
GSRVQIRCRFRNSTR [3] C2Pred COMP SFPFFPPGICKRLKRC [3] C2Pred COMP
YWLKLLKKWLKLWKKLLKLW [2] CPPsite 2 COMP YGGFLRRQFKVVTRSQEDPNAYSGELFDA [3] C2Pred COMP
KLPCRSNTFLNIFRRKKPG [3] C2Pred COMP GIGKFLKKAKKGIGAVLKVLTTGL [3] C2Pred COMP
CGRKKRRQRRAARPPQ [2] CPPsite 2 COMP HSEGTFSNDYSKYLETRRAQDFVQWLKNS [3] C2Pred COMP
ACRGRGRGCGRGRGRCG [2] CPPsite 2 COMP AAEFPDFYDSEEQMGPHQEA [3] C2Pred COMP
RLWMRWYSPTTRRAG [2] CPPsite 2 COMP FVSRHLCGSNLVETLYSVCQDDGFFYIPKD [3] C2Pred COMP
GKKKRKLSNRESAKRSR [3] C2Pred COMP FLPMLAKLLSGFLGK [3] C2Pred COMP
AAVALLPAVLLALLAPSGASGLDKRDYV [3] C2Pred COMP GKCGEINGSCDECYGGSVTCDCY [3] C2Pred COMP
GWTLNSAGYLLGKINLKAPAALAKKIL [2] CPPsite 2 COMP HLPPPVHLPPPV [3] C2Pred COMP
ACGRGRGRCRGRGRGCG [2] CPPsite 2 COMP GLVSSIGRALGGLLADVVKSKGQPA [3] C2Pred COMP
LIIFRIAASXKK [2] CPPsite 2 COMP QPFPQPQQPFPQSQ [3] C2Pred COMP
NYTTYKSXFQDR [2] CPPsite 2 COMP CCPGWELCCEWDDGW [3] C2Pred COMP
RKKRRQRAR [2] CPPsite 2 COMP NCPYCVVYCCPPAYCEASGCRPP [3] C2Pred COMP
LNSAGYLLGKALAALAKKIL [2] CPPsite 2 COMP DYDPRTEAPRRLPADDDEVDGEDRV [3] C2Pred COMP
PPKKSAQCLRYKKPE [3] C2Pred COMP FLPKMSTKLRVPYRRGTKDYH [3] C2Pred COMP
MIIYRDKKSX [2] CPPsite 2 COMP FLPLLAGVVANFLPQIICKIARKC [3] C2Pred COMP
FFLIPKGRRRRRRRRGC [3] C2Pred COMP GLPVCGETCFGGRCNTPGCTCSYPICTRN [3] C2Pred COMP
KXKLLXLLXLLALLWLXLLXLLKXK [2] CPPsite 2 COMP FFGHLFKLATKIIPSLFQ [3] C2Pred COMP
VKRFKKFFRKLKKLV [2] CPPsite 2 COMP GFFGKMKEYFKKFGASFKRRFANLKKRL [3] C2Pred COMP
RRRRRRRRRGD [2] CPPsite 2 COMP TCTLGTCYTAGCSCSWPVCTRNGVPICGE [3] C2Pred COMP
KALKLKLALALLAKLKLA [3] C2Pred COMP GLFLDTLKGLAGKLLQGLKCIKAGCKP [3] C2Pred COMP
ISFDELLDYYGESGS [3] C2Pred COMP ALCCYGYRFCCPNFR [3] C2Pred COMP
RGDFK [2] CPPsite 2 COMP GLTPNMNSLFF [3] C2Pred COMP
KLWMRWYSPWTRRYG [2] CPPsite 2 COMP FLGALIKGAIHGGRFIHGMIQNHHG [3] C2Pred COMP
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NAKTRRXERRRKLAIERGC [2] CPPsite 2 COMP FLPVLAGIAAKVVPALFCKITKKC [3] C2Pred COMP
KKDGKKRKRSRKESYSVYVYKVLKQ [3] C2Pred COMP GRRKRKWLRRIGKGVKIIGGAALDHL [3] C2Pred COMP
ACRRSRRGCGRRSRRCG [2] CPPsite 2 COMP NGVYCTKNKCTVDWAKATTCIAGMSIGGF [3] C2Pred COMP
HIQLSPFSQSWR [3] C2Pred COMP GLFDIIKKVASVVGLASQ [3] C2Pred COMP
MIIFKIAASXKK [2] CPPsite 2 COMP GHDFDQDDVNSSGEKDESLVRI [3] C2Pred COMP
TARRITPKDVIDVRSVTTEINT [2] CPPsite 2 COMP TPVVNPPFLQQT [3] C2Pred COMP
GLGSLLKKAGKKLKQPKSKRKV [3] C2Pred COMP LNLKALLAVAKKIL [3] C2Pred COMP
TRQARRNRRRRWRERQR Rev (34-50) CPPsite 2 EXPR (PDB code: 1RPV) EPTWNNLKGMW [3] C2Pred COMP
WEARLARALARALARXLARALARA [2] CPPsite 2 COMP AEPGADDAEEVEQKQLQ [3] C2Pred COMP
ASMWERVKSIIKSSLAAASNI [3] C2Pred COMP GLGDILGLLGL [3] C2Pred COMP
RIRMIQNLIKKT [3] C2Pred COMP IPPYCTIAPFGI [3] C2Pred COMP
QIISRDLISX [2] CPPsite 2 COMP QQPFVQQQQPFVQQ [3] C2Pred COMP
QAASRVENYMHR [3] C2Pred COMP GPYGGGGLVGALLG [3] C2Pred COMP
GLKKLAELFXKLLKLG [2] CPPsite 2 COMP GCCPFPACTHTIICRCC [3] C2Pred COMP
LNSAGYLLGKINLKALAALAKKIL [2] CPPsite 2 COMP MSPRPLAWALVL [3] C2Pred COMP
GGAYVTRSSAVRLRSSVPGVRLLQ [3] C2Pred COMP EYDDMYTEKRPKVYAFGL [3] C2Pred COMP
KWCFRVCYRGICYRRCRGK [3] C2Pred COMP GGCRIGPITWVCGG [3] C2Pred COMP
RRIRPRP [2] CPPsite 2 COMP GLFTLIKCAYQLIAPTVACN [3] C2Pred COMP
RRARRPRRLRPAPGR [3] C2Pred COMP FIGAVAGLLSKIF [3] C2Pred COMP
RKKRRRESRKKRRRES [2] CPPsite 2 COMP ALWKTLLKGAGKVFGHVAKQFLGSQGQPES [3] C2Pred COMP
YPRAARRAARR [2] CPPsite 2 COMP MAASPRNSVLLA [3] C2Pred COMP
KKKEERADLIAYLKKA [2] CPPsite 2 COMP NPGTPQHLCGSHLVDALYLVCGPTGFFYNP [3] C2Pred COMP
ACRGRGRGCRGRGRGCG [2] CPPsite 2 COMP DCCHNTQLPFIYKTCPEGCNL [3] C2Pred COMP
RRRQRRKKR [2] CPPsite 2 COMP FIPLVSGLFSRLL [3] C2Pred COMP
LIRLWSXLIXIWFQNRRLKWKKKGGC [2] CPPsite 2 COMP CAETCIYIPCFTEAVGCKCKDKVCYKN [3] C2Pred COMP
KLALKAALKAWKAAAKLA [2] CPPsite 2 COMP KSDLLGALLSRNSPSSYGLPSRDMSTAY [3] C2Pred COMP
NKPILVFY [2] CPPsite 2 COMP VYVPRYIANLY [3] C2Pred COMP
RLXRRLXRRLXRLXR [2] CPPsite 2 COMP FKVQNQHGQVVKIFHH [3] C2Pred COMP
RRLRXLRXXYRRRWXRFR [2] CPPsite 2 COMP GLVPNLLNNLGL [3] C2Pred COMP
ERKKRRRE [2] CPPsite 2 COMP MTPPPLPARVDFSLAGALN [3] C2Pred COMP
DRDRDRDRDR [2] CPPsite 2 COMP KIHPFAQTQSLVYP [3] C2Pred COMP
KKLALXALXLLALLWLXLAXLALKK [2] CPPsite 2 COMP SLLADTQSGHRW [3] C2Pred COMP
MAMPGEPRRANVMAHKLEPASLQLRSCA [3] C2Pred COMP GLWNKIKEAASKAAGKAALGFVNEMVG [3] C2Pred COMP
ALIILRRRIRKQAXAXSK [2] CPPsite 2 COMP YIKVLRCRVVFQNEC [3] C2Pred COMP
GSPWGLQXXPPRT [2] CPPsite 2 COMP FFPNVASVPGQVLLKKIFCAISKKC [3] C2Pred COMP
LLYWFRRRXRXXRRRXRR [2] CPPsite 2 COMP GCIGRNESQKKDNVYKFKE [3] C2Pred COMP
KKAAQIRSQVMTXLRVI [2] CPPsite 2 COMP MRKEFHNVLSSGQLLADKRPARDYNRK [3] C2Pred COMP
GKYVSLTTPKNPTKRRITPKDV [3] C2Pred COMP FMGGLIKAATKIVPAAYCAITKKC [3] C2Pred COMP
ARCSGSGSGCGSGSGSCGR [2] CPPsite 2 COMP VIVKAIATLSKKLL [3] C2Pred COMP
CSSLDEPGRGGFSSESKV [3] C2Pred COMP ILGLLKGISALLS [3] C2Pred COMP
ACSSSPSKXCGGGGRRRRRRRRR [2] CPPsite 2 COMP GPGSAICNMACRLEHGHLYPFCNCD [3] C2Pred COMP
RRWFRRWRR [2] CPPsite 2 COMP GIVEQCCTSICSLYQLENYCN [3] C2Pred COMP
RRVWRRYRRQRWCRR [3] C2Pred COMP AIEWEGIESGSVEQA [3] C2Pred COMP
VKLPPP [2] CPPsite 2 COMP RCCKFPCPDSCRYLCC [3] C2Pred COMP
NNNAAGRKRKKRT [3] C2Pred COMP FIGPLISALASLFKG [3] C2Pred COMP
TPKTMTQTYDFS [3] C2Pred COMP MQKLQISVYIYLFMLIVAGPVDLNENSEQK [3] C2Pred COMP
XRRRRRRR [2] CPPsite 2 COMP QGTTNIVCECCMKPCTLSELRQYCP [3] C2Pred COMP
RILQQLLFIXFRIGCRXSRI [2] CPPsite 2 COMP SCIALTLVLVANSAPTTSSSTKETQQQLE [3] C2Pred COMP
PRPRPLPFPRPG [2] CPPsite 2 COMP MHSSALLCCLVLLT [3] C2Pred COMP
RQIKIWFQNARMKWKK [2] CPPsite 2 COMP FIGALLGPLLNLLK [3] C2Pred COMP
GLKKLARLAXKLLKLGC [2] CPPsite 2 COMP SAGATANLPLRS [3] C2Pred COMP
GKRRRRATAKYRSAH [3] C2Pred COMP VQQQQPLGQQQP [3] C2Pred COMP
SRWRWKSSKK [2] CPPsite 2 COMP VVCNYRDVRFESIRLPGGPRGVNPVVSY [3] C2Pred COMP
RKLTTIFPLNWKYRKALSLG [3] C2Pred COMP QGRLGTQWAVGHLM [3] C2Pred COMP
RRRRNRTRRNRRRVRGC [3] C2Pred COMP PACGGFWISGRPG [3] C2Pred COMP
AGYLLGKLKALAALAKKIL [2] CPPsite 2 COMP CLGSGEQCVRDTSCCSMSCTNNICF [3] C2Pred COMP
RXVYXVLLSQ [2] CPPsite 2 COMP SYCGSTTRICCGYCAYFGKKCIDYPSN [3] C2Pred COMP
LLIALRRRIRKQAXAXSK [2] CPPsite 2 COMP DCCPAKLLCCNP [3] C2Pred COMP
RQIKIWFQNRRMKWKKLRKKKKKH [3] C2Pred COMP LPYPVNCKTECECVMCGLGIICKQCYYQQ [3] C2Pred COMP
DTWAGVEAIIRILQQLLFIXFR [2] CPPsite 2 COMP IVAVLFLTACQFNAADDSRVRRNAEH [3] C2Pred COMP
VSRRRRRRGGRRRRK [2] CPPsite 2 COMP GFMDTAKNVAKNVAVTLIDKLRCKVTGGC [3] C2Pred COMP
LKKLAELAXKLLKLG [2] CPPsite 2 COMP SDLTWTYQSPGDPTNSKN [3] C2Pred COMP
GRGDSPRRSPRR [3] C2Pred COMP GWMSKIASGIGTFLSGIGQQG [3] C2Pred COMP
WLRRIKAWLRRIKALNRQLGVAA [2] CPPsite 2 COMP APEESPKRAPSGFLGVR [3] C2Pred COMP
YGRRRRRRRRR [2] CPPsite 2 COMP KKAVRRQEAVDAL [3] C2Pred COMP
YPYDANHTRSPT [3] C2Pred COMP GWKDWLNKGKEWLKKKGPGIMKAALKAATQ [3] C2Pred COMP
GALFLGFLGAAGSTMGAWSQPKKKRKV [2] CPPsite 2 COMP MKLNGGKSLDPTGLY [3] C2Pred COMP
CGGKDCERRFSRSDQLKRHQRRHTGVKPFQ [3] C2Pred COMP DDASDRAKKFYGLM [3] C2Pred COMP
GWTLNSAGYLLGPXAVGNXRSFSDKNGLTS [2] CPPsite 2 COMP SSPETLISDLLMRESTENVPRTRLEDPAMW [3] C2Pred COMP
SWLPYPWXVPSS [2] CPPsite 2 COMP YGGFMKPYTKQSHKPLITLLKHITLKNEQ [3] C2Pred COMP
ACRGRGRRCGSGSRSCG [2] CPPsite 2 COMP TCCKFQFLNFCCNE [3] C2Pred COMP
WIIFRIAAYXKK [2] CPPsite 2 COMP SAATNAVHRCCLTGCTQQDLLGLCPH [3] C2Pred COMP
ARRRRCSDRFRNCPADEALCGRRRR [2] CPPsite 2 COMP VLSHNNESSYSDTSSCTSQ [3] C2Pred COMP
GRQLRIAGKRLEGRSK [2] CPPsite 2 COMP VMMVEAGFGTHGCPLLQGTCDSHCRGMDA [3] C2Pred COMP
RLLRLLLRLWRRLLRLLR [3] C2Pred COMP AADHDVGSELPPEGVLGALLRV [3] C2Pred COMP
KLGVM [2] CPPsite 2 COMP RMTLSEKCCQVGCIRKDIARLC [3] C2Pred COMP
KKTTTKPTKK [2] CPPsite 2 COMP KKDGYPVEYDRAY [3] C2Pred COMP
CTWLKYX [2] CPPsite 2 COMP FLKPLFNAALKLLP [3] C2Pred COMP
KHKLLHLLHLLALLWLHLLHLLKHK [3] C2Pred COMP GIGAILKVLATGLPTLISWIKNKRKQ [3] C2Pred COMP
PSKRLLHNNLRR [3] C2Pred COMP ARHPHPHLSFM [3] C2Pred COMP
MAARLCCQLDPARDV [2] CPPsite 2 COMP GRGARRYCGRVLADTLAYLCPEMEEVE [3] C2Pred COMP
RGERLERRELRLERRELRC [2] CPPsite 2 COMP CKGKGAPCTRLMYDCCHGSCSSSKGRC [3] C2Pred COMP
KRIIQRILSRNS [3] C2Pred COMP EEEESRPRKLCGRHLLIEVIKLCGQSDWS [3] C2Pred COMP
RLLRLLRLL [2] CPPsite 2 COMP PPPPGGPQPRPPQG [3] C2Pred COMP
RSVTTEINTLFQTLTSIAEKVDP [3] C2Pred COMP RCTCTTIISSSSTF [3] C2Pred COMP
SMLKRNXSTSNR [2] CPPsite 2 COMP KPKCGLCRYRCCSGGCSSGKCVNGACDCS [3] C2Pred COMP
RQPKIWFPNRRMPWKK [3] C2Pred COMP GIMDSVKGLAKNLAGKLLDSLKCKITGC [3] C2Pred COMP
RQIKIWAQNRRMKWKK [2] CPPsite 2 COMP GLFLDTLKKFAKAGMEAVINPK [3] C2Pred COMP
ARCSDRFRNCPADEALCGR [2] CPPsite 2 COMP DEATVFGLWPLCSYRMLPF [3] C2Pred COMP
VELPPPVELPPPVELPPP [3] C2Pred COMP RSNKGFNFMVDMIQALSK [3] C2Pred COMP
MDAQTRRRERRAEKQAQWKAANGC [3] C2Pred COMP GLISGLLGVGKMLVCGLSGLC [3] C2Pred COMP
HPGSPFPPEHRP [3] C2Pred COMP LETPAPQVPARRLLPP [3] C2Pred COMP
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PPXNRIQRRLNM [2] CPPsite 2 COMP LLGMIPLAISAISALSKL [3] C2Pred COMP
GPFXFYQFLFPPV [2] CPPsite 2 COMP DGKLYKMTHFRWSEGS [3] C2Pred COMP
GDXLPXLKLC [2] CPPsite 2 COMP AKKELCTCQQPKHLKYIEKGLQKAKDYAT [3] C2Pred COMP
RXNXRFNFRFFFNFRFNTRTN [2] CPPsite 2 COMP DSLSFSYNNFEEDD [3] C2Pred COMP
LIRLWSXLIXIWFQNRRLKWKKK [2] CPPsite 2 COMP LAKRADICQPGKTSQRACET [3] C2Pred COMP
KKKKKKNKKLQQRGD [3] C2Pred COMP GFFTLIKAANKLINKTVNKEAGKGGLEIMA [3] C2Pred COMP
LIIFAILISXKK [2] CPPsite 2 COMP KCCMRPICMCPCCIGAG [3] C2Pred COMP
INLKKLAKLXKKIL [2] CPPsite 2 COMP QPSYDRDIMSFG [3] C2Pred COMP
GIGKFLXSAKKWGKAFVGQIMNC [2] CPPsite 2 COMP GLFDIVKKVVGTIAGLG [3] C2Pred COMP
GKINLKALAALAKKIL [2] CPPsite 2 COMP IRDECCSNPACRVNNPHVC [3] C2Pred COMP
RRRRRRRGGIYLATALAKWALKQ [2] CPPsite 2 COMP FFPMLAGVAARVVPKVICLITKKC [3] C2Pred COMP
IPSRWKDQFWKRWXY [2] CPPsite 2 COMP FLPFIAGMAANFLPKIFCAISKKC [3] C2Pred COMP
FITKALGISYGRKKRR [2] CPPsite 2 COMP WEAKLAKALAKALAKHLAKALKAKALCEA [3] C2Pred COMP
MAIYRDLIS [2] CPPsite 2 COMP GFFDRIKALTKNVTLELLNTITCKLPVTPP [3] C2Pred COMP
EEEAA [2] CPPsite 2 COMP AVLDFIKAAGKGLVTNIMEKVG [3] C2Pred COMP
DRRRRGSRPSGAERRRRRAAAA [3] C2Pred COMP GMATKAGTALGKVAKAVIGAAL [3] C2Pred COMP
RKKARQRRR [2] CPPsite 2 COMP WQIPEQSQCQAI [3] C2Pred COMP
KMDSRWRWKSSKK [2] CPPsite 2 COMP YLRNPRKNLLKNILADVLARQLQKK [3] C2Pred COMP
SHAFTWPTYLQL [3] C2Pred COMP YVSQRLCGSQLVDTLYSVCRHRGFYRPND [3] C2Pred COMP
RQIKIWFQNRRMKWAK [2] CPPsite 2 COMP AGETHTVMINHAGRGAPKLVVGGKKLS [3] C2Pred COMP
EKGKKIFIMK [2] CPPsite 2 COMP AFDSLAGSGFDNGFN [3] C2Pred COMP
MDCRWRWKCCKK [2] CPPsite 2 COMP LEELEEELEGCE [3] C2Pred COMP
GRKKRRQRPPQC [2] CPPsite 2 COMP YCNGKRVCVCRG [3] C2Pred COMP
VPMIK [2] CPPsite 2 COMP NSELINSLLGIPKVMTDA [3] C2Pred COMP
RQIKIAFQNRRMKWKK [2] CPPsite 2 COMP CFKKDMHKVETYL [3] C2Pred COMP
EEEEEEEEPLGLAGRRRRRRRRN [3] C2Pred COMP FLGVVFKLASKVFPAVFGKV [3] C2Pred COMP
FAPWDTASFMLG [3] C2Pred COMP INLKAIAALARNY [3] C2Pred COMP
XYRIKPTFRRLKWKYKGKFA [2] CPPsite 2 COMP RGPDHRFAFGL [3] C2Pred COMP
PQNRLQIRRXSK [2] CPPsite 2 COMP HADGRYTSDISSYLEGQAAKEFIAWLVNGR [3] C2Pred COMP
MVKSKIGSWILVLFVAMWSDVGLCKKRPKP [3] C2Pred COMP FFPLLFGALSSHLPKLF [3] C2Pred COMP
CRKKRRQRRR [2] CPPsite 2 COMP GRVRDQIMLSLGG [3] C2Pred COMP
GWTLNPPGYLLGKINLKALAALAKKIL [2] CPPsite 2 COMP HIGPNPVYSAVSNTD [3] C2Pred COMP
KCFQWQRNMRKVR [2] CPPsite 2 COMP DTNFPICLFCCKCCKNSSCGLCCIT [3] C2Pred COMP
RSRGRLRRGAIRLQRG [2] CPPsite 2 COMP FPPPGESAVDMSFFYALSNP [3] C2Pred COMP
KGKKIFIMK [2] CPPsite 2 COMP YGGFIGIRKSARKWNNQ [3] C2Pred COMP
GRKKRRQRRRP [2] CPPsite 2 COMP DVDFNSESTRRKNKQKEIVDLHNSLKKTV [3] C2Pred COMP
LLKTTELLKTTELLKTTE [3] C2Pred COMP ALWKDMLSGIGKLAGQAALGAVKTLV [3] C2Pred COMP
VRLPPP [2] CPPsite 2 COMP RKFHEKHHSHRGYRSNYLYDN [3] C2Pred COMP
RRRRRRRXXX [2] CPPsite 2 COMP YSSQHLCGSNLVEALYMTCGRSGFYRPHD [3] C2Pred COMP
RKKRRQRRRGGGKLLKLLLKLLLKLLK [3] C2Pred COMP GIFSTVFKAGKGIVCGLTGLC [3] C2Pred COMP
MIIYRDLISKK [3] C2Pred COMP RRKMCGEALIQALDVICVNGFT [3] C2Pred COMP
KKWKMRRGAGRRRRRRRRR [2] CPPsite 2 COMP RPWCHPINAILAVEKVVCTYRDVRFESIRL [3] C2Pred COMP
KALAKALAKLWKALAKAA [2] CPPsite 2 COMP ACAAHCLLRGNRGGYCNGKG [3] C2Pred COMP
GWTLNSKINLKALAALAKKIL [2] CPPsite 2 COMP ALNSVAYERSVMQDYE [3] C2Pred COMP
RQIKIWFQNRRAKWKK [2] CPPsite 2 COMP ILGTILGLLKGL [3] C2Pred COMP
ACSGSGSGCGSGSGSCGRRRRRRRR [2] CPPsite 2 COMP SPVDYDRPIMAFG [3] C2Pred COMP
ARRRCSGSGSGCGSGSGSCGRRR [2] CPPsite 2 COMP GLLGGLLGPLLGGGGGGGGGLL [3] C2Pred COMP
RRGC Oligoarginine R2 CPPsite 2 EXPR (PDB code: 3C88) FLPGLIAGIAKML [3] C2Pred COMP
MXKRPTTPSRKM [2] CPPsite 2 COMP ITCQQVTSELGPCVPYLTGQGIP [3] C2Pred COMP
LLRILRRSIRRARRAIRR [3] C2Pred COMP RVCFAIPLPICH [3] C2Pred COMP
KRIPNKKPGKKT [2] CPPsite 2 COMP MGMRLPNIIFL [3] C2Pred COMP
GSRXPSLIIPRQ [2] CPPsite 2 COMP GGTYSCHFGPLTWVCKPQGG [3] C2Pred COMP
GRKKRRQARAPPQC [3] C2Pred COMP VWPLGLVICKALKIC [3] C2Pred COMP
WELYGRKKRRQRRR [2] CPPsite 2 COMP WLNALLHHGLNCAKGVLA [3] C2Pred COMP
LAQLLAQLLAQLGGGGRRRRRRRRR [2] CPPsite 2 COMP FLPLAIGLLGKLFG [3] C2Pred COMP
YSHIATLPFTPT [3] C2Pred COMP QWGYGGMPYGGYGGMGGYGMGGYGMGY [3] C2Pred COMP
AAVALLPAVLLALLAPRRRRRR [2] CPPsite 2 COMP FLPLFLPKIICVITKKC [3] C2Pred COMP
VGALAVVVWLWLWLWAGSGPKKKRKVC [2] CPPsite 2 COMP QGVNDNEEGFFSAR [3] C2Pred COMP
RQIKIWFQNRAMKWKK [2] CPPsite 2 COMP NGARVSDMFRPSGDDFGDYSANWGDF [3] C2Pred COMP
GCGGGYGRKKRRQRRR [3] C2Pred COMP GFLDKLKKGASDFANALVNSIKGT [3] C2Pred COMP
RFTFHFRFEFTFHFEGGGRRRRRRR [3] C2Pred COMP KRGGAQYAPYWQETYLRSRK [3] C2Pred COMP
GKKALKLAAKLLKKC [3] C2Pred COMP QWAQWPRPTPQIPP [3] C2Pred COMP
RKKRRQRRA [2] CPPsite 2 COMP SLSRFLSFLKIVYPPAF [3] C2Pred COMP
KPRSKNPPKKPK [3] C2Pred COMP VVNTPGHAVSYHVY [3] C2Pred COMP
LLIILRRRIRKQAAAXSK [2] CPPsite 2 COMP IKIMDILAKLGKVLAHVG [3] C2Pred COMP
LTMPSDLQPVLW [3] C2Pred COMP DVLKKIGTVALHAGKAALGAVADTISQ [3] C2Pred COMP
RRRRRRRRRXXX [2] CPPsite 2 COMP FLSAITSLLGKLL [3] C2Pred COMP
QIKIWFQNRRMKWKK [2] CPPsite 2 COMP SDEDSDGDRPQASPGLGPGP [3] C2Pred COMP
KLALKALKAALKLA [2] CPPsite 2 COMP GIVEQCCDTPCSLYDPENYCN [3] C2Pred COMP
RHNFRFFFNFRTNR [3] C2Pred COMP SGTGLSATLPQRF [3] C2Pred COMP
MLLLTRRRST [2] CPPsite 2 COMP GTLPCESCVWIPCISSVVGCSCKSKVCYKN [3] C2Pred COMP
WIIFRIAASXKK [2] CPPsite 2 COMP GCCSTPPCAVLYC [3] C2Pred COMP
IRQRRRR [2] CPPsite 2 COMP VCIADDMPCGFGLFGGPLCCSGWCLFVCL [3] C2Pred COMP
RQIKIWFQNRRMKWKA [2] CPPsite 2 COMP KGAAKGLLEVASCKLSKSC [3] C2Pred COMP
CSKSSDYQC [2] CPPsite 2 COMP MRTWACLLLLGCGYLAFALAV [3] C2Pred COMP
CGNKRTR [2] CPPsite 2 COMP SVLTPSLSSLGESLESGIS [3] C2Pred COMP
SWLPYPWHVPSS [3] C2Pred COMP LNENLLRFFVAPFPEVFG [3] C2Pred COMP
RQIKAWFQNRRMKWKK [2] CPPsite 2 COMP ALQTLPAMCNVY [3] C2Pred COMP
GRRERNKMAAAKCRNRRR [2] CPPsite 2 COMP RDSLQRGGQKILEKAERIGDRIKDIFRG [3] C2Pred COMP
RVTSWLGRQLRIAGKRLEGRSK [2] CPPsite 2 COMP TAEALRCQENYLPSPCQ [3] C2Pred COMP
SWWTPWXVXSES [2] CPPsite 2 COMP FLPAVIRVAANVLPTAFCAISKKC [3] C2Pred COMP
YARAARRAARR [2] CPPsite 2 COMP QCCITIPECCRI [3] C2Pred COMP
RWRRWWRRW [2] CPPsite 2 COMP GCCSDPRCRYRC [3] C2Pred COMP
GGRRARRRRRR [2] CPPsite 2 COMP QIDPLGFSGGI [3] C2Pred COMP
XATKSQNINF [2] CPPsite 2 COMP NGGTSGLFAFPRV [3] C2Pred COMP
WLKLWKKWLKLW [2] CPPsite 2 COMP GLFDIIKNIVSTL [3] C2Pred COMP
RLPRPRPRPLPFPRPG [2] CPPsite 2 COMP FLAGLIGGLAKML [3] C2Pred COMP
KRIPNKKPGKKTTTKPTKKPTIKTTKKDLK [3] C2Pred COMP INWLKLGKAIIDAL [3] C2Pred COMP
RKKNPNCRRX [2] CPPsite 2 COMP FLPAVLRVAAKVGPAVFCAITQKC [3] C2Pred COMP
WEAKLAKALAKALAKHLAKALAKALKACEA [3] C2Pred COMP ASEDALFGTMRF [3] C2Pred COMP
SWAQXLSLPPVL [2] CPPsite 2 COMP SPMQRSSMVRF [3] C2Pred COMP
GALFLGFLGAAGSTMGAWSQPKSKRKV [3] C2Pred COMP PFSLIPHAIGGLISAIK [3] C2Pred COMP
RLLRLLRRLLRLLRRLLRC [3] C2Pred COMP SEAAALPRASAAAMRAAWPSPSVERV [3] C2Pred COMP
RIFIRIGC [2] CPPsite 2 COMP VPSAGDMMVRF [3] C2Pred COMP
RRRRRRRQIKILFQNRRMKWKKGGC [3] C2Pred COMP TQRLANFLIHSSNNFGAIFSPPN [3] C2Pred COMP
CRGDC [2] CPPsite 2 COMP GKLQAFLAKMKEIAAQTL [3] C2Pred COMP
XRXIRRQSLIML [2] CPPsite 2 COMP KLSPSLGPVSKGKLLAGQR [3] C2Pred COMP
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FQNRRMKWKK [2] CPPsite 2 COMP EWKLPDLIINHITLTRRNCNKYRCG [3] C2Pred COMP
RKKRRQRRRGGG [2] CPPsite 2 COMP GFGMLFKFLAKKVAKKLVSHVAQKQLE [3] C2Pred COMP
PIRRRKKLRRLK [3] C2Pred COMP CTCFTYKDKECVYYCHLDIIWINTP [3] C2Pred COMP
VKRFKKFFRKLKKKV [2] CPPsite 2 COMP FLPFLIPALTSLISSL [3] C2Pred COMP
RILQQLLFIXF [2] CPPsite 2 COMP SMAMGRLGLRPG [3] C2Pred COMP
GSPWGLQHHPPRT [3] C2Pred COMP KLFNGNEVCLDPKEKWVQKVVQIFLK [3] C2Pred COMP
MIIYRIAASXKK [2] CPPsite 2 COMP DCLPGWSVYEGRCYKVFNQKTWKAAEKFC [3] C2Pred COMP
TRRSKRRSHRKF [3] C2Pred COMP MMRDSGCFGRRLDRIGSLSGLGCNVLRRY [3] C2Pred COMP
AAVACRICMRNFSTRQARRNHRRRHRR [3] C2Pred COMP QEADPSSSLEADSTLKDEPRELSNM [3] C2Pred COMP
CGGGRRRRRRRRRLLLL [2] CPPsite 2 COMP AGNLSECFWKYCV [3] C2Pred COMP
WELVVLGKYGRKKRRQRRR [2] CPPsite 2 COMP GGAGEPLAFSPDMLSLRF [3] C2Pred COMP
KWFKIQMQIRRWKNKR [3] C2Pred COMP GLEESPGHPGQPGPPGPPGAPGP [3] C2Pred COMP
RWRCKNQN [2] CPPsite 2 COMP MYKIQLLSCIALTLALVANGAPTSSSTGNT [3] C2Pred COMP
LNVPPSWFLSQR [3] C2Pred COMP FKAPYNIHWHCKPGLLC [3] C2Pred COMP
YGRKKRRQRRRSVYDFFVWL [3] C2Pred COMP PAETPNSLDLTFNRRIMDTI [3] C2Pred COMP
QRIRKSKISRTL [3] C2Pred COMP HSDAVFTDNYTRLRKQMAVKKYLNSILN [3] C2Pred COMP
LCLR [2] CPPsite 2 COMP FSETIPAPTSKNEAQQKS [3] C2Pred COMP
VPALR [2] CPPsite 2 COMP GPRPPGFSPFRGKFHSQS [3] C2Pred COMP
GYGRKKRRQRRRG [2] CPPsite 2 COMP SDPSVPVEPEDDDMVDQ [3] C2Pred COMP
PLSSIFSRIGDP [3] C2Pred COMP MIASHLAFEKLSKLGSKHTML [3] C2Pred COMP
RQIRIWFQNRRMRWRRC [3] C2Pred COMP RSLDASPSSAFSGNHSLS [3] C2Pred COMP
RQIKIWFQNRRMAWKK [2] CPPsite 2 COMP SEAAALPRASAAAMSCVAEPECREG [3] C2Pred COMP
LCL [2] CPPsite 2 COMP SSSMYDRDIMSFG [3] C2Pred COMP
KMDCRWRWKSSKK [2] CPPsite 2 COMP MKVFFLFAVLFCLVRRNSVHISHQEARGP [3] C2Pred COMP
SRRXXCRSKAARSRXX [2] CPPsite 2 COMP SVNTKNDFMRF [3] C2Pred COMP
RTLVNEYKNTLKFSK [3] C2Pred COMP MQFITDLIKKAVDFFKGLFGNK [3] C2Pred COMP
YARKARRAARR [2] CPPsite 2 COMP SWPVCTRNGLPVCGETCVGGTCNTPGCTC [3] C2Pred COMP
LLIILRRRARKQAXAXSK [2] CPPsite 2 COMP MSNRGASLKGLFLAVLLVSNTLLTKEGVT [3] C2Pred COMP
CIGAVLKVLTTGLPALISWIKRKRQQ [3] C2Pred COMP GWFDVVKHIASAV [3] C2Pred COMP
WKCRRQCFRVLXXWN [2] CPPsite 2 COMP STDCGGPKTQPLACDHPPLPDILFL [3] C2Pred COMP

A.2 Test dataset of CPPs and non-CPPs

Sequences of CPPs and non-CPPs used in the independent test dataset with their origin
(CPPSite 2, C2Pred, DB1*, or DB2**), and their model: Experimental (EXPR) or Computa-
tional (COMP).

Sequence Reference Origin Model Sequence Reference Origin Model
KWRRKLKKLRPKKKRKV LDP-NLS DB2 COMP KKLSECLKRIGDELDS Bax BH3 DB1 COMP
KALKKLLAKWAAAKALL MAP 8 DB1 COMP RPPGFSPFR Bradykinin PDB EXPR (PDB code: 6F3V)
RRLSSYSSRRRF SynB3 DB1 COMP IAARIKLRSRQHIKLRHL scr pVEC DB1 COMP
GRKKRRQRRRPPC ptat4 DB1 COMP CYFQNCPRG Vasopressin DB1 COMP
CNGRCG Aminopeptase DB1 COMP FVPIFTHSELQKIREKERNKGQ Motolin DB1 COMP
LIRLWSHLIHIWFQNRRLKWKKK EB1 DB1 COMP AWRRKLKALAPAKKAKV Mut-LDP-NLS DB2 COMP
AHALCPPERQIKIWFQNRRMKWKKEN pAntpHD 40P2 DB1 COMP KIWFQNRRMK pAntp(4-13) DB1 COMP
AAVALLPAVLLALLAKNNLKDCGLF [1] DB1 COMP DSSNLPPNQKQIVD [3] C2Pred COMP
CNGRCGGKLAKLAKLAKLAK [1] DB1 COMP VKRCCDEEECSSACWPCCWG [3] C2Pred COMP
GGRQIKIWFQNRRMKWKK [1] DB1 COMP LLKELWTKMKGAGKAVLGKIKGLL [3] C2Pred COMP
LLIILRARIRKQAHAHSK [1] DB1 COMP TTITVVNKCSYTVWPGALPGGGVVLD [3] C2Pred COMP
MDAQTRRRERRAEKQAQWKAAN [1] DB1 COMP YKVDEDLQGAGGIQSRGYFFFRPRN [3] C2Pred COMP
MGLGLHLLVLAAALQGAKKKRKV [1] DB1 COMP DHLPHDVYSPRL [3] C2Pred COMP
NAKTRRHERRRKLAIER [1] DB1 COMP APGDRIYVHPF [3] C2Pred COMP
CGRKKRWWRQRRRPPQ [2] CPPsite 2 COMP (CPPSite ID: 2623) HADGLFTSGYSKLLGQLSARRYLESLI [3] C2Pred COMP
MIIYRDL TCTP (1-7) CPPsite 2 COMP (CPPSite ID: 1586) EGGGPQWAVGHFM [3] C2Pred COMP
LLRARWRRRRSRRFR [3] C2Pred COMP MHVERRECAYCLTINTTICAGYCMTR [3] C2Pred COMP
GGGRRRRRRYGRKKRRQRR [3] C2Pred COMP AALKGCWTKSIPPKPCSGKR [3] C2Pred COMP
GRQLRRAGRRLRGRSR [3] C2Pred COMP GVVTDLLKTAGKLLGNLVGSLSG [3] C2Pred COMP
YRRAARRAARA CTP503 CPPsite 2 COMP (CPPSite ID: 1724) GWASSIGSILGKFAKGGAQAFLQPK [3] C2Pred COMP
GWTLNSAGYLLGKINLKALAALAKKLL TP2 CPPsite 2 COMP (CPPSite ID: 1045) SYGWAEGDTTDNEYLRF [3] C2Pred COMP
GSVSRRRRRRGGRRRR [3] C2Pred COMP GFGSFLGKALKAALKIGANVLGGAPQQ [3] C2Pred COMP
IIYRDLISX [2] CPPsite 2 COMP AIFIFIRWLLKLGHHGRAPP [3] C2Pred COMP
CGYGRKKRRQRRRGC Tat CPPsite 2 COMP (CPPSite ID: 2491) GCCSHPACNVNNPHICG [3] C2Pred COMP
RXXLRXLRRXL F3 CPPsite 2 COMP (CPPSite ID: 2924) GNNRPVYIPQPRPPHPRI [3] C2Pred COMP
VCVR [2] CPPsite 2 COMP DTHISEKIIDCNDIG [3] C2Pred COMP
RKSSKPIMEKRRRAR [3] C2Pred COMP MWITNGGVANWYFVLAR [3] C2Pred COMP
KFFKFFKFFK CPP-PNA CPPsite 2 COMP (CPPSite ID: 2072) QGLPPGPPIPR [3] C2Pred COMP
KETWFETWFTEWSQPKKKRKV [2] CPPsite 2 COMP NPKVAHCASQIGRSTAWGAVSGA [3] C2Pred COMP
KALAALLKKLAKLLAALK [2] CPPsite 2 COMP RCCQTFYWCCVQ [3] C2Pred COMP
WELVYGRKKRRQRRR [2] CPPsite 2 COMP ADDSDPVGGEFLAEGGGVR [3] C2Pred COMP
LCLK [2] CPPsite 2 COMP DNTVTSKPLNCMNYFWKSRTAC [3] C2Pred COMP
GLFKALLKLLKSLWKLLLKA [2] CPPsite 2 COMP DGCSNAGAFCGIHPGLCCSEICIVWCT [3] C2Pred COMP
KMIFVGIKKKEERA [2] CPPsite 2 COMP MKVSAAALAVILIATALCA [3] C2Pred COMP
KRIPNKKPGKK [2] CPPsite 2 COMP SDPSVPLRPEEDELIDQ [3] C2Pred COMP
GYGRKKRRGRRRTHRLPRRRRRR [3] C2Pred COMP CKGKGQSCSKLMYDCCTGSCSRRGKC [3] C2Pred COMP
MVRRFLVTLRIRRACGPPRVRV [3] C2Pred COMP GVSFHPRLKEKDDNSSGNSRKSNPK [3] C2Pred COMP
KRIHPRLTRSIR [3] C2Pred COMP IIPLPLGYFAKKT [3] C2Pred COMP
NTCTWLKYX [2] CPPsite 2 COMP QADPNKFYGLM [3] C2Pred COMP
RLWMRWYSPRTRAYG [2] CPPsite 2 COMP FLGRVLPPTRATASTHRSRL [3] C2Pred COMP
ACSSSPSKXCG [2] CPPsite 2 COMP FWGHIWNAVKRVGANALHGAVTGALS [3] C2Pred COMP
SARXXCRSKAKRSRXX [2] CPPsite 2 COMP GNTKKAVPGFYGTR [3] C2Pred COMP
WEYGRKKRRQRRR [2] CPPsite 2 COMP FLPLVTMLLGKLF [3] C2Pred COMP
FQWQRNMRKVRGPPVS [2] CPPsite 2 COMP VTMVEAGFGCPSFPSPRDSHCRGMGR [3] C2Pred COMP
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KRIXPRLTRSIR [2] CPPsite 2 COMP YGGFLRRIRFARKLANQ [3] C2Pred COMP
RLVMRVYSPTTRRYG [2] CPPsite 2 COMP GNGVVLTLTHECNLATWTKKLKCC [3] C2Pred COMP
KLALKLALKALKAA [2] CPPsite 2 COMP TMKLCGRKLPETLSKLCVY [3] C2Pred COMP
RWRRWRRWRRWR [3] C2Pred COMP GLRSKIWLWVLLMIWQESNKFKKM [3] C2Pred COMP
ACSDRFRNCPADEALCGRRRRRRRR [2] CPPsite 2 COMP KFDMVAYVSEEDS [3] C2Pred COMP
LKTLTETLKELTKTLTEL [3] C2Pred COMP GLWSKIKDVAAAAGKAALGAVNEALGEQ [3] C2Pred COMP
LGLLLRXLRXXSNLLANI [2] CPPsite 2 COMP SDRPTRAMDSPLIRF [3] C2Pred COMP
KSHAHAQKRIRRRLIILL [3] C2Pred COMP QRFSQPTFKLPQGRLTLSRKF [3] C2Pred COMP
GRKKRRQRARPPQC [2] CPPsite 2 COMP NGVCCGYKLCHPC [3] C2Pred COMP
MRRIRPRPPRLPRPRPRPLPFPRPGGCYPG [3] C2Pred COMP LFAKINGLKVGPLKIQIV [3] C2Pred COMP
PPRLPRPRPRPLPFPRPG [2] CPPsite 2 COMP NPELYQMNHFRWGQPPTHFKQ [3] C2Pred COMP
RLYMRYYSPTTRRYG [3] C2Pred COMP GCCGSFACRFGCVPCCV [3] C2Pred COMP
RRHLRRHLRHLRRHLRRHLRHL [3] C2Pred COMP FIITGLVRGLTKLF [3] C2Pred COMP
CKYGRKKRRQRRR [2] CPPsite 2 COMP GSSFLSPEFKKIQQQNDPTKTTAKIH [3] C2Pred COMP
CXAIYPRX [2] CPPsite 2 COMP IIDYYDEGEEDRDVGVVDAR [3] C2Pred COMP
SRRXXCRAKAKRSRXX [2] CPPsite 2 COMP PLVQQQFLGQQQPFPPQ [3] C2Pred COMP
GNYAHRVGAGAPVWL [3] C2Pred COMP NPFKELERAGQRVRDAIIS [3] C2Pred COMP
YTFGLKTSFNVQYTFGLKTSFNVQ [3] C2Pred COMP CHRRDSHKIDNYFKVLKCRLIHDSNC [3] C2Pred COMP
KRPAATKKAGQAKKKKL [3] C2Pred COMP ALFEESTVSAEPR [3] C2Pred COMP
GRKRKKRT [2] CPPsite 2 COMP GIGGKPVQTAFVDNDGIYD [3] C2Pred COMP
MIIYRDLI [2] CPPsite 2 COMP GAFGDLLKGVAKEAGLKLLNMAQCKLSGNC [3] C2Pred COMP
GRRHHCRSKAKRSRHH [3] C2Pred COMP FFGHLYRGITSVVKHVHGLLSG [3] C2Pred COMP
RKKRRRESWVXLPPPVXLPPPGGXXXXXX [2] CPPsite 2 COMP LRTLLELARTQSQRERAEQNRIIFDSVGK [3] C2Pred COMP
RQARRNRRRALWKTLLKKVLKA [3] C2Pred COMP GLLSGVLGVGKKVDCGLSGLC [3] C2Pred COMP
WELVVLYGRKKRRQRRR [2] CPPsite 2 COMP SLSYEDKMFDNVEFTPRL [3] C2Pred COMP
RRRRRRRGGIYLATALAKWALKQGF [3] C2Pred COMP INWKAIIEAAKQAL [3] C2Pred COMP
KLALKLALKWAKLALKAA [3] C2Pred COMP FLGALFKVASKVLPSVFCAITKKC [3] C2Pred COMP
TKRRITPKDVIDV [2] CPPsite 2 COMP DGSVDFKKNWIQYKEGFGHLSPTG [3] C2Pred COMP
RVRVFVVHIPRLT [3] C2Pred COMP NWTPQAMLYLKGAQ [3] C2Pred COMP
WRFKWRFKWRFK [3] C2Pred COMP RELEELNVPGEIVESLSSSEESITRINK [3] C2Pred COMP
RRGRRG [2] CPPsite 2 COMP MTDMWSLKICAWLGFLLLFKP [3] C2Pred COMP

* DB1 means the database from Sanders et al (2011) [1].

** DB2 means the database from Ponnappan, N. Chugh, A. (2017) [4].
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B APPENDIX B

Categorization of BBB permeability of peptides according to five classes of influx level.

𝐾𝑖𝑛 𝑃
Class 1

Very low influx [0; 1.83x10−4] [0; 1.74x10−5]

Class 2
Low influx ]1.83x10−4; 3.78x10−4] ]1.74x10−5; 3.44x10−5]

Class 3
Medium influx ]3.78x10−4; 9.37x10−4] ]3.44x10−5; 8.21x10−5]

Class 4
High influx ]9.37x10−4; 2.10x10−3] ]8.21x10−5; 1.53x10−4]

Class 5
Very high influx ]2.10x10−3; ∞] ]1.3x10−4; ∞]

Source: Adapted from Stalmans et al. 2015.
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List of peptides’ name and Brainpeps’s identification (PID) used in cross-validation
analysis. Peptides that can cross the BBB are labeled as BBB+ and those that can not are labeled
as BBB-.

PID Name Label
1 Vasopressin BBB-
2 Oxytocin BBB+
3 Thyrotropin releasing hormone BBB+
6 Vapreotide BBB-
7 Corticotropin-releasing hormone BBB-
8 Pituitary adenylate cyclase-activating polypeptide-27 BBB+
9 Pituitary adenylate cyclase-activating polypeptide-38 BBB+
10 Vasoactive intestinal peptide BBB+
11 Neuropeptide Y BBB-
14 Orexin A BBB-
15 Orexin B BBB-
16 Exendin-4 BBB+
17 Phe<sup>13</sup>,Tyr<sup>19</sup>-Melanin concentrating hormone BBB-
18 Deltorphin I, [D-Ala<sup>2</sup>]deltorphin I, Deltorphin C BBB+
19 Deltorphin II, [D-Ala<sup>2</sup>]deltorphin II BBB+
21 Adrenomedullin BBB+
22 Urocortin-I BBB-
23 Insulin BBB+
27 Amylin BBB+
28 [Tyr<sup>10</sup>] Secretin-27 BBB+
29 [Met<sup>5</sup>] Enkephalin BBB+
30 [Leu<sup>5</sup>] Enkephalin BBB+
31 Endomorphin-1 BBB+
32 Endomorphin-2, Endomorphin II BBB+
36 Tyr-Trp-Melanocyt-stimulating hormone (MSH) release-inhibiting factor BBB+
37 Biphalin BBB+
38 D-Penicillamine-D-Penicillamine Enkephalin BBB-
39 [Glu<sup>4</sup>] Deltorphin BBB+
40 SAM 995 BBB-
41 SAM 1095 BBB-
43 Ebiratide BBB+
47 Pancreatic Polypeptide BBB+
55 Epidermal growth factor BBB+
57 [Met(O)67]-(cocaine and amphetamine regulated transcript)-(55—102) BBB+
58 Mahogany (1377-1428) BBB+
59 Urocortin II BBB+
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60 Urocortin III BBB+
61 Luteinizing hormone-releasing hormone BBB+
64 Des-octanoyl ghrelin BBB+
66 Peptide YY (3-36) BBB+
67 Melanocyte stimulating hormone BBB+
69 p-[Cl-Phe<sup>4’4’</sup>] Biphalin BBB+
72 [p-Cl-Phe<sup>4</sup>]-[(D)Pen<sup>2</sup>, (D)Pen<sup>5</sup>] Enkephalin BBB+
74 Connective tissue-activating peptide BBB-
75 LSZ 916 BBB-
76 LSZ 1025 BBB-
77 LSZ 62 BBB-
78 SAM 1025 BBB-
79 SAM 1040 BBB-
80 Dynorphin (1-13) BBB-
83 Cyclo (His-Pro) BBB-
85 Glycylsarcosine BBB+
90 [(D)Ala<sup>2</sup>,(D)Leu<sup>5</sup>] Enkephalin BBB-
91 DALDA BBB-
93 [(D)Ala<sup>2</sup>, (N-Me)Phe<sup>4</sup>, Gly-ol] Enkephalin BBB+
98 Desglycinamide-arginine-vasopressin BBB+
100 TAPA BBB-
101 Substance P BBB+
104 TAPS BBB-
105 TAPP BBB+
106 CTOP BBB-
110 Dermorphin BBB+
113 mouse Obestatin BBB+
114 P41 BBB-
115 P42 BBB-
116 P43 BBB-
117 Sb-Aba BBB+
121 Api88 BBB-
122 Apidaecin Api137 BBB+
130 Agouti-related protein (83-132) BBB-
131 RC-121 BBB-
132 RC-161 BBB-
134 (3-methyl-His²) Thyrotropin-releasing Hormone BBB+
135 SKB P5 (12) BBB-
136 AN110 (14) BBB-
137 Dmt<sup>1</sup>-Endomorphin 2 BBB+
138 E-2078 BBB+
139 ADAB BBB-
140 ADAMB BBB-
141 cationic AVP<sub>4-9</sub> BBB-
142 Acyloxyalkoxy-based cyclic DADLE BBB-
143 Coumarinic acid-based cyclic DADLE BBB-
144 Oxymethyl-modified coumarinic acid-based cyclic DADLE BBB-
145 Dalargin-SS-SynB1 BBB+
146 Dalargin-SS-SynB3 BBB+
147 [(1S,2R)-Acpc]²-Endomorphin 2 BBB+
148 [(1S,2R)-Achc]²-Endomorphin 2 BBB+
149 Angiopep-1 BBB+
150 Angiopep-2 BBB+
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151 Angiopep-5 BBB+
152 Angiopep-7 BBB+
153 Exendin-4-NH2 BBB+
154 Oncocin BBB+
155 Drosocin (unglycosylated) BBB+
156 Drosocin Pro5Hyp (unglycosylated) BBB-
157 LinS BBB+
158 LinNMe BBB-
159 CycS BBB-
160 CycNMe BBB-
161 mouse Ghrelin BBB-
162 ANG1005 BBB+
163 Benzylpenicillin-SynB1 BBB+
164 Doxorubicin-SynB1 BBB+
165 Doxorubicin-(D)-Penetratin BBB+
166 Doxorubicin-SynB3 BBB+
167 Doxorubicin-(D)-SynB3 BBB+
168 SynB3 BBB+
169 Tat 47-57 BBB+
170 pVEC BBB+
171 Transportan 10 BBB-
172 TP10-2 BBB-
173 D-[Ala<sup>1</sup>]-peptide T-amide BBB+
174 NT1, Neurotensin<sup>8-13</sup> analog BBB+
175 N-Tyr-Delta Sleep Inducing Peptide BBB+
176 Gastrin-releasing peptide BBB+
177 Arginine vasopressin BBB+
178 Glucagon BBB+
179 N-Tyr-Corticotropin Releasing Factor BBB+
180 N-Tyr-Bovine Adrenal Medulla Dodecapeptide BBB+
181 N-Tyr--Endorphin BBB+
182 N-Tyr-Somatostatin BBB+
183 N-Tyr-Growth Hormone Releasing Factor BBB+
184 N-Tyr-Molluscan Cardioexcitatory Neuropeptide BBB+
185 N-Tyr-MIF-1 BBB+
186 MIF-1 BBB+
187 -Amyloid<sub>1-28</sub> BBB+
188 -Amyloid<sub>1-40</sub> BBB+
189 [D-Ala<sup>2</sup>,Ser<sup>4</sup>,D-Val<sup>5</sup>]deltorphin BBB-
190 [D-Ala<sup>2</sup>,Ser<sup>4</sup>,D-Ala<sup>5</sup>]deltorphin BBB-
191 [D-Ala<sup>2</sup>,Gln<sup>4</sup>,D-Val<sup>5</sup>]deltorphin BBB-
192 [D-Ala<sup>2</sup>,Gln<sup>4</sup>,D-Ala<sup>5</sup>]deltorphin BBB-
193 [Arg<sup>-1</sup>,Arg<sup>0</sup>,D-Ala<sup>2</sup>]deltorphin II BBB-
194 [Arg<sup>0</sup>,D-Ala<sup>2</sup>]deltorphin II BBB-
195 [Lys<sup>-1</sup>,Lys<sup>0</sup>,D-Ala<sup>2</sup>]deltorphin II BBB+
196 [Lys<sup>0</sup>,D-Ala<sup>2</sup>]deltorphin II BBB-
197 [Ala<sup>-1</sup>,Pro<sup>0</sup>,D-Ala<sup>2</sup>]deltorphin II BBB-
198 [Pro<sup>-1</sup>,Pro<sup>0</sup>,D-Ala<sup>2</sup>]deltorphin II BBB+
199 [Abu<sup>-1</sup>,Abu<sup>0</sup>,D-Ala<sup>2</sup>]deltorphin II BBB+
200 PEG-D-Penicillamine-D-Penicillamine Enkephalin BBB+
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201 DPLPE-Phe-NH<sub>2</sub> BBB-
202 DPLPE-Phe-OH BBB-
203 p-[Cl-Phe<sup>4</sup>]DPLPE-Phe BBB+
204 p-[Br-Phe<sup>4</sup>]DPLPE-Phe BBB+
205 p-[F-Phe<sup>4</sup>]DPLPE-Phe BBB-
206 p-[I-Phe<sup>4</sup>]DPLPE-Phe BBB-
207 Guanidino-Endomorphin II BBB+
208 Morphiceptin BBB+
209 Guanidino-Morphiceptin BBB+
210 Phe<sup>0</sup>-DPDPE BBB+
211 DPDPE-Phe BBB+
212 DPDPE-Arg-Gly BBB+
213 DPDPE-Phe-Ala-NH-(CH<sub>2</sub>)<sub>5</sub>-CONH<sub>2</sub> BBB+
214 DPLCE BBB+
215 DPLCE-Arg-Pro-Ala BBB+
216 Insulin detemir, Levemir® BBB-
217 Ziconotide, SNX-111, Prialt® BBB+
218 SNX-194 BBB-
219 SNX-231 BBB-
220 SNX-185 BBB-
221 THRPPMWSPVWP-NH<sub>2</sub> BBB+
222 T(NMe)H(NMe)RPPM(NMe)WSPVWP-NH<sub>2</sub> BBB+
223 thrppmwspvwp-NH<sub>2</sub> BBB+
224 pwvpswmpprht-NH<sub>2</sub> BBB+
226 Opiorphin BBB+
227 des-Tyrosine<sup>1</sup>-D-Phenylalanine³--casomorphin BBB+
228 Melanotan-II BBB-
229 PhrANTH2 BBB-
230 BIP-2 BBB-
231 PhrCACET1 BBB+
232 Neuromedin U BBB+
233 Neurotensin BBB+
234 Neuromedin N BBB+
235 Neuromedin B BBB-
236 Arginine vasopressin 1-7 BBB+
237 Arginine vasopressin 1-6 BBB+
238 [Ser7-O-Glc]dermorphin BBB+
239 [Ser7-O-Glc(Ac)4]dermorphin BBB+
240 [Ala7-C-Gal]dermorphin BBB+
241 [Ala7-C-Gal(Ac)4]dermorphin BBB+
242 gH625 BBB+
243 D1 BBB-
244 D3 BBB+
245 Beauvericin BBB+
246 PepH1 BBB+
247 PepH2 BBB+
248 PepH3 BBB+
249 PepH4 BBB+
250 GPE BBB+
251 MEL-N1606 BBB+
252 MEL-N1608 BBB+
253 MEL1201 BBB+
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254 MEL1209 BBB+
255 MEL1214 BBB+
256 MEL1224 BBB+
257 PepNeg BBB+
258 C-36 BBB-
259 F-81 BBB-
260 LLVV-H4 BBB+
261 LVV-H4 BBB+
262 VV-H4 BBB+
263 VV-H7 BBB+
264 H7 BBB+
265 L57 BBB+
266 D3D3 BBB-
267 RD2D3 BBB-
268 cRD2D3 BBB+
269 AH-D BBB+
270 NT2 BBB+
271 NT4 BBB+
272 Macrocyclic inhibitory peptide 2e BBB+
273 Gly-Pro BBB+
274 Tyr-Pro BBB+
275 mouse Des-octanoyl Ghrelin BBB-
276 ANK6 BBB-
277 tANK6 BBB+
278 cANK6r BBB-
279 PEP inhibitory peptide BBB+
280 OP5 BBB+
281 SLSHSPQ BBB+
282 NTGSPYE BBB+
287 Amyloid precursos protein derived peptide BBB+
288 P1 BBB+
289 P2* BBB+
290 P3 BBB+
291 P4* BBB+
292 P5 BBB+
293 P6* BBB+
301 THRre_2f BBB+
304 p1 BBB-
305 p2 BBB+
306 p3 BBB+
307 p4 BBB+
308 p5 BBB+
309 p6 BBB+
310 p7 BBB-
311 p8 BBB+
312 p9 BBB+
313 p10 BBB-
314 p11 BBB+
315 p12 BBB+
316 p13 BBB+
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316 p13 BBB+
317 p14 BBB+
318 p15 BBB+
319 p16 BBB+
320 AGBBB015F BBB+
322 Monocyclic 5Br BBB+
323 Monocyclic 6Br BBB+
324 Monocyclic 7Br BBB-
325 Head-to-tail cyclic BBB-
326 Linear BBB-
327 Bicyclic 5,5 BBB-
328 Bicyclic 6,6 BBB-
329 Bicyclic 7,7 BBB+
330 BBB-
331 BBB+
332 BBB+
333 BBB-
334 dynantin BBB+
335 AE344 BBB+
336 Scramble BBB-
337 Che-ADAV BBB+
338 Che-AD(OMe)AV BBB+
339 BBB-
340 BBB+
341 BBB+
342 BBB+
343 BBB-
344 BBB+
345 BBB+
346 BBB+
347 BBB+
348 BBB+
349 BBB+
350 GM6 BBB+
351 OFP006 BBB+
352 BBB+
353 BBB-
354 BBB-
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Kendall’s correlation of the twelve analyzed structural and physicochemical descriptors
demonstrating the relevance to CPPs’ prediction for training and independent test dataset.

Source: Author’s own.
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Kendall’s correlation of the analyzed sequence-based descriptors f[Arg] and f[Lys],
demonstrating the relevance of these properties to CPPs’ prediction for training and independent
test dataset.

Source: Author’s own.
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Kendall’s correlation of the analyzed pseudo amino acid composition (PseAAC) de-
scriptors, demonstrating their relevance to CPPs’ prediction for training and independent test
dataset.

Source: Author’s own.
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Kendall’s correlation of the forty most-well correlated dipeptide composition (DPC)
descriptors, demonstrating their relevance to CPPs’ prediction for training and independent test
dataset.

Source: Author’s own.
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List of modules of Mordred’s descriptors.

Modules of Mordred’s descriptors
ABCIndex InformationContent
AcidBase KappaShapeIndex
AdjacencyMatrix Lipinski
Aromatic McGowanVolume
AtomCount MoeType
Autocorrelation MolecularDistanceEdge
BalabanJ MolecularId
BaryszMatrix PathCount
BCUT Polarizability
BertzCT RingCount
BondCount RotatableBond
CarbonTypes SLogP
Chi TopologicalCharge
Constitutional TopologicalIndex
DetourMatrix TopoPSA
DistanceMatrix VdwVolumeABC
EccentricConnectivityIndex VertexAdjacencyInformation
EState WalkCount
ExtendedTopochemicalAtom Weight
FragmentComplexity WienerIndex
Framework ZagrebIndex
HydrogenBond

The complete list of Mordred’s descriptors is available in https://jcheminf.

biomedcentral.com/articles/10.1186/s13321-018-0258-y.

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0258-y
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0258-y
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F.1 Appendix F1

Table with the range of the searching hyperparameters for framework models XGBr,
XGBc, and 𝛾𝑠 of sLE for both biomembranes.

Hyperparameter XGBr XGBc sLE
Nº of estimators [100; 200; 500; 1000] [100; 200; 500; 1000] -
Max depth [2; 4; 8; 10; 15] [2; 4; 8; 10; 15] -
Learning rate [0.01; 0.05; 0.1] [0.01; 0.05; 0.1] -

𝛾𝑠 - -
[ 0.01; 0.02; 0.05;

0.1; 0.2; 0.5]

F.2 Appendix F2

Table with the range of the searching hyperparameters for ANN, GPC, and SVM for
both biomembranes.

ANN GPC SVM

Activation
function [Relu; Logistic] Kernel

[*RBF;
*Rational
Quadratic]

Kernel
RBF

Sigmoid

Nº of hidden
layers [1; 2] [1; 2] 𝐶

[500; 1000;
2000; 5000]

Nº of neurons
by layer

[30; 40; 50;
60; 70; 80]

Length scale
(RBF) [0.01; 0.02; 0.05] 𝛾

[0.005; 0.01;
0.1; 0.2]

Number of
iterations* 1500

Length scale
(RQ) [0.01; 0.05]

Number of
iterations* 150000

Training
algorithm* Adam

Number of
iterations* 100 - -

- -
Training

algorithm* L-BFGS-B - -

*Prefixed parameters.
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G.1 BChemRF-CPPred web server

The BChemRF-CPPred web server is a free web tool to predict whether peptides can
cross the cell membrane. The ML algorithm behind this tool is the best voting classi-
fier model described in the results of this thesis. Figure 37 shows the initial screen of the
web server, which can be accessed at the link http://comptools.linc.ufpa.br/

BChemRF-CPPred/.

Figure 37 – Home screen of the BChemRF-CPPred web server.

On the initial screen shown above, the user can scroll down the web browser and reach
the part of the tool where the user can upload and push a button to predict the permeability of
peptides across the cell membrane, as shown in Figure 38. On this screen, the user can upload
both FASTA or PDB files of the peptides, and select the FC and the version1 of the ML model
desired.

Figure 38 – Screen for uploading peptide files for permeability prediction.

http://comptools.linc.ufpa.br/BChemRF-CPPred/
http://comptools.linc.ufpa.br/BChemRF-CPPred/


G.2. BRAINPEPPASS WEB APPLICATION 130

After uploading the peptide files, the user can press the button Submit to perform pre-
diction or the button Reset to clean up the uploaded files before the prediction. The permeability
prediction is shown on another screen.

The computational technologies involved in developing this web application are Python
language, Flask framework, HTML, Bootstrap, JavaScript, and Docker. More information about
this application can be accessed in the About tab located at the top of the home screen.

G.2 BrainPepPass web application

The BrainPepPass web application is a free web tool to predict whether peptides can
cross the blood-brain barrier. The ML algorithm behind this tool is the framework model
based on FC-4 as described in the results of this thesis. Figure 39 shows the initial screen
of the GitHub page where the web application and its files are hosted, which can be accessed
at the link https://github.com/ewerton-cristhian/BrainPepPass/tree/
master.

Figure 39 – Home screen of the BrainPepPass web application in GitHub.

The application where the user can access, upload, and execute the prediction of the
peptide files was developed using Python language and is currently running in a notebook
in Google Colab. Figure 40 shows the home screen of the notebook with the BrainPepPass
application, which can be accessed at the link
https://colab.research.google.com/drive/1O-obGm1mN7RdyevRzs3h0uQ0ZtIsNCa_

?usp=sharing.

https://github.com/ewerton-cristhian/BrainPepPass/tree/master
https://github.com/ewerton-cristhian/BrainPepPass/tree/master
https://colab.research.google.com/drive/1O-obGm1mN7RdyevRzs3h0uQ0ZtIsNCa_?usp=sharing
https://colab.research.google.com/drive/1O-obGm1mN7RdyevRzs3h0uQ0ZtIsNCa_?usp=sharing
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Figure 40 – Home screen of the BrainPepPass web application in Google Colab.

To upload the peptide structures to be processed by BrainPepPass, first, open up the
session storage by clicking on the Files icon located on the left side. The .mol files can be
uploaded by dragging them from your desktop into the session storage. Another option would
be to press the icon Upload to session storage located below the word Files and select the
files from your workspace. Press Ctrl+F9 to run all the script and process your molecules.
Another option would be to open the runtime menu and press Run all option. The results will
be downloaded automatically in .xlsx format, but you also can see them in session storage on
the left.
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Summary of the best hyper-parameters reached by gridsearch applied in ML models
that compose the Vcf-CPP and the proposed DPF-CPPred.

Tables of hyper-parameters for ANN, GPC, and SVM achieved in gridsearch by FC in
prediction of CPPs with Vcf-CPP using PDB encoding.

ANN GPC SVM

Activation
function

FC-1: Relu
FC-2: Relu
FC-3: Relu
FC-4: Relu

Kernel

FC-1: Sigmoid
FC-2: RBF
FC-3: RBF
FC-4: RBF

Kernel

FC-1: RBF
FC-2: RBF
FC-3: RBF
FC-4: RBF

Nº of hidden
layers

FC-1: 2
FC-2: 2
FC-3: 1
FC-4: 2

𝛼

FC-1: 1
FC-2: 1
FC-3: 1
FC-4: 1

𝐶

FC-1: 500
FC-2: 1000
FC-3: 2000
FC-4: 5000

Nº of neurons
by layer

FC-1: 70
FC-2: 70
FC-3: 60
FC-4: 80

Length scale
(RBF)

FC-1: 0.05
FC-2: 0.01
FC-3: 0.05
FC-4: 0.05

𝛾

FC-1: 0.005
FC-2: 0.1

FC-3: 0.01
FC-4: 0.005

XGBr XGBc sLE

Nº of estimators

FC-1: 2000
FC-2: 2000
FC-3: 1000
FC-4: 2000

Nº of estimators

FC-1: 1000
FC-2: 1000
FC-3: 2000
FC-4: 1000

𝛾𝑠

FC-1: 0.02
FC-2: 0.1
FC-3: 0.02
FC-4: 0.5

Max depth

FC-1: 10
FC-2: 10
FC-3: 10
FC-4: 10

Max depth

FC-1: 4
FC-2: 4
FC-3: 8
FC-4: 4

- -

Learning rate

FC-1: 0.05
FC-2: 0.05
FC-3: 0.05
FC-4: 0.05

Learning rate

FC-1: 0.1
FC-2: 0.1
FC-3: 0.05
FC-4: 0.1

- -
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Tables of hyper-parameters for ANN, GPC, and SVM achieved in gridsearch by FC in
prediction of CPPs with Vcf-CPP using FASTA encoding.

ANN GPC SVM

Activation
function

FC-1: Relu
FC-2: Relu
FC-3: Relu
FC-4: Relu

Kernel

FC-1: RBF
FC-2: RBF
FC-3: RBF
FC-4: RBF

Kernel

FC-1: RBF
FC-2: RBF
FC-3: RBF
FC-4: RBF

Nº of hidden
layers

FC-1: 2
FC-2: 2
FC-3: 2
FC-4: 1

𝛼

FC-1: 1
FC-2: 1
FC-3: 1
FC-4: 1

𝐶

FC-1: 500
FC-2: 5000
FC-3: 500
FC-4: 500

Nº of neurons
by layer

FC-1: 80
FC-2: 80
FC-3: 80
FC-4: 60

Length scale
(RBF)

FC-1: 0.05
FC-2: 0.02
FC-3: 0.05
FC-4: 0.05

𝛾

FC-1: 0.005
FC-2: 0.01

FC-3: 0.005
FC-4: 0.01

XGBr XGBc sLE

Nº of estimators

FC-1: 1000
FC-2: 2000
FC-3: 1000
FC-4: 2000

Nº of estimators

FC-1: 1000
FC-2: 1000
FC-3: 2000
FC-4: 1000

𝛾𝑠

FC-1: 0.02
FC-2: 0.1
FC-3: 0.02
FC-4: 0.5

Max depth

FC-1: 10
FC-2: 10
FC-3: 10
FC-4: 10

Max depth

FC-1: 4
FC-2: 4
FC-3: 8
FC-4: 4

- -

Learning rate

FC-1: 0.05
FC-2: 0.05
FC-3: 0.05
FC-4: 0.05

Learning rate

FC-1: 0.1
FC-2: 0.1
FC-3: 0.05
FC-4: 0.1

- -
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Kendall’s correlation analysis on molecular descriptors regarding to permeability across
the BBB. (a) Molecular descriptors previously reported as associated with the permeability of
small molecules across the BBB (FC-1). (b) 10 most correlated Mordred’s descriptors (FC-3).

Source: Author’s own.
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Summary of the best hyper-parameters reached by gridsearch applied in ML models
(ANN, GPC, and SVM) that compose the Vcf-3BPP and the proposed DPF-3BPPred.

ANN GPC SVM

Activation
function

FC-1: Relu
FC-2: Relu
FC-3: Relu

Kernel
FC-1: RQ

FC-2: RBF
FC-3: RQ

Kernel
FC-1: Sigmoid
FC-2: Sigmoid
FC-3: Sigmoid

Nº of hidden
layers

FC-1: 2
FC-2: 1
FC-3: 1

𝛼
FC-1: 0.5
FC-2: 1
FC-3: 1

𝐶
FC-1: 500

FC-2: 2000
FC-3: 500

Nº of neurons
by layer

FC-1: 60
FC-2: 50
FC-3: 70

Length scale
FC-1: 0.5

FC-2: 0.01
FC-3: 0.5

𝛾
FC-1: 0.005
FC-2: 0.01
FC-3: 0.005

XGBr XGBc sLE

Nº of estimators
FC-1: 1000
FC-2: 1000
FC-3: 1000

Nº of estimators
FC-1: 1000
FC-2: 1000
FC-3: 1000

𝛾𝑠

FC-1: 0.01
FC-2: 0.02
FC-3: 0.02

Max depth
FC-1: 10
FC-2: 10
FC-3: 10

Max depth
FC-1: 4
FC-2: 4
FC-3: 4

- -

Learning rate
FC-1: 0.05
FC-2: 0.05
FC-3: 0.05

Learning rate
FC-1: 0.05
FC-2: 0.05
FC-3: 0.05

- -
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Results reached in 10-fold cross-validation and independent test by DPF-3BPPred for
all FCs and datasets. CV Avg: average accuracy in cross-validation, CV Std: standard deviation
of the accuracy in cross-validation.

Source: Author’s own.



137

L APPENDIX L

Results reached in LOOCV DPF-3BPPred for all FCs and datasets. CV Avg: average
accuracy in LOOCV, Std: standard deviation of the accuracy in LOOCV.

Source: Author’s own.
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List of natural peptide sequences used to compare DPF-3BPPred with other online tools.

Table 9

ID Peptide Name Sequence Label
2 Oxytocin CYIQNCPLG BBB+
8 Pituitary adenylate cyclase-activating polypeptide-27 HSDGIFTDSYSRYRKQMAVKKYLAAVL BBB+
9 Pituitary adenylate cyclase-activating polypeptide-38 HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK BBB+
10 Vasoactive intestinal peptide HSDAVFTDNYTRLRKQMAVKKYLNSILN BBB+
18 Deltorphin I YAFDVVG BBB+
19 Deltorphin II YAFEVVG BBB+
21 Adrenomedullin YRQSMNQGSRSTGCRFGTCTMQKLAHQIYQFTDKDKDGMAPRNKISPQGY BBB+
27 Amylin KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY BBB+
44 Human Beta Defensin-1 DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK BBB+
45 Human Beta Defensin-2 GIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP BBB+
46 Delta sleep inducing peptide WAGGDASGE BBB+
47 Pancreatic Polypeptide APLEPEYPGDNATPEQMAQYAAELRRYINMLTRPRY BBB+
59 Urocortin II VILSLDVPIGLLRILLEQARYKAARNQAATNAQILAHV BBB+
60 Urocortin III FTLSLDVPTNIMNLLFNIAKAKNLRAQAAANAHLMAQI BBB+
73 Enterostatin VPDPR BBB+
101 Substance P RPKPQQFFGLM BBB+
233 Neurotensin ELYENLPRRPYIL BBB+
N_C2 - KLTRAQRRAAARKNKRNTRGC BBB-
N_C3 - GGAYVTRSSAVRLRSSVPGVRLLQ BBB-
N_C4 - ARRRCSGSGSGCGSGSGSCGRRR BBB-
N_C8 - YGRKKRRQRRTALDASALQTE BBB-
N_C11 - KSTGKANKITITNDKGRLSK BBB-
N_C14 - TVDNPASTTNKDKLFAVRK BBB-
N_C17 - LLHILRRSIRKQAHAIRK BBB-
N_C19 - LNSAGYLLGKALAALAKKIL BBB-
N_C20 - CGRKKRWWRQRWWRWWRPPQ BBB-
N_C26 - MIIFRAAASHKK BBB-
N_C33 - RILQQLLFIHFRIGCRHSRI BBB-
N_C41 - RQIKIWFQNR BBB-
N_C43 - CSSLDEPGRGGFSSESKV BBB-
N_C44 - KLIKGRTPIKFGKADCDRPPKHSGK BBB-
N_C45 - ALWKTLLKKVLKAPKKKRKV BBB-
N_C46 - KNAWKHSSCHHRHQI BBB-
N_C54 - LIRLWSHLIHIWFQNRRLKWKKKC BBB-
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Access in https://www.nature.com/articles/s41598-021-87134-w

https://www.nature.com/articles/s41598-021-87134-w
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Access in https://www.frontiersin.org/articles/10.3389/fcimb.2022.838259/full

https://www.frontiersin.org/articles/10.3389/fcimb.2022.838259/full
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Access in https://pubs.acs.org/doi/10.1021/acs.jcim.3c00951

https://pubs.acs.org/doi/10.1021/acs.jcim.3c00951
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